# Appendix B Scoping Report

# ELVERTA SPECIFIC PLAN ENVIRONMENTAL IMPACT STATEMENT (EIS)

Scoping Report

Prepared for: U.S. Army Corps of Engineers, Sacramento District October 2009

# ELVERTA SPECIFIC PLAN ENVIRONMENTAL IMPACT STATEMENT (EIS)

Scoping Report

Prepared for:
U.S. Army Corps of Engineers
Sacramento District
1325 J Street, Room 1480
Sacramento, CA 95814
Contact: Kathleen Dadey, (916) 557–7253
email: Kathleen.A.Dadey@usace.army.mil

October 2009

2600 Capitol Avenue, Suite 200 Sacramento, CA 95816 916.564.4500 www.esassoc.com

Los Angeles

Oakland

Olympia

Petaluma

Portland

San Diego

San Francisco

Seattle

Tampa

Woodland Hills

207431

# **TABLE OF CONTENTS**

Elverta Specific Plan EIS Scoping Report

|                                                                  | <u>Page</u>   |
|------------------------------------------------------------------|---------------|
| Introduction                                                     | 1             |
| Proposed Project and Location                                    | 1             |
| Background<br>Nation of Intent                                   | 4             |
| Notice of Intent                                                 | 5             |
| Public Scoping Meeting Summers of Oral Public Comments (Table 1) | 5             |
| Summary of Oral Public Comments (Table 1)  Dry Creek Road        | <b>6</b><br>6 |
| Flooding                                                         | 6             |
| Green Building                                                   | 6             |
| Housing                                                          | 6             |
| Natural Resources                                                | 6             |
| Public Noticing                                                  | 7             |
| Traffic                                                          | 7             |
| Summary of Written Public Comments                               | 7             |
| Air Quality and Health Hazards                                   | 8             |
| Alternatives                                                     | 8             |
| Biological Resources                                             | 8             |
| Community Character                                              | 9             |
| Cumulative Effects                                               | 9             |
| Dry Creek Road                                                   | 9             |
| Economics                                                        | 9             |
| Flooding                                                         | 9             |
| Green Building                                                   | 10            |
| Groundwater                                                      | 10            |
| Growth                                                           | 10            |
| Housing Density                                                  | 10            |
| On-Site Mitigation                                               | 11            |
| Permit Applications                                              | 11            |
| Project Description                                              | 11            |
| Property Value                                                   | 12            |
| Public Involvement                                               | 12            |
| Purpose and Need                                                 | 12            |
| Scope of the EIS                                                 | 12            |
| Scoping Period                                                   | 13            |
| Traffic Volumes                                                  | 13            |
| Traffic Hazards / Pedestrian, Bicyclist and Equestrian Safety    | 13            |
| Water Supply and Electricity Provision                           | 14            |
| Wetlands and Waters of the United States                         | 14            |
| List of Figures                                                  |               |
| 1 Project Location                                               | 2             |
| 2 Approved Specific Plan                                         | 3             |

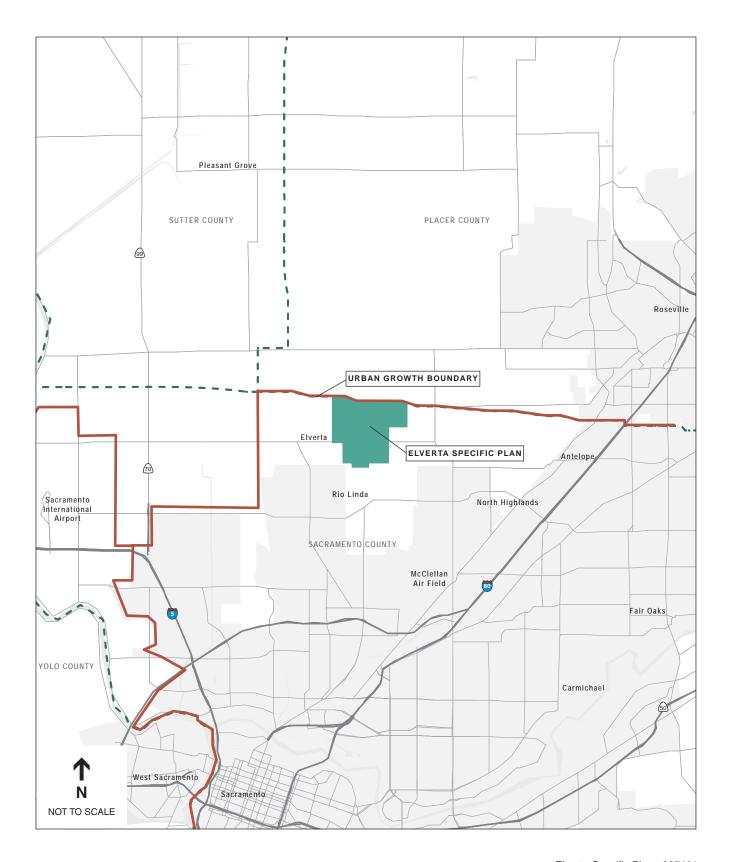
| List           | of Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1<br>2         | Oral Comments Given at the Public Scoping Meeting NOI Comment Letters                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 |
| Арр            | endices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| A.<br>B.       | Federal Register – Notice of Intent Scoping Meeting Oral Comments Transcript 1. Charlea R. Moore 2. Lisa Baker 3. Sharon King 4. Kathryn Santos Reed 5. Lisa Morris 6. Hal Morris 7. Don Schatzel                                                                                                                                                                                                                                                                                            |   |
| C.<br>D.<br>E. | 8. Mary Harris Sacramento Bee Legal Notice North Country News Article Written Public Comments Letter 1. April Hawkins Letter 2. Marlene Robillard-Ramatici Letter 3. Karla M. Alsgood Letter 4. Charlea Moore Letter 5. Paul Amato Letter 6. Paula Parker Letter 7. Amy J. Sterzik Letter 8. Paul Amato Letter 9. Russ Hood Letter 10. Mark and Nancy Pheatt Letter 11. Eric Henderson Letter 12. Marlene Vallee Letter 13. April Hawkins Letter 14. Gregor Blackburn Letter 15. Robert Uram |   |

<u>Page</u>

## **ELVERTA SPECIFIC PLAN PROJECT**

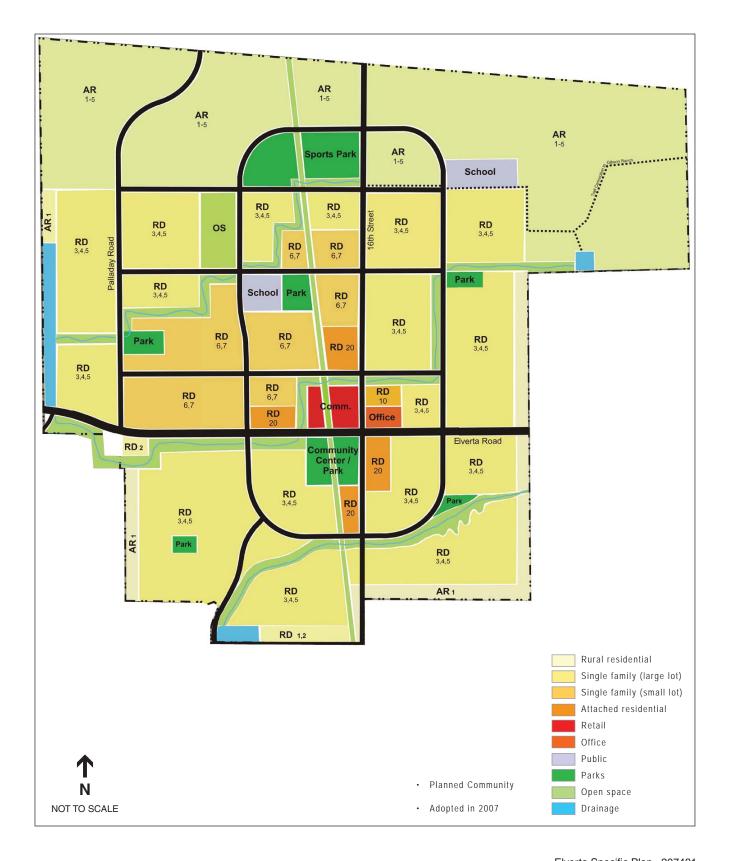
# **Scoping Report**

#### Introduction


The U.S. Army Corps of Engineers (Corps), Sacramento District is preparing an Environmental Impact Statement (EIS) for the proposed Elverta Specific Plan project (Plan). The Corps is the lead agency under the National Environmental Policy Act (NEPA). As part of the public involvement process for the EIS, the lead agency asked for input on the scope of the environmental review for the project through a public scoping meeting (June 24, 2009) and a written comment period (June 9, 2009 through July 9, 2009, extended from the original period ending June 29, 2009). This report presents a summary of the issues raised during scoping.

## **Proposed Project and Location**

The Elverta Specific Plan addresses future land uses on approximately 1,745 acres in north-central Sacramento County, California. The Elverta Owners Group (Applicant) has applied for Department of the Army permits under Section 404 of the Clean Water Act to develop the initial phase of the Plan, which amounts to approximately 775.6 acres within the plan area. The project site is shown in **Figure 1**.


An Environmental Impact Report (EIR) was prepared for the Plan by the Sacramento County Department of Environmental Review and Assessment (DERA) under the California Environmental Quality Act (CEQA). The EIR provided a site plan that identified participant properties included in the project at that time (see **Figure 2**). Since then, the mix of participant properties has changed. For this reason, figures and analyses in the EIR and in various technical documents show differing patterns of included project parcels within the Plan area as compared to the Applicant's current proposal. However, because the EIR evaluated impacts at a programmatic level for the entire Plan area, all parcels that are included in the Applicant's proposal were evaluated by DERA in the EIR.

The Plan is primarily residential in character: it includes 880.3 acres of urban residential uses and 551.8 acres of agricultural-residential uses with a total of 6,187 residential units; 15.0 acres of commercial uses; 4.4 acres of office/professional uses; 20.2 acres of school uses; 73.3 acres of park uses; 18.4 acres (former landfill site) to be designated as open space; and 191.9 acres to be used for drainageways, detention facilities, trails, powerline corridor and major roads. Development proposed by the Applicant on the 22 parcels would be consistent with these uses.



Elverta Specific Plan . 207431

Figure 1
Specific Plan Location



## **Background**

The following background information summarizes information contained in the Plan's EIR. Some updates to acreages have been provided to account for changes in participating property owners. In addition, the Notice of Intent (NOI) published for this project (Appendix A) indicated that the proposed project would result in the fill of approximately 39 acres of wetlands and other waters of the United States (including seasonal wetlands, vernal pools, intermittent channels, swales, and ditches). The Applicant also proposed to create approximately 15 acres of riparian habitat on the project site. Comments and updated data provided by the Applicant during scoping have further refined these estimates, and now indicate that the proposed project would fill approximately 45.27 acres of wetlands and other waters of the United States, with approximately 18.13 acres of riparian habitat being proposed for creation on the project site. This information has been incorporated into the current project description. The riparian enhancements are proposed to enhance the hydrologic functions and biological quality of the existing channels. Offsite mitigation is also proposed by the Applicant to compensate for onsite impacts to wetlands and other waters of the United States.

The topography of the 1,745 acre Elverta Specific Plan area is flat to gently undulating, with elevations ranging from a high of about 85 feet above mean sea level (msl) in the northeast to a low of about 50 feet above msl in the west/southwest. The northwest portion of the planning area drains to the northwest, while the remainder of the planning area drains to the southwest. Several intermittent streams cross the planning area and ultimately convey all of the site's drainage runoff to the Natomas East Main Drainage Canal (also referred to as the NEMDC and Steelhead Creek), which joins the Sacramento River at Discovery Park. A portion of the Plan area is designated on the FEMA flood map as being within the 100-year floodplain; the remainder of the planning area is shown to be outside the 500-year floodplain.

The site consists primarily of non-native annual grassland habitat used for dry land pasture, with minor areas used for irrigated truck crops such as strawberries. The site's pasture lands support cattle grazing and equestrian uses. Trees are generally lacking throughout the site, although groups of trees have been planted in clusters around residences and as windbreaks along roadways. On-site tree species include black walnut, black locust, valley oak, blue oak, willow, cottonwood, eucalyptus, fig. and a variety of ornamental pine and fruit trees.

Rural residential households are located in the area, mostly grouped along Elverta Road, Palladay Road, 16<sup>th</sup> Street, and Kasser Road. Domestic water supply is provided by private wells, and wastewater is treated by private septic systems. The eastern and southern portions of the planning area are uninhabited. A portion of a 20-acre parcel on Palladay Road was historically used as a landfill (the Monroe Landfill) for domestic waste. A PG&E power transmission line bisects the planning area in a generally north-south direction.

Surrounding land uses include rural residential uses in the AR-2 zone to the west; urban residential uses in the RD-5 and RD-10 zones to the southwest; rural residential uses in the AR-2 and AR-5 zones to the south; rural residential uses in the AR-1 zone and the Gibson Ranch Regional Park in

Scoping Report

the O zone to the east; and currently undeveloped grazing land proposed for development with an urban residential community known as Placer Vineyards to the north within Placer County. The former McClellan Air Force Base is located approximately 3 miles southeast of the planning area.

Elverta Road provides regional access to the planning area from Watt Avenue on the east and from Rio Linda Boulevard on the west; while Dry Creek Road provides regional access to the planning area from the south. The limited number of existing crossings of the Dry Creek floodplain corridor to the south of the site (i.e., at Dry Creek Road and at Rio Linda Boulevard) place considerable load on Elverta Road as an east-west distributor of vehicular traffic.

Implementation of the project as proposed by the Applicant would require a Department of the Army Permit under Section 404 of the Clean Water Act. The Elverta Owners Group is proposing to fill approximately 45.27 acres of waters of the United States, including wetlands, to construct this project. The Corps determined that preparation of an EIS was required to meet the requirements of NEPA.

#### **Notice of Intent**

The Corps published a Notice of Intent (NOI) in the Federal Register, Vol. 74, No. 109 on June 9, 2009 (**Appendix A**), to inform agencies and the general public that a Draft EIS was being prepared and invited comments on the scope and content of the document. The NOI also provided information on the date and time of the public scoping meeting.

## **Public Scoping Meeting**

The Corps held a public scoping meeting to solicit input from interested parties to be considered in project design, alternatives development, and on the scope and content of the EIS. The meeting was held on June 24, 2009 from 4 p.m. to 7 p.m. at the Rio Linda Elverta Community Center. Attendees were given the opportunity to ask questions and to provide written and oral comments (recorded by a Court Reporter, attached as **Appendix B**). Notice of the public scoping meeting was provided via legal notice in the *Sacramento Bee* newspaper on June 20, 2009 (see **Appendix C**). Additionally, subsequent to the public scoping meeting, the *North Country News* (a local Rio Linda monthly periodical) published an article discussing the project and public scoping meeting and providing information on public commenting (see **Appendix D**).

# **Summary of Oral Public Comments**

The following table provides a summary of the oral comments given at the June 24<sup>th</sup> public scoping meeting.

TABLE 1
ORAL COMMENTS GIVEN AT THE PUBLIC SCOPING MEETING

| Comment Topic     | Comment Detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Name(s) of Commenter(s) |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| Dry Creek Road    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |  |
|                   | Commenter is opposed to use of Dry Creek Road as an ingress/egress route to the project site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Charlea Moore           |  |
|                   | Commenter is in support of the project, but concerned about Lisa Morris increasing Dry Creek Road from two to four lanes in regards to safety for children going to school and displacing homes on that route. Commenter suggests 16th Street. as an alternate route to reduce impacts to local residents. 16 <sup>th</sup> Street is a main artery to downtown Sacramento.                                                                                                                                                                                                                                                                         |                         |  |
|                   | Commenter states concern regarding transportation and the north/south roads. Commenter states that it is developments north of Sacramento County (Placer Vineyards and Sutter Point) that are driving demand in Rio Linda/Elverta to widen the roads. Commenter states that local community does not support widening Dry Creek Road. Commenter further asks if Placer County will pay for the road widenings. He indicates that Sacramento County may be negotiating with Placer County regarding the payment for the road widenings. Commenter wants negotiations signed before roads are widened – dumping a lot of cars into Rio Linda/Elverta. | Don Schatzel            |  |
|                   | Commenter expresses concern regarding the extension from the thoroughfare from the development through Dry Creek Road and the potential traffic safety concerns for local school children. Commenter suggests moving the access to 16th St. instead.                                                                                                                                                                                                                                                                                                                                                                                                | Mary Harris             |  |
| Flooding          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |  |
|                   | Commenter questions how additional drainage needs will be met and who will compensate for property damage/loss associate with additional flooding if it occurs. Commenter thinks the tiny drain in 10 <sup>th</sup> Street Park is insufficient now and needs to be analyzed for the project drainage needs.                                                                                                                                                                                                                                                                                                                                        | Sharon King             |  |
|                   | Commenter states he doesn't think that the project should impact any flooding in the area and the project needs to be built.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hal Morris              |  |
| Green Building    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |  |
|                   | Commenter discusses potential water recycling, solar energy and water conservation as potential benefits with the project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mary Harris             |  |
| Housing           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |  |
|                   | Commenter questions why a development is proposed versus fixing and filling existing homes that are vacant due to foreclosures or lack of need.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lisa Baker              |  |
|                   | Commenter questions increasing housing density above anticipated need. Sacramento County is already over the number of homes in the General Plan 2030.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sharon King             |  |
| Natural Resources | Natural Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |  |
|                   | The project must mitigate for loss of natural resources, specifically things like wetlands, loss of trees, loss of any kind of flora, fauna, should be mitigated within the Dry Creek Parkway, Gibson Ranch, and the community in general.                                                                                                                                                                                                                                                                                                                                                                                                          | Charlea Moore           |  |

TABLE 1
ORAL COMMENTS GIVEN AT THE PUBLIC SCOPING MEETING

| Comment Topic   | Comment Detail                                                                                                                                                                                                                                                                                                                                    | Name(s) of Commenter(s) |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| Public Noticing |                                                                                                                                                                                                                                                                                                                                                   |                         |  |
|                 | The June 24 <sup>th</sup> public scoping meeting did not have adequate public noticing.                                                                                                                                                                                                                                                           | Charlea Moore           |  |
|                 | Commenter states that The North Country News is not a legal publication and that The Rio Linda News is a legal publication. The North Country News is published monthly. They have to be published weekly at the very minimum to become a legal publication.                                                                                      | Kathryn Santos Reed     |  |
| Traffic         |                                                                                                                                                                                                                                                                                                                                                   |                         |  |
|                 | Traffic will be an issue on 16 <sup>th</sup> Street. How will 16 <sup>th</sup> Street be impacted by the development to the north that is not in the Specific Plan? 16 <sup>th</sup> Street should be four-lanes all the way from the County line to I-80. We should not use Dry Creek Road for any ingress, egress to the Elverta Specific Plan. | Charlea Moore           |  |

## **Summary of Written Public Comments**

To date, 15 comment letters have been received on the NOI as listed in **Table 2**. The letters are included as **Appendix E**. Comments are summarized below and include the number of the associated comment letter in parenthesis.

TABLE 2 NOI COMMENT LETTERS

| Letter | Name                       | Organization                                                                                    | Date Received   |
|--------|----------------------------|-------------------------------------------------------------------------------------------------|-----------------|
| 1      | April Hawkins              | Personal Communication from Corporate Email (A/E Consultants Information Network)               | June 22, 2009   |
| 2      | Marlene Robillard-Ramatici | Personal Communication                                                                          | June 24, 2009   |
| 3      | Karla M. Alsgood           | Personal Communication                                                                          | June 24, 2009   |
| 4      | Charlea Moore              | Personal Communication                                                                          | June 24, 2009   |
| 5      | Paul Amato                 | U.S. EPA, Region 9                                                                              | June 24, 2009   |
| 6      | Paula Parker               | Personal Communication                                                                          | June 25, 2009   |
| 7      | Amy J. Sterzik             | Personal Communication                                                                          | June 28, 2009   |
| 8      | Paul Amato                 | U.S. EPA, Region 9                                                                              | June 30, 2009   |
| 9      | Russ Hood                  | Personal Communication                                                                          | July 2, 2009    |
| 10     | Mark and Nancy Pheatt      | Personal Communication                                                                          | July 8, 2009    |
| 11     | Eric Henderson             | Personal Communication                                                                          | July 9, 2009    |
| 12     | Marlene Vallee             | Personal Communication from Corporate Email (HomEq Servicing Portfolio and Risk Analytics)      | July 10, 2009   |
| 13     | April Hawkins              | Personal Communication                                                                          | July 14, 2009   |
| 14     | Gregor Blackburn           | U.S. Department of Homeland Security, FEMA Region IX.                                           | July 14, 2009   |
| 15     | Robert Uram                | Sheppard, Mullin, Richter & Hampton, LLP (Attorney for the Applicant, The Elverta Owners Group) | August 12, 2009 |

## Air Quality and Health Hazards

- As noted in the "Dry Creek Road" comment summaries, commenters express concern that increased traffic would lead to increased air emissions and associated health hazards as well as increased traffic noise. (Letters 1 and 7)
- DEIS must adequately address air quality impacts from the project and minimize these.
   Project is located within Sacramento County Air Basin and is designated serious non-attainment for 8-hour ozone and moderate non-attainment for PM10. DEIS should provide a discussion of baseline air quality conditions in the project area, a description of federal and State air quality regulations, and a rigorous assessment of impacts (direct, indirect, cumulative). DEIS should describe specific mitigations and an estimate of the air quality benefits associated with each. DEIS should describe coordination with EPA, ARB and SMAQMD. (Letter 8)
- DEIS should describe whether the project will or will not meet general conformity requirements. If the action may interfere with attainment of the Clean Air Act NAAQS, the Corps must conduct a conformity analysis. Although not required in the NEPA document, EPA also recommends that the General Conformity Determination be included in the NEPA document for full public disclosure. (Letter 8)
- Commenter suggests several construction measures be adopted into the DEIS related to: fugitive dust control, mobile and stationary source controls, and administrative controls. See comment letter for specific measures. (Letter 8)
- DEIS should identify sensitive receptors in the project area such as schools, daycare centers, nursing homes and hospitals. DEIS should specify how impacts to these will be minimized. (Letter 8)
- DEIS should analyze how the project traffic will affect traffic in the region and contribute to cumulative air quality impacts. (Letter 8)

#### **Alternatives**

• DEIS should explore and objectively evaluate a reasonable range of alternatives that avoid impacts. EPA recommends adding an "aquatic resources avoidance alternative" to the stated alternatives list from the NOI. This alternative would maximize avoidance and restoration of existing aquatic resources on the project site. (Letter 8)

## **Biological Resources**

- DEIS should provide information on all species and habitats protected under the Federal Endangered Species Act and the California Endangered Species Act and describe how impacts will be avoided, minimized and mitigated. DEIS should provide a description of baseline biological conditions, including habitats and species, and a description of impacts from project (direct, indirect and cumulative). (Letter 8)
- Commenter is concerned about the potential for the project to result in fragmentation of aquatic and terrestrial species habitats and encourages the Corps and Applicant to identify alternatives that maintain large habitat conservation areas on the project site, connected with adequate corridors. DEIS should consider habitat fragmentation and edge effects for aquatic and terrestrial species. (Letter 8)

### **Community Character**

• Commenters state that the Elverta Specific Plan will change the character of the community from rural to urban and will affect residents' quality of life due to increased traffic and associated noise and pollution. (Letters 7 and 13)

#### **Cumulative Effects**

• DEIS cumulative analysis should be comprehensive and rigorous and should consider an appropriate scope of activities and spatial and temporal scales when assessing project effects. EPA refers to CEQ 1997 guidance and EPA 1999 guidance documents. Additionally recommends referring to Caltrans SER cumulative guidance as a systematic way to analyze cumulative impacts. (Letter 8)

## **Dry Creek Road**

Commenters oppose the widening of Dry Creek Road as a major north/south four lane roadway for the following reasons.

- Commenter expresses concern that widening this road will result in traffic safety hazards for pedestrians (including school children), bicyclists and horse-back riders. (Letter 1)
- Commenter expresses concern that widening this road will result in increased traffic from Placer County causing increased traffic congestions. (Letter 1)
- Commenter expresses concern that increased traffic would lead to increased air emissions and associated health hazards as well as increased traffic noise. (Letter 1)
- Commenter expresses concern that increased traffic caused by widening this road will result in reduced property values of existing homes located on the road. (Letter 1)
- Commenter states that Dry Creek Rd. is a transportation route for one senior high school, one junior high school, two elementary schools, and one special needs school and that the Elverta Specific Plan "intends to increase safety hazards" for these school children, bus drivers, parents driving their children to school, pedestrians, bicyclists and horse-back riders on Dry Creek Road. Commenter states it is in the best interest of this community to keep Dry Creek Road a 2-lane road, add sidewalks for safety, and not consider expanding to a four-lane road or increasing the speed limit. (Letter 13)

#### **Economics**

• Commenter is concerned that water bills in Rio Linda/Elverta will increase. (Letter 1)

## **Flooding**

- Commenter expresses concern over increased flooding as a result of the project and requests that the environmental document appropriately study the impact of the planned drainage system on the property owners to the west of the project, between it and the NMEDC, specifically in regards to additional water pooling on the downstream properties for greater periods of time. (Letter 6)
- Commenter notes that Dry Creek Road also floods often from the creeks, and can not be used at all for travel. (Letter 6)

- Commenter directs the Corps to review the current effective Flood Insurance Rate Maps (FIRMs) for the County of Sacramento and to note that the County is a participant in the National Flood Insurance Program (NFIP). (Letter 14)
- Commenter provides a summary of NFIP floodplain building management requirements, including elevation of lowest floor, required hydrologic and hydraulic analyses to ensure no increase in base flood elevation levels within a Regulatory Floodway, and requirements for Special Flood Hazard Areas. (Letter 14)
- Commenter states that the County may have building requirements that are more strict than the minimum federal standards and provides contact information for the Sacramento County floodplain manager to obtain local requirements. (Letter 14)

## **Green Building**

• Environmental impacts of the proposed project can be reduced through modifications of the footprint and configuration and the integration of Smart Growth, Green Building, and LEED principles. (Letter 8)

#### Groundwater

Commenter is concerned with potential groundwater impacts due to overdraft and increases
in impervious surfaces that would reduce recharge. The DEIS should clearly describe
existing groundwater conditions and potential impacts, as well as avoidance measures.
Direct, indirect and cumulative impacts to groundwater and the relationship between
groundwater and surface water should be addressed in the DEIS. Design and conservation
measures should be considered. (Letter 8)

#### Growth

• DEIS should describe how project could result in environmental impacts due to induced growth. Make the methodology and assumptions in the growth inducement analysis transparent to the public and decision makers. Identify which land use model will be used, identify assumptions used in the model, ground truth results of the model, use results to inform transit options, neighborhood design, recommendations for land use and mitigation measures. Describe why certain models/assumptions were used and discuss strengths and weaknesses. (Letter 8)

## **Housing Density**

- Commenter requests that the Corps fully evaluate the issues associated with increasing the housing density from 4,950 units to 6,187 units. (Letter 7)
- Commenter expresses confusion regarding the increase in housing density proposed for the Elverta Specific Plan from 4,950 units to 6,187 units without adequate community notice and involvement. Commenter asks if the rezone to increase density has been approved and states that the increased density will further reduce rural quality of life in excess of that expected with the DERA approved 4,950 units. (Letter 9)

## **On-Site Mitigation**

- Commenter states that the NOI did not discuss the on-site mitigation proposed as a part of the project. Approximately 18 acres of waters within the Specific Plan area will be avoided and enhanced as part of the Elverta Owners Group actions. The Applicants will minimize impacts to these avoided areas by restoring and buffering these areas from development. Areas adjacent to these enhanced drainages will be used to create and restore wetlands within drainage corridors. (Letter 15)
- Commenter states that upon completion, the created, restored and enhanced aquatic features will serve to improve water quality, provide a visual amenity for the community, and provide habitat for wildlife. Commenter states that the Elverta Owners Group anticipates that further enhancement will be done as part of the development of the remainder of the Specific Plan. (Letter 15)

## **Permit Applications**

- Commenter states that changes to the project have occurred since The Elverta Owners Group submitted applications to the Corps in 2005, and that new applications will be submitted. (Letter 15)
- Commenter states that new permit applications will include an infrastructure permit for common facilities that serve the entire proposed Specific Plan. (Letter 15)
- Commenter states that The Elverta Owners Group anticipates that fill of waters of the United States associated with the applications and the infrastructure will be approximately 45 acres. (Letter 15)

## **Project Description**

- Commenter states that the Applicants are seeking individual permits for fill associated with the first phase of construction on 775.6 acres owned by entities participating in the Elverta Owners Group and a permit for fill associated with infrastructure necessary to serve the entire 1,745-acre Specific Plan area. (Letter 15)
- Commenter states that it is the expectation of the Elverta Owners Group that non-participating land owners will choose to develop their properties at a later time according to the Specific Plan. (Letter 15)
- Commenter states that as part of the EIS process, the Corps should consider issuing letters of permission (LOP) to allow non-participating owners to fill wetlands on their lands in the Specific Plan area in a manner that is consistent with the approved permits for the Elverta Owners Group. (Letter 15)
- Commenter states that in order to qualify for the letters of permission, the non-participating owners should have to conform their applications to the project footprint and fill areas the Corps identifies in the LOP and meet other conditions of the LOP, or alternatively should file separate individual permit applications. (Letter 15)

## **Property Value**

• As noted in the "Dry Creek Road" comment summaries, commenters express concern that increased traffic caused by widening this road will result in reduced property values of existing homes located on the road. (Letters 1 and 7)

#### **Public Involvement**

- Commenters request extension of comment period for the Notice of Intent (Letters 2 and 5)
- Commenters request to be added to noticing lists for future notices (Letters 3 and 4)
- Commenter describes decade-long Rio Linda community public involvement in the EIR process and describes community opposition to the project. Commenter further states that there has been a lack of transparency and public noticing in regards to changes to the Elverta Specific Plan between 2006 and present. (Letter 7)
- Commenter states that their property is located within the boundaries of the Elverta Specific Plan and that they did not receive individual notice of the public scoping meeting. Commenter further states they are concerned about the potential impact to their property and requests information regarding direct and indirect impacts to their property, a list of properties affected by the proposed permit, description of how the permit may change or influence their property values, and what further requirements must be completed by the Corps to identify the potential impacts to their property. Commenter further requests an additional public meeting to meet with the Corps to discuss how the proposed action may affect them and their property. (Letter 10)
- Commenter states that the scoping meeting was not noticed substantially and suggests multiple public meetings to present the Plan and address community concerns regarding traffic, water, and quality of life before being allowed to proceed. (Letter 11)

### Purpose and Need

• Purpose and Need should be clearly stated and describe underlying purpose and need to which the Corps is responding in proposing alternatives, including the proposed action. Explain why the Applicant is undertaking the proposed project, and the objectives that the action is intended to achieve. Include a detailed description of why a development of the size, composition, and location of the proposed project is needed. (Letter 8)

### Scope of the EIS

- Commenter states that through the scoping process the lead agency must determine the scope of the environmental review and "identify and eliminate from detailed study the issues which are not significant or have been covered by prior environmental review."
   Commenter provides citation of sections within 40 C.F.R. (Letter 15)
- Commenter states that NEPA requires federal agencies to cooperate with local agencies to reduce duplication between NEPA and state and local requirements. Commenter provides citation of sections within 40 C.F.R. (Letter 15)
- Commenter states that during the scoping process, the lead agency may work cooperatively with others to identify the significant issues to be analyzed in depth in the EIS and to

- eliminate insignificant issues from further study. Commenter provides legal citation. (Letter 15)
- Commenter states that the Corps may incorporate the contents of state and local environmental evaluations by reference into decision documents so long as it documents how it reached its own NEPA determination. Commenter provides legal citation. (Letter 15)
- Commenter states that Sacramento County's EIR was prepared as both a Master EIR and a Program EIR that review the impacts of the entire Elverta Specific Plan. The County approved and certified the Final EIR in accordance with CEQA and it will conduct further review of the project as required to issue local entitlements and authorizations. Commenter states that to reduce duplication, the Corps should use the scoping process to identify areas that have been previously covered adequately under CEQA and present why they will not have any significant effect on the environment or incorporate relevant data and analysis from the County's EIR into the EIS. (Letter 15)
- Commenter states that in accordance with subsection 320.4(j)(2) of the Corps' regulations, the EIS should explain that the primary responsibility for determining zoning and land use matters rests with the state and local governments and that the Corps accepts decisions by such governments on those matters unless the Corps identifies significant issues of overriding national importance. (letter 15)

### **Scoping Period**

• Commenter thinks June 29, 2009 is too short of a period to review and comment on the EIS. (Letter 2)

#### **Traffic Volumes**

- Commenter expresses concern about the traffic impact on Rifle Ridge Drive in the Cherry Creek Subdivision. (Letter 11)
- Commenter expresses concern about the overall traffic impact on Elverta Road and Watt Avenue. (Letter 11)
- Commenter expresses concern in regards to the plans and capacity for 16th Street. (Letter 11)
- Commenters express concern in regards to the plans and capacity for Dry Creek Road. (Letters 1 and 11)
- Commenter expresses concern regarding local impact of 70,000 dwelling units planned in Placer County north of the project. (Letter 11)
- Commenter requests information or documents regarding the Department of Transportation's recommendation for the 16th Street extension for the Elverta specific Plan. (Letter 12)
- DEIS should include a traffic analysis to determine how the proposed project will affect traffic in the region. (Letter 8)

## Traffic Hazards / Pedestrian, Bicyclist and Equestrian Safety

• As noted in the "Dry Creek Road" comment summaries, commenters express concern that widening this road will result in traffic safety hazards for pedestrians (including school children), bicyclists and horse-back riders. (Letters 1 and 7)

## Water Supply and Electricity Provision

- DEIS should describe the existing and/or proposed water supply for the project, anticipated water demand for the project, and impacts to water resources that may occur (direct, indirect and cumulative). The project should maximize conservation measures and provide estimate of benefit from each measure. The DEIS should describe water reliability and how that will be affected by climate change. (Letter 8)
- Commenters express concern that adequate water supply is not available to serve the project and that this lack of water supply would result in increased water costs for existing residents (Letters 1 and 11)
- Commenter questions adequate availability/provision of electricity and questions how provision to new residences will affect existing residential rates. (Letter 11)

#### Wetlands and Other Waters of the United States

- Commenter requests that the Corps fully evaluate the issues associated with wetlands fill. (Letter 7)
- Commenter is concerned with impacts to waters of the U.S. (waters) at the project site, especially vernal pools. Commenter encourages the Applicant to avoid and minimize impacts to waters to the maximum extent possible and requests a future site visit with the Corps to better understand site conditions. (Letter 8)
- DEIS should discuss how the alternatives analysis complies with the 404 (b)(1) Guidelines that require selection of the LEDPA for Section 404 permitting purposes. (Letter 8)
- Where impact to waters are determined to be unavoidable, the DEIS should demonstrate compliance with Mitigation Rule 33 CFR Parts 325 and 332 and 40 CFR Part 230 regarding Compensatory Mitigation for Losses of Aquatic Resources, Final Rule. (Letter 8)
- DEIS alternatives and mitigation should be identified by studies that identify aquatic resources at the project site, including a functional assessment. Results should be used in baseline, impacts and mitigation, and used to demonstrate LEDPA. (Letter 8)
- Stormwater runoff from the project could result in chemical, physical, and biological impacts to aquatic resources and should be avoided through the use of appropriate best management practices, low impact development (LID) techniques, and the use of stormwater retention and treatment features. The DEIS should describe construction and design measures to avoid and minimize impacts to water quality and aquatic resources through pretreatment of stormwater, and stormwater attenuation to prevent hydromodification of receiving waters. (Letter 8)
- Commenter states that the NOI only identifies impacts to waters of the U.S. on the lands owned by the Elverta Owners Group participants. Commenter states that the EIS should also evaluate the total impacts on waters of the U.S. from implementation of the Specific Plan as an additional 980 acres of development would occur on the lands of non-participating land owners in subsequent phases of implementation of the Specific Plan. (Letter 15)

# **APPENDIX A**

Federal Register - Notice of Intent

Defense Business Board, and pursuant to the Federal Advisory Committee Act of 1972, the Government in Sunshine Act of 1976, and other appropriate federal regulations, this Task Group does not work independently of the Board's charter.

## (b) Availability of Materials for the Meeting

A copy of the June 25 and 26 meeting agenda may be obtained from the Board's website at http://www.defenselink.mil/dbb under "NSPS Task Group." On June 25th the Task Group will invite experts on this topic and who recently testified before Congress. On June 26th the Task Group will hear from select members of the public where the Task Group requires additional information or explanation from previously submitted written comments.

#### (c) Public's Accessibility to the Meeting

Pursuant to 5 U.S.C. 552b and 41 CFR 102–3.140, and the availability of space, this meeting is open to the public. Seating is on a first-come basis.

(1) Special Accommodations: Individuals requiring special accommodations to access the public meeting should contact Ms. Evans at least five business days prior to the meeting so that appropriate arrangements may be made.

## (d) Procedures for Providing Public Comments

Pursuant to 41 CFR 102–3.105(j) and 102–3.140, and section 10(a)(3) of the Federal Advisory Committee Act of 1972, the public or interested organizations may submit written comments to Ms. Phyllis Ferguson, Designated Federal Officer for the Defense Business Board, 2521 South Clark Street, Room 650, Arlington, VA 22202, and this individual will ensure that the written comments are provided to the Task Group for their consideration.

Written comments being submitted in response to the agenda mentioned in this notice must be received by the Designated Federal Officer at the address listed above by June 18, 2009. Written comments received after this date may not be received in time for the NSPS Review Task Group to consider prior to the June 25–26, 2009 meeting.

While individuals are not required to follow any specific format when submitting written comments, it would be beneficial to the Task Group's analysis if those individuals who are submitting written comments consider formatting their comments along the following lines:

- 1. Classification Architecture (design of pay bands, pay schedules, and career groups);
- 2. Implementation of NSPS (initial orientation, availability of training, communication with employees);
- 3. Labor Management Relations (collective bargaining issues);
- 4. Pay Pool Process (pay pool funding, transparency, fairness, equity, uniformity and consistency across pay pools);
- 5. Pay Setting (rules/flexibilities for setting pay on reassignments, promotions, new hires, etc.);
- 6. Pay Structure (pay bands, targeted local market supplement, general salary increases);
- 7. Performance Management (design of performance management system including performance plans, monitoring performance, performance criteria, rating levels, rating distribution, performance process, communication, reconsideration process, administrative workload);
- 8. Program Outcomes (mission alignment, results focused, high-performing workforce);
- 9. Staffing and Employment (appointing authorities, alternative promotion procedures, hiring flexibilities).

In addition and on a voluntary basis, the Task Force would also like those submitting written comments to consider providing the following information: (1) DoD NSPS Employee, (2) DoD NSPS Supervisor, (3) DoD Non-NSPS Employee, (4) Other Federal Government Employee, (5) Non-Federal Government Employee or (6) Interested Organization.

Please note: The Board operates under the provisions of the Federal Advisory Committee Act, as amended; therefore, all public presentations will be treated as public documents and will be made available for public inspection, including being posted on the Board's Web site.

Dated: June 3, 2009.

#### Patricia L. Toppings,

OSD Federal Register Liaison Officer, Department of Defense.

[FR Doc. E9–13382 Filed 6–8–09; 8:45 am]

BILLING CODE 5001-06-P

#### **DEPARTMENT OF DEFENSE**

## Department of the Army, Corps of Engineers

Intent To Prepare a Draft Environmental Impact Statement for the Proposed Elverta Specific Plan Project, in Sacramento County, CA, Corps Permit File Number SPK-2004-323

**AGENCY:** Department of the Army, U.S. Army Corps of Engineers, DOD. **ACTION:** Notice of intent.

SUMMARY: The U.S. Army Corps of Engineers, Sacramento District (Corps), will prepare an Environmental Impact Statement (EIS) for the Elverta Specific Plan project, a proposed master planned community in Sacramento County, CA. The Elverta Owners Group has applied for Department of Army permits to fill approximately 39 acres of waters of the United States, including wetlands, to construct this project.

ADDRESSES: Please send written comments to Kathleen Dadey, U.S. Army Corps of Engineers, Sacramento District, 1325 J Street, Room 1480, Sacramento, CA 95814–2922.

#### FOR FURTHER INFORMATION CONTACT:

Questions about the proposed action and EIS should be addressed to Kathleen Dadey, (916) 557–7253, e-mail: Kathleen.A.Dadey@usace.army.mil.

SUPPLEMENTARY INFORMATION: The Elverta Specific Plan (Plan) addresses future land uses on approximately 1,745 acres in north-central Sacramento County, California. The Elverta Owners Group has applied for Department of the Army permits under Section 404 of the Clean Water Act to develop approximately 775.6 acres of the Plan area as the initial phase of the Plan. The Elverta Owners Group, which is comprised of 13 applicants, has submitted one application for the infrastructure to serve the Plan area and individual permit applications for 22 separate development parcels (projects). Each of the projects is complete and independent from one another; however, each of the projects relies upon the common drainage, roadways, and sewer infrastructure as described in the infrastructure permit application.

An Environmental Impact Report (EIR) was prepared for the Plan by the Sacramento County Department of Environmental Review and Assessment (DERA) under the California Environmental Quality Act (CEQA). The EIR provided a site plan that identified participant properties included in the project at the time of publication. Since that time the mix of included properties

has changed. For this reason, figures and analyses in the EIR and in various technical documents show differing patterns of included project parcels within the Plan area as compared to the current proposal. However, because the EIR evaluated impacts at a programmatic level for the entire Plan area, all parcels that are included in the current proposal were evaluated by DERA in the EIR.

The Elverta Specific Plan is primarily residential in character: It includes 880.3 acres of urban residential uses and 551.8 acres of agricultural-residential uses with a total of 6,187 residential units; 15.0 acres of commercial uses; 4.4 acres of office/professional uses; 20.2 acres of school uses; 73.3 acres of park uses; 18.4 acres (former landfill site) to be designated as open space; and 191.9 acres to be used for drainageways, detention facilities, trails, powerline corridor and major roads. Development proposed by the Elverta Owners Group on the 22 parcels would be consistent with these uses. The number of residential units has increased from the original 4,950 units analyzed previously in the EIR. The Sacramento County Housing Element 2008–2013 (adopted December 2008) allows for a 25% density increase for residential development projects that meet the following two conditions: (1) Result in energy savings beyond those obtained with conventional design and construction techniques, and, (2) The amount of increased density is proportional to the amount of increased energy efficiency achieved that exceeds adopted regulations (see Chapter 3, Sub-Strategy VII-A, Policy HE-59c of the Housing Element [page 3-91]). The proposed project would meet these criteria and therefore the maximum of 6,187 residential units is proposed.

The project would result in fill of up to 39 acres of waters of the United States, including seasonal wetlands, vernal pools, intermittent channels, swales, and ditches. Some of this fill would be permanent and some would be temporary. Temporary fill would be restored with approximately 15 acres of riparian corridors on the project site. The riparian enhancements are expected to enhance the hydrologic functions and biological quality of existing channels. Offsite mitigation is also proposed to compensate for onsite impacts to wetlands and waters.

The EIS will include an evaluation of a reasonable range of alternatives. Currently, the following alternatives are expected to be analyzed in detail: (1) The no action (no development) alternative, (2) the no federal action (no permit issued) alternative, (3) the

applicant's preferred project, (4) the approved Specific Plan, and (5) a different location (off-site) alternative. The no action (no development) alternative assumes no development would occur on the site. The no federal action (no permit issued) alternative assumes limited development would occur on the site with all waters of the United States avoided. The off-site alternative assumes the proposed project would be developed at a different but suitably sized site in the region. The Corps will also use the EIS to evaluate alternatives under the Section 404(b)(1) Guidelines, and additional alternatives may be developed under this evaluation.

The Corps' scoping process for the EIS includes a public involvement program with several opportunities to provide oral and written comments. In addition to public meetings and notifications in the **Federal Register**, the Corps will issue public notices when the draft and final EISs are available. Affected Federal, State, and local agencies, Native American tribes, and other interested private organizations and parties are invited to participate.

Potentially significant issues to be analyzed in the EIS include, but are not limited to: Loss of waters of the United States, including wetlands; land use and agriculture; population, employment and housing; environmental justice and socio-economic impacts; drainage, hydrology and water quality; utilities and service systems; public services; geology, soils and mineral resources; paleontological resources; cultural and historic resources; biological resources; visual resources; parks and recreation; hazards and hazardous materials; traffic and transportation; air quality and global climate change; noise; and cumulative and growth inducing impacts. The Corps is the lead agency for preparation of the EIS under the requirements of the National Environmental Policy Act (NEPA). The Corps will coordinate with other agencies, such as Sacramento County.

Other environmental review and consultation requirements for the proposed action include the need for the applicant to obtain water quality certification under Section 401 of the Clean Water Act from the California Central Valley Regional Water Quality Control Board. In addition, the federally listed vernal pool fairy shrimp (Branchinecta lynchi) is known to occur in the Plan area. Surveys conducted on the majority of the properties within the Plan area according to the U.S. Fish and Wildlife Service's protocol requirements during the wet seasons of 2000 and 2001 found B. lynchi at three locations. Dry

season sampling conducted in 2005 (on 12 parcels) and 2007 (on 23 parcels) also found evidence of the federally listed *Branchinecta*. The Corps will formally consult with the U.S. Fish and Wildlife Service in accordance with Section 7 of the federal Endangered Species Act. The Corps will also consult with the State Historic Preservation Officer under Section 106 of the National Historic Preservation Act concerning properties listed, or potentially eligible for listing, on the National Register of Historic Places.

A public scoping meeting for the EIS will be held on June 24, 2009, from 4 p.m. to 7 p.m. The meeting will be held at the Rio Linda Elverta Community Center, 810 Oak Lane, Rio Linda, CA 95673. Interested parties can provide oral and written comments at the meeting. Interested parties may also submit written comments on this notice. Scoping comments should be submitted before June 29, 2009 but may be submitted at any time prior to publication of the Draft EIS.

Interested parties may register for the Corps' public notice e-mail notification lists at: http://www.spk.usace.army.mil/organizations/cespk-co/regulatory/pnlist.html.

#### Brenda S. Bowen,

Army Federal Register Liaison Officer. [FR Doc. E9–13473 Filed 6–8–09; 8:45 am] BILLING CODE 3720–58–P

#### DEPARTMENT OF DEFENSE

#### **Department of the Army**

#### **Army Science Board Plenary Meeting**

**AGENCY:** Department of the Army, DoD. **ACTION:** Notice of open meeting.

SUMMARY: Pursuant to the Federal Advisory Committee Act of 1972 (5 U.S.C., Appendix, as amended), the Sunshine in the Government Act of 1976 (U.S.C. 552b, as amended) and 41 Code of the Federal Regulations (CFR 102–3.140 through 160), the Department of the Army announces the following committee meeting:

Name of Committee: Army Science Board (ASB).

Date(s) of Meeting: July 13–23, 2009. Time(s) of Meeting:

0800-1700, July 13, 2009. 0800-1700, July 14, 2009. 0800-1700, July 15, 2009. 0800-1700, July 16, 2009. 0800-1700, July 17, 2009. 0800-1700, July 20, 2009. 0800-1700, July 21, 2009. 0800-1700, July 22, 2009.

0800-1400, July 23, 2009.

# **APPENDIX B**

Scoping Meeting Oral Comments

|                            | Appendix B - Oral Comments.txt                                                                                        |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 0001<br>1                  | ELVERTA PROJECT                                                                                                       |
|                            |                                                                                                                       |
| 4                          | EIS SCOPING MEETING                                                                                                   |
| 2<br>3<br>4<br>5<br>6<br>7 | PUBLIC COMMENTS                                                                                                       |
| 7<br>8                     | JUNE 24, 2009                                                                                                         |
| 9                          | 4: 00 p.m. to 7: 00 p.m.                                                                                              |
| 10<br>11                   |                                                                                                                       |
| 12<br>13                   |                                                                                                                       |
| 14<br>15                   | Rio Linda Elverta Community Center<br>810 Oak Lane                                                                    |
| 16                         | Rio Linda, California 95673                                                                                           |
| 17<br>18                   |                                                                                                                       |
| 19<br>20                   | REPORTED BY: ANGELA T. KOTT, CSR 7811                                                                                 |
| 21<br>22                   | nan ann an ann ann ann ann ann ann ann                                                                                |
| 23                         |                                                                                                                       |
| 24<br>25                   |                                                                                                                       |
| 0002<br>1                  | CHARLEA R. MOORE                                                                                                      |
| 2                          | 8840 El Verano Avenue<br>Elverta, California 95626                                                                    |
|                            | (916) 991-0338                                                                                                        |
| 3<br>4                     | Charhorseranch@aol.com<br>MS. MOORE: My first comment and most pressing                                               |
| 5<br>6                     | concern is the lack of public notification for this scoping meeting, which is probably where people, the              |
| 7<br>8                     | public especially, first gets their chance to say, "This is what is concerning this community." And this community    |
| 9                          | has been involved in this project, the Elverta Specific                                                               |
| 10<br>11                   | Plan, heavily involved for as long as it's been in existence.                                                         |
| 12<br>13                   | I was on the CAC back in the '90s when we were doing the Community Advisory Committee, appointed by the               |
| 14                         | Board of Supervisors and paid for public input thousands                                                              |
| 15<br>16                   | Since that time, this community has shown its                                                                         |
| 17<br>18                   | involvement, and to have this meeting suddenly pop up with no knowledge in the community the community has no         |
| 19<br>20                   | knowledge of this meeting. If it hadn't been for a 10:30 phone call last night from Marlene Ramatici-Rollbiard, I     |
| 21<br>22                   | would not have known this meeting existed.                                                                            |
| 23                         | I called this building this morning at 9:30 and was told there was no meeting. And that is my concern.                |
| 24<br>25                   | That's it for now.                                                                                                    |
| 0003<br>1                  | SECOND STATEMENT BY MS. MOORE                                                                                         |
| 2<br>3                     | MS. MOORE: The concern I have is that we emphasize mitigating resources that are that need to be                      |
| 4                          | mitigated within our community, specifically things like                                                              |
| 5<br>6                     | wetlands, loss of trees, loss of any kind of flora, fauna,<br>be mitigated within the Dry Creek Parkway, Gibson Ranch |
| 7<br>8                     | and the community in general.  And the second issue is traffic on 16th Street                                         |
| J                          | Page 1                                                                                                                |

Appendix B - Oral Comments.txt and how it will be impacted by the development to the north that is not within our Specific Plan, but it is nonetheless going to hit the border at 16th Street. It's already planned for there. And as it comes south on 16th Street, we need to take that into account in terms of going over the Dry Creek Parkway so that 16th Street should be four-laned all the way from the county line to I-80. And we should not use Dry Creek Road as any of the ingress, egress to the Elverta Specific Plan. LISA BAKER Dry Creek Road Rio Linda, California 95673 MS. BAKER: My name is Lisa Baker. I live on Dry Creek Road in Rio Linda, California. Zip code 95673. My question is this, to the people, the developers, given the way the economy is right now, jobs being scarce, people barely making it and housing being foreclosed, and all that -- and by the way, in the Rio Linda area, there's many foreclosed homes. I got some information from Realtytrack.com from a friend of mine on June 17, 2009. I live in zip code 95673. Right now there's about 188 defaults, 115 auctions, 172 bank owns and 11 homes for sale. I pass by every day, you know, on my bike and I see so many empty houses for sale. We have so many empty houses right now, why do you want to build more in the first place instead of trying to fix and fill the ones we have now? SHARON KING 7420 Dry Creek Road Rio Linda, California 95673 (916) 991-4266 MS. KING: Number 1) Currently with no wetland fill, Dry Creek and U Street become an unplanned-for 7 reservoir across both roads every winter. With the increased water displaced by the fill, how is the ESP going to prevent even more flooding? I live on a natural drain for the area 2) starting at U Street and 16th. It goes across 14th behind my property, meandering behind several neighbors to drain under Dry Creek Road beside my property. I do not flood right now. Should I flood after the wetlands are filled and the development is done, who will compensate me for my

loss? How will the excess drainage be dealt with?

Someone needs to look at the tiny drain where

Page 2

Appendix B - Oral Comments.txt all the project's water ultimately goes. It's in 10th Street Park, it's insufficient now and backs up.

4) Last question: How can Sacramento County consider additional homes' density on top of the filled-in wetlands when the general plan 2030 is already way over the number of homes -- are planning for way over the number of homes that they think will be needed, what justification is there?

#### KATHRYN SANTOS REED (916) 968-0252

MS. REED: My statement was about legal publication. The North Country News is not a legal publication. The Rio Linda News is. The Rio Linda is adjudicated, a newspaper of general circulation, and they are allowed to publish legal notices. The North Country News has been in business one year, but it's only published monthly. They have to be published weekly at the very minimum to become a legal publication, and then they have to go through the court process.

Lisa Morris 1138 Q Street Rio Linda, California (916) 991-2416

MS. MORRIS: Actually, I'm all for the Elverta Specific Plan to happen. It's going to benefit our community. The only concern I do have is if Dry Creek Road is a four-lane instead of a two-lane due to the factor that it's the main route that children take to go to school -- we have several schools and several day care centers on Dry Creek. You're going to be destroying people's homes that have been there for a long time. And the alternative route that I would choose would be 16th Street.

16th Street will be minimal purchasing of homes, it will affect less people in our community. I did speak to several people on 16th Street and they said they are not really too happy about having a four-lane road going through their community, but they totally understand that. And my support is if you have widening of a road, have it 16th Street because that's a main artery to downtown Sacramento.

HAL MORRIS 1138 Q Street Rio Linda, California

MR. MORRIS: I was on the original Community Advisory Committee for this project starting in 1997 and I believe it's a great project. I don't really think that it should impact any flooding in the area and it needs to get done and built. Thank you.

community.

0kay.

 MARY HARRIS 1020 Q Street Rio Linda, California 95673 (916) 991-3100

anything that is going to dump a lot of cars into this

MS. HARRIS: I'm here to look at the displays on the Elverta Specific Plan. I'm encouraged from what I'm Page 4

DON SCHATZEL (Work address) 810 Oak Lane Rio Linda, California (916) 991-8110

MR. SCHATZEL: My comments were along the lines of transportation and north/south roads. The concern we have is in the planning effort. Many of the maps do not include the development north of Sacramento County, Placer Vineyards, one development; Sutter Point, another development.

Those populations are the ones that are driving the demand to widen roads in Rio Linda/Elverta that go in a north/south direction. It's not the Elverta Plan that is forcing the widening of those roads. It's the people in the other county, that development in Placer County.

And so, you know, Dry Creek Road in particular, this community doesn't support widening it.

this community doesn't support widening it.

And then the question we have too is, the roads that can be widened, is Placer County paying for it? And so far the input we've gotten from Sac County is, "Well, we're negotiating." And from our perspective, the negotiations should be done and signed before they build

Appendix B - Oral Comments.txt hearing here. Every time we come to another meeting, you know, we learn just a little bit more. I was able to talk with John about some recycling of putting like a filtration at the large lots, the single family homes to where the gray water could be recycled for lawns and trees. And I had read on the Internet that it would cost like \$1,000 for the tank, the recycling tank. I think that would be beneficial for smart growth for this area. Solar energy, we talked about that and wells and the treatment facilities and stuff. That would definitely help. And the water district will work with the Specific Plan on the irrigation to cut back on water usage.
One very main concern that I'm really here for is the extension from the thoroughfare from the development through Dry Creek Road. And I am totally opposed to putting anything that would be a thoroughfare through Dry Creek Road. We have three schools in that area. I live on Q Street and I'm two doors from the elementary school. we had, I would say 25 years ago, a student was crossing the road and a car hit the young man. And he did survive, but he's paraplegic today. And if we put anything that would increase traffic on Dry Creek Road, I think it would be a detriment to the students. And my proposal is we move it over to 16th Street and that would -- that road would take you straight over to the freeway, which would give the traffic access to hitting the freeway and if they worked downtown or different areas. So that's pretty well my biggest concern is not putting anything that would increase traffic on Dry Creek Road. And that's the end of my statement. Thank you. --000--CERTIFICATE OF REPORTER I, ANGELA T. KOTT, a duly authorized shorthand Reporter, do hereby certify:
That the foregoing transcript constitutes a full 7 and correct transcript of my shorthand notes taken by such reporter of the proceedings herein, and reduced to typewriting under my supervision and control to the best of my ability. In witness whereof, I have subscribed my name. DATED: \_\_\_\_\_ Page 5

# 

# **APPENDIX C**

Sacramento Bee Legal Notice

## The Sacramento Bee

P.O. Box 15779 • 2100 Q Street • Sacramento, CA 95852

ESA/COMM DEV **2600 CAPITOL AVE #200** SACRAMENTO, CA 95816

**DECLARATION OF PUBLICATION** (C.C.P. 2015.5)

COUNTY OF SACRAMENTO STATE OF CALIFORNIA

I am a citizen of the United States and a resident of the County aforesaid; I am over the age of eighteen years, and not a party to or interest ed in the above entitled matter. I am the printer and principal clerk of the publisher of The Sacramento Bee, printed and published in the City of Sacramento, County of Sacramento, State of California, daily, for which said newspaper has been adjudged a newspaper of general circulation by the Superior Court of the County of Sacramento, State of California, under the date of September 26, 1994, Action No. 379071; that the notice of which the annexed is a printed copy, has been published in each issue thereof and not in any supplement thereof on the following dates, to wit:

#### June 20, 2009

I certify (or declare) under penalty of perjury that the foregoing is true and correct and that this declaration was executed at Sacramento, California, on June 20, 2009

#### **NO 443 PUBLIC NOTICE**

#### **Public Scoping Meeting for the** Proposed Elverta Specific Plan Project.

The U.S. Army Corps of Engineers, Sacramento District, (Corps) will prepare an Environmental Impact Statement (EIS) for the Elverta Specific Plan project (Plan), a proposed master planned community in Sacramento County, CA. The Plan addresses future land uses on approximately 1,745 acres in north-central Sacramento County, California. Approximately 175.6 acres of this area would be built out as the Initial phase of the Plan. The Elverta Owners Group has applied for Department of Army permits to fill approximately 39 acres of waters of the United States, including wetlands, to construct the initial phase.

A public scoping meeting for the EIS will be held on June 24, 2009, from 4 p.m. to 7 p.m. The meeting will be held at the Rio Linda Elverta Community Center, 810 Oak Lane, Rio Linda, CA 95673. Interested parties can provide oral and written comments at the meeting, interested parties may also submit written comments on this notice, to Kathleen Dadey, U.S. Army Corps of Engineers, Sacramento District, 1325 J Street, Room 1480, Sacramento, California 95814, Kathleen, A. Dadey@usace.army, mil. Scoping comments should be submitted before June 29, 2009 but may be submitted at any time prior to publication of the Draft EIS.

# **APPENDIX D**

North Country News Article

#### ELVERTA - RIO LINDA - PLEASANT GROVE

# North Country News

ESTABLISHED 2008.....THE BEST PAPER IN TOWN !!!!

VOL. 2 NO. 7 ••••• July 2009 •••••

SINGLE COPY \$1.00

www.NCNews328.com

# **Elverta Owners Group applies for permits**

Surprise "public scoping" meeting held June 24, 2009 at the Rio Linda Elverta Community Center

By Charlea Moore

The Elverta Owners Group is moving forward with an application to the Department of the Army for permits under the Clean Water Act to develop approximately 775.6 acres of the Elverta Specific Plan area as the initial phase of the Elverta Specific Plan.

The Owners Group is comprised of 13 applicants. They have submitted a single application for the infrastructure to serve the Plan area and individual permit applications for 22 separate development parcels (projects). These projects are separate, independent projects but all rely on the common drainage, roadways and sewer infrastructure described in the permit application.

Last month the NCNews carried a story about the proposed widening of Dry Creek Rd. to 4 lanes. There has been quite a bit of protest from the community and as a result the Dept. of Transportation is recommending that Dry Creek Rd. remain a two lane, neighborhood road.

However, the original reason for designating Dry Creek Rd. as 4 lanes was to handle the north/south traffic from the Elverta Specific Plan. As indicated on this map, Dry Creek Rd. is still the only through road to handle the traffic.

The maps at the scoping meeting did not show the 70,000 plus dwelling units scheduled for the area in Placer County immediately north of the Plan. Placer County shows 16th Street as 4 lanes at the Placer/Sacramento County line. Since there is no plan by Sacramento County to build the 16th St. extension across the Dry Creek Parkway the only place the traffic can go is down Dry Creek Pad

In addition to the permits to dredge and fill, the Elverta Owners Group requested and received a rezone that will increase the maximum dwelling units from 4,950 to 6,187.

There were only a few residents in attendance at the June 24, 2009 scoping meeting and all were the result of Marlene Robillard-Ramatici who alerted the community with phone calls and emails.

According to the Army Corps of Engineers representatives present, the meeting was noticed on the U.S. Army Corps website and also in the legal notices of the Sat. June 20, 2009 Sacramento Bee. That was the only public scoping meeting scheduled. Comments can be sent to project manager Kathleen A. Dadey, 1325 J Street, Room 1480, Sacramento, CA 95814.

Phone: 916-557-7253

or Email: Kathleen.A.Dadey@usace.army.mil Comments will be accepted through July 9, 2009.



The map depicts the parcels slated for initial development in the cross hatch areas. The owners group has applied for permits to allow dredging and filling on 39 acres of the cross hatch area. The Elverta Specific Plan is bounded on the north by the Sacramento County line; on the East by Gibson Ranch and Cherry Brook and Cherry Creek subdivisions; On the South by roughly U St.; On the West by the property lines of properties facing on 9th St. and El Verano Ave. Dry Creek Parkway and Cherry Island golf course can be seen in the lower right corner. The lower, left edge is the connection to Dry Creek Rd. The light gray Loop Rd. is shown with a "dog leq" to Dry Creek Rd.

All the maps and diagrams for the scoping meeting can be found at: http://www.spk.usace.army.mil/regulatory.html

## Dry Creek Rd. Still Not Safe

By Charlea Moore

Alimited victory for Rio Linda residents along Dry Creek Rd. was granted on the second hearing before the Sacramento County Planning Commission but there is still a lot to be done if the beautiful Dry Creek Rd. is going to remain a 2 lane neighborhood road.

While the Dept. of Transportation is apparently going to recommend that Dry Creek Rd. be designated 2 lanes on the County General Plan Update, the Elverta Owners Group is moving forward with plans to develop the initial phase of the Elverta Specific Plan.

This will result in an unacceptable increase in traffic down Dry Creek Rd. from the develop-

ment in both Placer County and the Elverta Specific Plan unless the extension of 16th Street over the Dry Creek Parkway is built first. Without the extension, the only through road to the south from Placer County and the Elverta Specific Plan is Dry Creek Rd.

The Dept. of Transportation must also recommend that the 16th St. extension be completed

and that 16th Street be designated a 4 lane road, to serve the Elverta Specific Plan and Placer County.

North Country News
PO Box 328 Elverta, CA 95626
BULK PERMIT
NO. 328
ELVERTA, CA 95626
POSTAL CUSTOMER

# **APPENDIX E**

Written Public Comments

From: April Hawkins [mailto:April@a-ecin.com]

Sent: Monday, June 22, 2009 12:42 PM To: Dadey, Kathleen A SPK Subject: RE: Elverta Specific Plan EIS

Ok, thanks Kathleen, therefore I will send my concerns to you. I am opposed to widening of Dry Creek Road as a major north/south four I ane roadway. concerns are safety for myself, my neighbors, children walking or riding bikes to school, horse back riders, etc. With speed limits of 45 miles per hour along my stretch, the danger is high for accidents and fatalities. The noise would be way too loud with all the traffic of cars, trucks, buses, and motorcycles, and would impact my quality of life. All of the homes on Dry Creek Road would loose real estate value if a four lane road is developed, we may not be able to sell our houses at all after that. I moved to a quiet community which I want to keep that way. Using 16th Street as a new roadway would have fower impacts on homes. would have fewer impacts on homes, there would be less family's impacted on 16th Street instead of the 100's of homes and family's that would be impacted by the widening of Dry Creek Road. Dry Creek Road also floods often from the creeks, and can not be used at all for travel. This would impact more and more people trying to use the roadway. In this time of drought, there is no water that can be proven to be a continued source for all those new residents. Our water district is already having financial difficulties and system problems without adding all those new homes. Why should my water bills go up to help pay for the new infrastructure in the new development? By extending Dry Creek road to the county line, you will have Placer County residents coming into Sacramento County via the new roadway. This is unacceptable for Rio Linda, look what has happened to Roseville with all the new developments and roads, that city is a nightmare of traffic. Rio Linda is not that type of Town, we are a small rural community that wants to stay that way. Develop the roadways around Rio Linda, NOT through it. and I will be at the meeting on Wednesday.

April Hawkins, Project Researcher A/E Consultants Information Network P. O. Box 417816 Sacramento, CA 95841 916/991-0203 916/991-0175 Fax ahawki ns@a-eci n. com http://a-ecin.com

## Letter 2

From: marlene Ramatici [mailto:marlene\_ramatici@hotmail.com] Sent: Wednesday, June 24, 2009 12:28 AM To: Dadey, Kathleen A SPK Cc: Randy Subject: EIS for Elverta Specific Plan

Hello Ms. Kathleen Dadey,

I was just informed about you meeting scheduled for 6/24/09 at the Rio Linda Community Center. I would like to request a copy of the EIS for review and comment. I look forward to meeting and hearing findings on this matter.

With respect to comments, The June 29th due date seems rather short. I have not seen the EIS, so therefore, it makes it difficult for me to make comments on it. Can or will the comment period be extended?

Thank you, Marlene Robillard-Ramatici ----Original Message----

From: Jailnurse [mailto:jailnurse@softcom.net]
Sent: Wednesday, June 24, 2009 11:16 AM
To: Dadey, Kathleen A SPK
Cc: marlene\_ramatici@hotmail.com; bob.bastian@twinriversusd.org;
Charhorseranch@aol.com; misscaddy@softcom.net; eeh625@hotmail.com;

sharonking5224@att.net Subject: Please add me to email notices of meetings

Please add my email: jailnurse@softcom.net to your notification list for any information concerning Elverta Specific Plan and any notices for Placer, Yolo or Sutter county.

Thank you,

Karla M. Alsgood 308 Q Street Rio Linda, Ca. 95673 (916) 991-7795

## Letter 4

From: Charhorseranch@aol.com [mailto:Charhorseranch@aol.com]
Sent: Wednesday, June 24, 2009 10:43 AM
To: Dadey, Kathleen A SPK
Cc: marlene\_ramatici@hotmail.com; bob.bastian@twinriversusd.org;
Charhorseranch@aol.com; misscaddy@softcom.net; eeh625@hotmail.com;
jailnurse@softcom.net; sharonking5224@att.net
Subject: Please add me to email notices of meetings

Please add my email: Charhorseranch@aol.com to your notification list for any information concerning Elverta Specific Plan and any notices for Placer, Yolo or Sutter county.

Thank you, Charlea Moore 916-991-0338

8840 El Verano Ave. Elverta Ca 95626

From: Amato. Paul @epamail.epa.gov [mailto: Amato. Paul @epamail.epa.gov] Sent: Wednesday, June 24, 2009 9:30 AM To: Dadey, Kathleen A SPK Subject: Elverta NOI

Hi Kate,

I got your message about the comment due date for the Elverta NOI. We would like to request an additional week for comments which would give us until July 6. Please confirm that this is okay with the Corps.

Thanks, Paul

Paul Amato Environmental Protection Specialist Environmental Review Office U.S. EPA, Region 9 75 Hawthorne Street, CED-2 San Francisco, CA 94105-3901

t: (415) 972-3847 f: (415) 947-8026 e: amato. paul @epa. gov From: Paul a Parker, DVM <sawlogz@ix.netcom.com>

To: Dadey, Kathleen A SPK Sent: Thu Jun 25 12:47:12 2009 Subject: Scope of EIR for Elverta Villages

Dear Ms. Dadey:

I was intimately involved with the process of early assessment of the impact of Elverta Villages on the communities of Rio Linda and Elverta and I did not receive notification of the Corps intent to do an EIR on the drainage. served as Chair of the CPAC through the many years that it wound it's way through the planning process.

I was informed of this scoping via the Rio Linda Net, so I am unsure if an email will serve as a format to send in my "formal comments", however I am not currently at home and will not be until after the deadline, thus I have no other way to submit any comments or requests.

I was also involved in drainage studies at that time and I am aware that the run off from the project does not do into Dry Creek but rather into all the Tributaries of what is currently known as Steelhead Creek. It is my specific request that the EIR appropriately study the impact of the planned drainage system on the property owners to the west of the project, between it and the NMEDC. We were repeatedly informed that the project would not be allowed to permit water flow to be higher on the downstream parcels. Intuitively it stands to reason, then, that since more water will be crossing those properties, it will end up having to actually be present on those properties for a longer period of time in a flooding situation. While current flooding on my property does not affect my house, for example, when it occurs, it certainly has an affect on the landscaping. Luckily, after a flood, the parcel drains off relatively rapidly. If more water running off the project were to remain on my property for longer periods of time, this certainly has the potential for causing an impact, such as killing my roses. If it takes 3 days or 6 days for those higher levels to drain off. that would certainly days or 6 days for those higher levels to drain off, that would certainly cause more damage than having the water present for 6 or 12 hours.

I repeatedly asked for information during the prior studies on this effect (more water coming down being on the downstream properties for a longer period of time as opposed to rising to a higher level) and was repeatedly told that this was "too high a level of detail" and it "would be studied at a later date". So now is that time, as there will not be further studies once this one is done and accepted. Please include such information in the current EIR so that the community may know how this project will in reality affect their parcels.

Thank you. Paula Parker, DVM 7646 9th St. Elverta, CA 95626 916=991=7870 sawl ogz@i x, netcom. com June 28,2009

Dear Decision Makers at the Corp of Engineers,

The residents in Rio Linda, and Elverta, CA, have recently obtained some disturbing news regarding a project that the United States Army Corps of Engineers is working on in partnership with a 1,744-acre development project called the Elverta Specific Plan (ESP). On June 24, 2009 there was a meeting in Rio Linda, CA, regarding changes to this development project, prompted by the ESP developers themselves. The ESP proposed and received approval for building approximately 4,500 new homes in our rural community. Rio Linda, Elverta, and Sacramento County officials have approved this development, against a tremendous amount of public opposition. Since the inception of this project, the community residents have been involved in trying to have their voices heard by utilizing the appropriate avenues available to them. In February 1999, a citizens committed was formed to provide public input on the project over time and report to the developers directly. In 2006, the residents of the neighboring communities to the ESP project tried again to have their voices heard by meeting with the Broad of Supervisors District Representative, Roger Dickenson. For years, a large number of concerned residents have attended Rio Linda City meetings, Dry Creek Parkway meetings, and Rio Linda Water broad meetings. They have talked with Sacramento County senior planners, Sacramento County civil engineers, and Sacramento County community outreach personnel to comprehend and express the impact this development would have on our countryside community. Just recently, a collective group provided a colossal out crying to the Sacramento County Planning Commission at their meetings on June 8, and June 22, 2009, to have our voices heard, yet again, about transportation plans related to the ESP.

Respectfully, in order for the U.S. Army Corps of Engineers to make an informed decision on whether to allow for backfill to the wetlands area within the ESP or not and allow for another 1,200 homes, would not be complete without some background information gathered from the neighboring residents that will be the most dynamically impacted by the wetlands infill. This information sheds light on the silent impacts our rural committee has been asked to endure and on the magnification of these problems if another 1,200 homes are to be added to the ESP. As residents, we ask that you thoroughly evaluate these issues and encompass them in your informed decisions about the wetlands in ESP.

The facts are as follows. Community officials, against public opposition, adopted the ESP project and the residents were asked to endure the potential loss of value to their homes and lifestyles without any mitigated measures to assist them in their adjustments. The 4,500 new homes in our rural community will be wonderful for the tax base, but only when developed responsibly. The transportation routes to and from this development were over looked and ignored. Currently the two lane rural routes surrounding the community are not capable to bear the projected traffic congestion anticipated from the approved 4,500 homes without even considering the addition of 1,200 more homes.

The ESP did an environmental impact report (EIR) early on in the development planning phases. In the final EIR, the noise summary on page 12-23 concludes that residential property lines on two on-site sections of Dry Creek Road (a proposed thoroughfare adjacent to the ESP) exceed Sacramento's General Plan standards and surpass the 65-dB noise level. It goes on to report traffic volumes are too high to allow residential driveway and curb cuts. Since Dry Creek Road has been suggested as this designated 4 lane arterial route to bare traffic from this project, it must be known that in just a one block radius directly adjacent to the ESP project between U Street and Q Street, there are approximately 45 driveways and private road entrances. This is not to mention the numerous schools located throughout the entire Dry Creek Road. The impact to these residents is insurmountable. In addition, the EIR on page 2-2 reports, project generated traffic will produce long term emissions of ROG and NOx that substantially exceed the Air District's significance threshold of 65 lbs a day for these pollutants under summer and winter conditions. The ESP EIR also reports on page 2-2 that, even with the benefit of a 15 % reduction in emissions anticipated with the Elverta AQ-15 Air Quality Mitigation Plan, the projects ROG and NOx vehicle emissions will remain far above the significance threshold.

Furthermore, the ESP developers and their associates, Dave Cook and Michelle McCormick, both spoke at meetings held in 2006 with a large number of Dry Creek Road residents and ensured them they would be "in the loop" for developments and changes to the ESP project. This has not occurred. In fact, the opposite has been transpiring. The ESP developers have been utilizing back door antics, for lack of a better word, to not only keep the residents in the dark, but also slowly take their proposed project and try to compose it into mammoth size portions. For example, on May 2009, at the Rio Linda-Elverta Community Planning Commission meeting, applicants of the Hodgson Company located in the groupings of landholders within the ESP quietly rezoned 132.1 acres from AG-5 (agricultural-Residential) to RD-20 (residential) (4.2 acre), RD-7 (residential) (53.6 acres), and RD-5 (residential) (74.3 acres). This was completed without the knowledge and adequate notification of adjacent project residents input. It was accomplished with complete disregard as to the impact on traffic congestion that scores of more homes will have on the surrounding neighborhoods. Another example is the blatant disrespect for responsible development in the issue that ESP has put before the U.S. Army Corps of Engineers, by backfilling wetlands within the ESP in order to develop 1,200 more new homes.

In conclusion, I ask that the U.S. Army Corps of Engineers to not only evaluate the immediate issue before them of filling in a wetlands area, but I ask that the engineers to consider the bigger picture and the impact that those 1,200 new homes will add to the immense impact the neighboring residents have already been asked to absorb for the originally slated 4,500 homes. The traffic models required for this development have been placed on the back burner since the initiation of this project. ESP's clever planners and developers have been able to keep the lime light off the traffic congestion issues that are pending with the 4,500 homes slated to go in as they slowly increase their project size. As a resident adjacent to the ESP, we never asked for cessation of the project, just responsible growth. As of now, the neighbor residents will carry all the burden of the

ESP. They will lose their rural feel to their community impacting their lifestyles, have increased safety concerns due to the increase in traffic on the rural streets, likely see a drop in property values along the busy streets, and most importantly, as demonstrated by the facts in the EIR done by ESP, public health concerns will be a reality due to emissions and noise levels. So please, as you consider this project for approval, look beyond what it relatively appears as a small request and consider the massive impact these 1,200 new homes will have on our rural community. Hold developers of the Elverta Specific Plan responsible for environmentally conscience development and assist them in complying with smart growth measures in California. Let the voice of this small rural community finally be heard.

Sincerely,

Amy J Sterzik

Amy J Sterzik <a href="mailto:cassanme@sbcglobal.net">cassanme@sbcglobal.net</a> 916-529-6133

Sacramento County website for EIR: www.dera.saccounty.net



#### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

# REGION IX

## 75 Hawthorne Street San Francisco, CA 94105-3901

June 30, 2009

Ms. Kathleen Dadey U.S. Army Corps of Engineers Sacramento District 1325 J Street, Room 1480 Sacramento, CA 95814

Subject: Notice of Intent to prepare an Environmental Impact Statement for the proposed Elverta Specific Plan Project, Sacramento County, California.

Dear Ms. Dadey:

The U.S. Environmental Protection Agency (EPA) has reviewed the Notice of Intent (NOI) to Prepare a Draft Environmental Impact Statement (DEIS) for the Elverta Specific Plan Project (Project) pursuant to the National Environmental Policy Act (NEPA), Council on Environmental Quality (CEQ) regulations (40 CFR Parts 1500-1508), and Section 309 of the Clean Air Act. These comments were also prepared under the authority of, and in accordance with, the provisions of the Federal Guidelines (Guidelines) promulgated at 40 CFR 230 under Section 404(b)(1) of the Clean Water Act (CWA).

According to the NOI, The Elverta Owners Group (Applicant) has submitted applications to the U.S. Army Corps of Engineers (Corps) for CWA Section 404 permits to develop necessary infrastructure to support residential and commercial uses within 22 separate parcels on approximately 1,745 acres in north-central Sacramento County. Based on the nature of this Project and the description in the NOI, the EPA provides the following comments.

#### Waters of the U.S.

The EPA is particularly concerned with the potential impacts to waters of the U.S. (waters) that could occur at the Project site. According to the NOI, the Applicant's Preferred Alternative would result in temporary and permanent impacts from fill of approximately 39 acres of waters, including seasonal wetlands, vernal pools, intermittent channels, swales, and ditches. These impacts would be in addition to indirect and cumulative impacts. We are especially concerned with the rapid loss of vernal pools in California. Projections indicate that at the current rate of loss, all unprotected vernal pools in California will be gone by 2097<sup>1</sup>. Construction of the proposed Project would add to this loss and further diminish the already significantly reduced acreage of vernal pools in the region. We strongly encourage the Applicant to avoid and minimize impacts to waters to the maximum extent practicable. Based on

<sup>&</sup>lt;sup>1</sup> Based on projections in Dr. Robert Holland's report: Changes in Great Valley Vernal Pool Distribution 1989 to 1997.

past coordination with the Corps, the EPA recognizes the level of degradation that has occurred to waters as a result of past and present land use practices on the Project parcels and in this context recognize that there are opportunities to improve some conditions through restoration and enhancement. We look forward to a future site visit with the Corps to better understand these site conditions, how the Applicant will avoid further degradation, and mitigation measures for any unavoidable impacts.

## CWA 404(b)(1) Guidelines

We acknowledge the intent of the Corps to use the DEIS to evaluate alternatives under the Section 404(b)(1) Guidelines. The DEIS should discuss how the alternatives analysis complies with the Guidelines that require selection of the least environmentally damaging practicable alternative (LEDPA) for Section 404 permitting purposes.

#### Compensatory Mitigation

The DEIS should demonstrate compliance with the *Compensatory Mitigation for Losses of Aquatic Resources; Final Rule* (Mitigation Rule) 33 CFR Parts 325 and 332, and 40 CFR Part 230. Where impacts to waters are determined to be unavoidable, the Applicant will need to identify appropriate compensatory mitigation consistent with the rule. The DEIS should adequately describe and commit to compensatory mitigation for unavoidable impacts to waters and clarify compliance with the Mitigation Rule. The new rule can be found at: <a href="http://www.epa.gov/wetlandsmitigation/">http://www.epa.gov/wetlandsmitigation/</a> and at: <a href="http://www.usace.army.mil/cw/cecwo/reg/citizen.htm">http://www.usace.army.mil/cw/cecwo/reg/citizen.htm</a>.

#### Functional Assessment

We recommend the DEIS alternatives and mitigation be informed by studies that clearly and accurately identify and describe the aquatic resources at the Project site, including a functional assessment. The results should be summarized as part of the description of baseline site conditions; used to demonstrate potential Project impacts, as well as the need for impact avoidance, minimization, mitigation, and monitoring; and inform the selection of a preferred alternative. The functional assessment of waters should also be used to demonstrate compliance with the Guidelines- specifically that the preferred alternative is the LEDPA.

#### Stormwater

Stormwater runoff from the proposed Project could result in chemical, physical, and biological impacts to aquatic resources and should be avoided through the use of appropriate best management practices, low impact development (LID) techniques, and the use of stormwater retention and treatment features. The DEIS should describe construction and design measures to avoid and minimize impacts to water quality and aquatic resources through pretreatment of stormwater, and stormwater attenuation to prevent hydromodification of receiving waters. The EPA provides resources on stormwater and LID at our National Pollution Discharge Elimination System website at <a href="http://cfpub.epa.gov/npdes/home.cfm?program\_id=6">http://cfpub.epa.gov/npdes/home.cfm?program\_id=6</a>, and our LID website at <a href="http://cfpub.epa.gov/nps/lid">http://cfpub.epa.gov/nps/lid</a>.

For further assistance with issues pertaining to waters of the U.S., please coordinate with Paul Jones, EPA Wetlands Office. Paul can be reached at (415) 972-3470, or by email at <a href="mailto:jones.paul@epa.gov">jones.paul@epa.gov</a>.

Letter 8

#### Groundwater

Groundwater withdrawal is not discussed in the NOI, but based on the EPA's experience with other development proposals we anticipate the proposed Project could include some groundwater withdrawal to meet water demands. The EPA would be concerned with potential impacts to groundwater characteristics due to overdraft, as well as substantial increases in impervious surfaces that could reduce infiltration rates and recharge of the local aquifer. The DEIS should clearly describe existing groundwater conditions and any potential impacts to groundwater quantity or quality, and commit to avoidance measures to prevent impacts from the Project. The EPA is concerned with impacts to groundwater quality and quantity in the Project area as well as the relationship between existing groundwater conditions and surface water resources that are influenced by these conditions. Any direct, indirect, or cumulative impacts to groundwater that may occur as a result of the Project should be clearly assessed in the DEIS in light of these relationships. Mitigation measures should also be identified and committed to in the DEIS in order to assure that the Project will not have an adverse effect on groundwater and interrelated surface waters. Both design and conservation measures should be considered.

## **Water Supply**

The DEIS should describe existing and/or proposed sources of water supply for the Project, anticipated water demand from the Project, and direct, indirect, and cumulative impacts to water resources that may occur. Because the proposed Project could result in increases in water demands for an indefinite period of time, the EPA strongly encourages including a discussion in the DEIS of all water conservation measures that will be implemented to reduce water demands for the proposed Project. The Project design should maximize conservation measures such as appropriate use of recycled water for landscaping and industry, xeric landscaping, a water pricing structure that accurately reflects the economic and environmental costs of water use, and water conservation education. An estimate of the water resource benefits that result from each mitigation and conservation measure proposed should be included in the DEIS. Water saving strategies can be found in the EPA's publications *Protecting Water Resources with Smart Growth* at <a href="https://www.epa.gov/piedpage/pdf/waterresources\_with\_sg.pdf">www.epa.gov/piedpage/pdf/waterresources\_with\_sg.pdf</a>, and <a href="https://www.epa.gov/piedpage/pdf/waterresources\_with\_sg.pdf">www.epa.gov/piedpage/pdf/waterresources\_with\_sg.pdf</a>, and <a href="https://www.epa.gov/watersense/docs/app\_a508.pdf">www.epa.gov/watersense/docs/app\_a508.pdf</a>.

In addition, the DEIS should describe water reliability for the Project and clarify how existing and/or proposed sources will be affected by climate change. At a minimum, the EPA expects a qualitative discussion of impacts to water supply and adaptability of the Project to these changes, as part of the DEIS impacts analysis.

## **Biological Resources**

Species Impacts

The EPA is concerned with the potential impacts from the proposed Project to biological resources. As stated in the NOI, the federally protected vernal pool fairy shrimp (Branchinecta lynchi) is known to occur on the Project site. The DEIS should provide information on all species and habitats protected under the Federal Endangered Species Act and the California Endangered Species Act, and describe how impacts will be avoided, minimized, and mitigated.

Letter 8

The DEIS should provide a description of baseline biological conditions, including habitats and species, and a description of direct, indirect, and cumulative impacts from the Project.

Habitat Fragmentation

We are also concerned with the potential for the proposed Project to result in fragmentation of aquatic and terrestrial species habitats, and encourage the Corps, County of Sacramento, and Applicant to identify alternatives that maintain large habitat conservation areas at the Project site that are connected by adequate corridors for the species that are expected to use the site. Numerous studies have demonstrated that edge effects and the size of contiguous habitat areas are critical to species health, diversity, and abundance. The DEIS should consider the impacts of habitat fragmentation and edge effects for aquatic and terrestrial species and identify avoidance and mitigation measures to address them.

#### Air Quality and Traffic

National Ambient Air Quality Standards

The DEIS must adequately assess air quality impacts of the Project and minimize these impacts through adequate mitigation measures. The proposed Project area falls within the Sacramento County Air Basin and is designated nonattainment for national ambient air quality standards (NAAQS). The EPA has designated the air basin serious nonattainment for 8-hour ozone and moderate nonattainment for particulate matter smaller than 10 microns (PM<sub>10</sub>). The DEIS should provide a discussion of the baseline air quality conditions in the Project area, a description of federal and state air quality regulations, and a rigorous assessment of direct, indirect, and cumulative effects of the proposed Project on air quality. The analysis of air quality impacts should include direct, indirect and cumulative impacts from construction and post construction conditions, including increased traffic. The DEIS should describe specific commitments to mitigate emissions that will prevent further degradation of air quality in the Air Basin. In short, the cumulative impacts analysis should consider all new sources of emissions that are likely to result from the proposed Project. An estimate of the air quality benefits that result from each mitigation measure proposed should be included in the DEIS. The DEIS should also describe coordination with the EPA, California Air Resources Board, and the Sacramento Air Quality Management District to reduce air quality impacts in the Air Basin. For 8-hour ozone-related questions, the Corps is encouraged to contact John Kelly, EPA Air Division, at (415) 947-4151 or by email at kelly johnj@epa.gov. For PM<sub>10</sub>-related questions, contact Eleanor Kaplan, EPA Air Division, at (415) 947-4147 or by email at kaplan.eleanor@epa.gov.

General Conformity

The DEIS should describe whether the Project will or will not meet general conformity requirements with the associated state implementation plans for the Air Basin. If the federal action is determined to potentially interfere with the attainment of Clean Air Act NAAQS, the Corps is required to conduct a conformity analysis to determine the likelihood and extent of interference. Though the Clean Air Act does not require a federal lead agency to prepare a draft General Conformity Determination as part of the NEPA process, the EPA recommends this in the interest of full public disclosure and to better inform decision making. For general conformity-related questions, the Corps is encouraged to contact John Kelly, EPA Air Division, at (415) 947-4151 or by email at kelly.johnj@epa.gov.

Air Quality Measures for Construction

To prevent further degradation of air quality in Sacramento County from construction the EPA suggests several construction measures be adopted in the DEIS.

Fugitive Dust Source Controls:

- Stabilize open storage piles and disturbed areas by covering and/or applying water or chemical/organic dust palliative where appropriate. This applies to both inactive and active sites, during workdays, weekends, holidays, and windy conditions.
- Install wind fencing and phase grading operations where appropriate, and operate water trucks for stabilization of surfaces under windy conditions.
- When hauling material and operating non-earthmoving equipment, prevent spillage and limit speeds to 15 miles per hour (mph). Limit speed of earth-moving equipment to 10 mph.

Mobile and Stationary Source Controls:

- Reduce use, trips, and unnecessary idling from heavy equipment.
- Maintain and tune engines per manufacturer's specifications to perform at the EPA
  certification levels and to perform at verified standards applicable to retrofit technologies.
  Employ periodic, unscheduled inspections to limit unnecessary idling and to ensure that
  construction equipment is properly maintained, tuned, and modified consistent with
  established specifications.
- Prohibit any tampering with engines and require continuing adherence to manufacturers recommendations
- If practicable, lease newer and cleaner equipment meeting the most stringent of applicable Federal or State Standards.
- Utilize EPA-registered particulate traps and other appropriate controls where suitable to reduce emissions of diesel particulate matter and other pollutants at the construction site.

Administrative controls:

- Identify where implementation of mitigation measures is rejected based on economic infeasibility.
- Prepare an inventory of all equipment prior to construction and identify the suitability of add-on emission controls for each piece of equipment before groundbreaking. (Suitability of control devices is based on: whether there is reduced normal availability of the construction equipment due to increased downtime and/or power output, whether there may be significant damage caused to the construction equipment engine, or whether there may be a significant risk to nearby workers or the public.)
- Utilize cleanest available fuel engines in construction equipment and identify opportunities for electrification. Use low sulfur fuel (diesel with 15 parts per million or less) in engines where alternative fuels such as biodiesel and natural gas are not possible.
- Develop a construction traffic and parking management plan that minimizes traffic interference and maintain traffic flow.

Sensitive Receptors

The DEIS should identify sensitive receptors in the Project area, such as schools, daycare centers, nursing homes, and hospitals, and specify the means by which impacts to these receptors will be minimized due to both construction and long term land use associated with the Project. For example, locate construction equipment and staging zones away from sensitive receptors, away from fresh air intakes and buildings, and design neighborhoods such that activity centers (ball fields, etc.) and sensitive receptors are not proximate to emissions sources, such as highways.

Traffic

Due to the nature and size of the proposed Project and the numbers of new residents and jobs it could bring to the area, it is reasonable to anticipate increased traffic and congestion on the local surface streets, freeways, and highways. The DEIS should include a traffic analysis to determine how the proposed Project will affect traffic in the region and contribute to cumulative air quality impacts.

## **Cumulative Effects**

The proposed Project would be one of several developments in the area that have occurred or are proposed and under various stages of development. As a result, it is critical that the cumulative effects analysis be comprehensive and rigorous, and that it consider an appropriate scope of activities and spatial and temporal scales when assessing project effects. The EPA suggests referring to the Council on Environmental Quality 1997 guidance Considering Cumulative Effects Under the National Environmental Policy Act, found at http://www.nepa.gov/nepa/ccenepa/ccenepa.htm,, and 1999 EPA guidance, Consideration of Cumulative Impacts in EPA Review of NEPA Documents, found at http://www.epa.gov/compliance/resources/policies/nepa/cumulative.pdf. In addition, we recommend referring to the EPA, California Department of Transportation, and Federal Highway Administration Guidance for Preparers of Cumulative Impact Analysis, found at http://www.dot.ca.gov/ser/cumulative guidance/purpose.htm. While this guidance was developed for transportation projects, the principles and the 8-step process in this guidance can be applied to other types of projects, both within and outside of California. We recommend the principles and steps in this guidance to other agencies as a systematic way to analyze cumulative impacts for their projects.

## **Induced Growth**

The DEIS should describe how the proposed Project could result in environmental impacts due to induced-growth. The EPA's recommendation is to make both the methodology and the assumptions in the growth inducement analysis as transparent as possible to the public and decision makers. To do this, the EPA recommends the following:

(1) Identify which land use model will be used, discuss its strengths and weaknesses, and describe why it was selected.

Letter 8

- (2) Identify the assumptions used in the model and why those assumptions were selected. For example, describe which method will be used to allocate growth to analysis zones, its strengths and weaknesses, and why that method was selected.
- (3) Ground truth the results of the land use model by enlisting local expertise involved in land use issues, such as local government officials, land use and transportation planners, home loan officers, and real estate representatives. Use their collective knowledge to validate or modify the results of the land use model.
- (4) Use the results of the growth inducement analysis to inform transit options, neighborhood design, and recommendations for land use as well as mitigation measures to reduce environmental impacts.

## Smart Growth, Green Building, and Leadership in Energy and Environmental Design

Environmental impacts of the proposed Project can be reduced through modifications to the Project footprint and configuration, and the integration of Smart Growth, Green Building, and Leadership in Energy and Environmental Design (LEED) principles. For your benefit, the EPA is enclosing updated information on these principles, including how they can reduce impacts to different resource areas.

## **Project Purpose and Need**

The purpose and need statement in the DEIS should be clearly stated and briefly describe the underlying purpose and need to which the Corps is responding in proposing alternatives, including the proposed action (40 C.F.R. 1502.13.) The statement of purpose and need should explain why the Applicant is undertaking the proposed Project, and the objectives that the action is intended to achieve. A clear purpose and need statement is important under NEPA and to the EPA's review in that it should be directly linked to the proposed alternative designs and clarify the potential impacts of a range of reasonable alternatives for the proposed Project. The DEIS discussion of purpose and need should also include a detailed description of why a development the size, composition, and location of the proposed Project is needed.

#### Alternatives

The EIS should rigorously explore and objectively evaluate a reasonable range of alternatives (40 C.F. R. 1502.14). Because of the potential for significant impacts to several environmental resources, the Corps, Sacramento County, and the Applicant should consider a range of alternatives that avoid impacts to these resources to the maximum extent practicable. According to the NOI, the DEIS is currently expected to include the No Action, No Federal Action, Applicant's Preferred, Approved Specific Plan, and Different Location Alternatives. The DEIS should clearly describe and comparatively assess these alternatives, and any other reasonable alternatives, for their direct, indirect, and cumulative effects to environmental resources. We recommend considering an aquatic resources avoidance alternative that maximizes avoidance and restoration of existing aquatic resources on the Project site. Where

impacts are unavoidable, the DEIS should describe and commit to appropriate mitigation measures.

Thank you for the opportunity to review the NOI and provide comments to help with the development and preparation of the DEIS for the proposed Project. When the DEIS is released for review, please send two hard copies and one CD copy to the address above (mailcode: CED-2) at the same time five copies are formally filed with EPA Headquarters. If you have any questions, please contact me at (415) 972-3847 or amato.paul@epa.gov.

Sincerely

Paul F. Amato

Environmental Protection Specialist Environmental Review Office

Enclosure:

EPA's Smart Growth Recommendations

Cc:

Mr. Charlie Dyer, Senior Planner Sacramento County Planning and Community Development 827 7th Street, Room 230 Sacramento, CA 95814 ENVIRONMENTAL PROTECTION AGENCY'S SMART GROWTH RECOMMENDATIONS FOR THE NOTICE OF INTENT TO PREPARE A DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR THE ELVERTA SPECIFIC PLAN PROJECT, SACRAMENTO COUNTY, CALIFORNIA

Smart Growth has been defined as "development that serves the economy, community, and the environment". It incorporates government and community partnering, environmental stewardship, and transportation network enhancements for safety and functionality.

## Consider implementing Smart Growth principles in development planning.

National, state and local organizations have come together to form the Smart Growth Network (SGN), a voluntary initiative led by 36 partner organizations to encourage development that benefits the economy, communities, and ecological sustainability.

By incorporating smart growth principles, project proponents can demonstrate their commitment to being environmentally sound in development planning. Additionally, smart growth development can support economic growth and facilitate attainment of quality of life goals; attributes found attractive to both developers and potential home owners. Smart Growth design is beneficial for all stakeholders by providing opportunities to save money and resources. Furthermore, the 2004 National Community Preference Survey conducted by the National Association of Realtors concluded that Americans tend to favor Smart Growth communities because they offer shorter commute times and walkable communities. The SGN has made it feasible and efficient to become a partner within the network. For information regarding the SGN please visit the following website: <a href="http://www.smartgrowth.org/">http://www.smartgrowth.org/</a>. For innovative solutions which address low impact development, please visit EPA's Smart Growth website at: <a href="http://www.epa.gov/smartgrowth/index.htm">http://www.epa.gov/smartgrowth/index.htm</a>.

#### Smart Growth is Smart Business

Business leaders are beginning to realize that building better communities affects their bottom line. When implemented, Smart Growth strategies allow developers to profit financially while being environmentally sustainable. In the *Smart Growth is Smart Business* study, the National Association of Local Government Environmental Professionals (NALGEP) found that:

- Quality of Life is Crucial to Business;
- Reinvestment in Established Communities Makes Business Sense;
- Smart Growth Is an Emerging Market Opportunity;
- Leading Businesses Seek to Improve Growth Management in Their Regions; and
- Smart Growth Sells in Both Up and Down Economies.

Furthermore, a 2004 National Community Preference Survey conducted by the National Realtors Association revealed the following:

- Americans favor communities that have smart growth values which result in shorter commute times, sidewalks, and walkable areas;
- When Americans choose to purchase a home, commute time is an important deciding factor; and
- Americans expressed the desire for government and business to invest in already existing communities before new developments further away from cities and the suburbs. In

<sup>&</sup>lt;sup>2</sup> Smart Growth Network, Getting to Smart Growth: 100 Policies for Implementation, http://smartgrowth.org

addition, Americans also expressed a desire for more housing for moderate to low income brackets, and more areas to walk and bike in their communities.

An EPA publication, Parking Spaces / Community Places: Finding the Balance through Smart Growth Solutions (http://www.epa.gov/smartgrowth/pdf/EPAParkingSpaces06.pdf) illustrates the opportunity to use parking policies to save money, improve the environment, and meet larger community goals by offering commuters a choice in transportation. These choices can lead to less vehicle miles traveled, a decrease in air pollutants, and a reduction in the amount of pavement and infrastructure costs. Smart Growth is beneficial to developers because it can lead to lower infrastructure costs

## Consider development plans that incorporate innovative design modifications.

EPA recommends incorporating design modifications to address impacts that development projects have on the environment. For example, both coving and bay designed homes offer more space and cost less to build due to the need for fewer roads and utilities. Additionally, they offer safer travel and a greater variety than their counterparts, the traditional suburbs.

Coving is a development design that enables the planning of communities while taking green space created in front of houses and winding streets into design plans. This design innovation positions homes to form a curve that is separate from the pattern of the streets, allowing for more homes per given length of a road. This design benefits developers by reducing the lineal feet of paved road by twenty to forty percent.

Bay designed homes also require less infrastructure. Unlike coving, a bay home development and the surrounding land are commonly held by a home owners association. This design considers pedestrian walkability by connecting the fronts of units with a walkway. The homes are designed with the entrance and garage in the rear of the structure, while leaving the front as open space. While housing densities may be similar to traditional housing developments, the bay home concept cuts up to fifty percent in infrastructure spending and creates a pedestrian friendly neighborhood.

#### Consider increasing density in development plans.

Density is important due to several influential factors including its ability to support housing choice and affordability, help expand transportation choices, support community fiscal health, improve security, help protect the environment and cut infrastructure costs. When designing for density we recommend the following design principles:

- Identify appropriate locations;
- Connect people and places;
- Mix uses;
- Find parking alternatives; and,
- Create great places for people to live, work and play.

For more information concerning the abovementioned principles, we recommend the following publication: *Creating Great Neighborhoods: Density in Your Community* available online at: <a href="http://www.epa.gov/piedpage/pdf/density.pdf">http://www.epa.gov/piedpage/pdf/density.pdf</a>.

## Consider wildlife habitat while designing development plans.

It has long been recognized that development is infringing upon national parks, forests and other critical wildlife habitat. Moreover, the amount of urban land has quadrupled in the past 50 years. As development spreads farther into natural areas, wildlife habitat becomes fragmented. Scientists and wildlife preservation organizations have identified sprawl as a key indicator of species loss.

Land preservation efforts should be especially targeted toward critical aquatic areas including groundwater recharge zones, wetlands, vernal pools, streams, and floodplains. These areas can be protected from development by aligning zoning, determining protected areas, and changing development guidelines to use land more efficiently.

The publication Endangered by Sprawl: How Runaway Development Threatens America's Wildlife (http://www.smartgrowthamerica.org/ebsreport/EndangeredBySprawl.pdf) recommends several measures to help avoid the loss of wildlife due to urban encroachment. It is recommended that you create a comprehensive infrastructure strategy that will take the following into consideration:

- Create and maintain inventories of both species and natural resources;
- Establish regional cooperation to protect natural areas and species;
- Develop green infrastructure protection plans that include performance goals and measurements;
- Establish urban growth boundaries or urban service boundaries;
- Protect critical natural habitats; and
- Build reliable local funding resources for green infrastructure and species protection.

## Design to Minimize Air Emissions

Air quality is greatly affected by sprawling development patterns that increase vehicle travel and associated air pollution. To help developers mitigate air quality impacts associated with developments EPA published guidance pertaining to air quality and land use activities. This guidance was developed to encourage stakeholders and developers to use better land use planning strategies which result in improvements in air quality. This guidance covers a variety of issues such as air quality planning, transportation planning, land use planning, land use activities and accounting for land use in the air quality and transportation processes. See *EPA Guidance: Improving Air Quality through Land Use Activities* (http://www.epa.gov/otaq/stateresources/policy/transp/landuse/r01001.pdf).

## Consider the Use of Native Vegetation

To help protect the natural environment and its valuable water resources, EPA recommends that developers take future water use into consideration. EPA recommends landscaping with native plants when feasible. Using native plants that are adapted to the environment is an important consideration when developing in arid areas with limited water resources.

Vegetation planning is an important aspect of development. For example, trees can help block the summer sun. They also help by acting as wind breaks during extreme weather, control

humidity and can help with home appreciation. We encourage the use of native plants and trees in development planning. This can help reduce water consumption and maintenance costs, which are attractive attributes for home owners. The California Native Plant Society provides information regarding native plant species on its Web page: http://www.cnps.org/

Green Building

As stated at EPA's Green Building website, "green building is the practice of creating structures and using processes that are environmentally responsible and resource-efficient throughout a building's life-cycle from siting to design, construction, operation, maintenance, renovation and deconstruction." The website goes on to state that "well-designed, constructed, operated and maintained green buildings can have many benefits, including durability; reduced costs for energy, water, operations and maintenance; improved occupant health and productivity; and the potential for greater occupant satisfaction than standard developments. A green building may cost more up front, but can save money over the life of the building through lower operating costs." These upfront costs may be only a few percentage points higher than conventional building standards. For more information on Green Building, visit EPA's Green Building website at: <a href="https://www.epa.gov/greenbuilding/index.htm">www.epa.gov/greenbuilding/index.htm</a>. The EIS should discuss the environmental and economic benefits of green building relevant to the Project alternatives.

Pursue Leadership in Energy and Environmental Design (LEED) Certification

LEED is a Green Building rating system that encourages the adoption of sustainable building practices through the use of universally accepted tools and performance criteria. The U.S. Green Building Council has established LEED rating systems for various types of development including commercial, retail, homes and neighborhood development. EPA encourages the pursuit of LEED certification for the proposed Project. More information on LEED certification can be found at the U.S. Green Building Council website at http://www.usgbc.org.

4

<sup>&</sup>lt;sup>3</sup> According to the frequently asked questions on green building, at EPA's website <a href="http://www.epa.gov/greenbuilding/pubs/faqs.htm#13">http://www.epa.gov/greenbuilding/pubs/faqs.htm#13</a>

## Dadey, Kathleen A SPK

From: Sent:

Russ Hood [rhood273@comcast.net] Thursday, July 02, 2009 6:44 PM

To:

Cortez Quinn

Cc: Subject: Dadey, Kathleen A SPK Elverta Specific Plan

Howdy, Cortez,

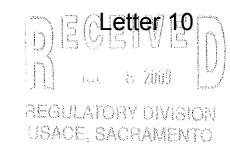
I hope you are enjoying wearing all those hats—man, that must mean a lot of meetings! I'm sure you're doing fine with all of your responsibilities.

I'm writing you because I just read something in the July 2009 North County News by Charlea Moore that I can't understand. She writes in the sixth paragraph: "In addition to the permits to dredge and fill, the Elverta Owners Group requested and received a rezone that will increase the maximum dwelling units from 4,950 to 6,187." And then in the next paragraph," There were only a few residents in attendance at the June 24, 2009 scoping meeting and all were the result of Marlene Robillard-Ramatici who alerted the community with phone calls and emails."

The source of my non-understanding stems from countless meetings and resolutions with the county, the community, and the owners that ultimately wound up with the following from "Elverta Specific Plan" at http://www.planning.saccounty.net/specific/elverta/elverta.html [on the MSA and Planning and Community Development Department website]:

"The policy also limits the residential holding capacity within the "urban" land to 4,500 dwelling units." Having personally attended all of the initial meetings and most of the subsequent hearings related to the issue of maximum number of dwelling units, numbers like 6,187 were never discussed. Unfortunately I did attend a CPAC meeting during which various county representatives explained the original number of 4,500 would now be increased to 4,950. However, this 6,187 figure has not been through the review process, i.e., is not in the DEIR or subsequent amendments or inclusions, to my knowledge.

Cortez, this new figure means an additional 1,687 units, a 37.5% increase over the 4,500 figure, and a 34.1% increase over the revised number. Even if the infrastructure existed or was in the process of being built, these increases would be staggering; but the infrastructure doesn't exist, the community (and county staff) are undecided on the important issue of traffic flow, and this rezone seems to have been done intentionally without adequate community notice. Since the Army Corps of Engineers did follow the letter of the law by placing a notice of this 'public scoping' meeting in the Bee, nothing was probably done illegally. So de jure this process took place, but de facto it was done in secret.


Could you find out and get back to me at your convenience if (a) Charlea Moore's article is accurate (or at least the part I quoted); (b) does a rezone, if it took place at all, mean that the Elverta Specific Plan is now assumed to have been revised to allow this huge increase without any more input, discussion, etc.? That's it. A couple of questions on an issue that threatens to destroy our quality of life. You've been out here, Cortez, and you've seen how rural (read "peaceful and quiet") this area is 95% of the time. My neighbors and I recognize that we lost years ago when our chosen option for redevelopment (a much more rural feel to it) was not approved by the board; but this is a drastic change, and I am hoping that your answers to my questions will allay any additional concerns I and my neighbors may have.

Thanks for your time, Cortez, and I look forward to hearing from you.

p.s. I have cc'd Kathleen A. Dadey, (Kathleen.A.dadey@usace.army.mil) the project manager apparently with the Army Corps of Engineers.

Happy Trails, Russ Hood 991-4663 July 6, 2009

Kathleen Dadey, Chief CA Delta Branch US Army Corps. of Engineers, Sacramento District 1325 J Street, Room 1480 Sacramento, CA 95814-2922



Re: Public Notice Number SPK -2004-00323

Dear Ms. Dadey

We are residents of Elverta, California. Our property (Parcel Number 202-0070-026) is located within the boundaries of the Elverta Specific Plan. We did not receive notification from you or your agency regarding the June 24,2009 public scoping meeting. We did read about the meeting in a local newspaper. It was unfortunate that we were not mad aware of the meeting. Once we learned of the meeting we read the description of the permit process on the COE website. The information on the website is vague regarding the impacts to our property. We are very concerned about the potential impact. I called your offices on July 2, 2009 and left you a message.

After reading the description of the public meeting and the potential impacts to us we are requesting the following information from your offices:

- What direct and indirect impacts will the proposed CORPS permit have on our property?
- · What properties are affected by the proposed permit?
- Will the proposes permit change or influence our property values?
- What further requirements must completed by the Corps in order to identify the potential impacts to us and our property?

We are most interested in meeting with you in order to review the documents presented at the meeting and how the proposed permit will impact us. We hope that there is another public meeting.

Sincerely,

Mark Pheatt

Many Phraits
Nancy Pheatt

8846 Palladay Road Elverta, CA 95626 916 992 1527 From: E H [mailto:satchel9945@yahoo.com] Sent: Thursday, July 09, 2009 1:39 PM

To: Dadey, Kathleen A SPK

Subject: Actions on Elverta Specific Plan

Kathleen Dadey, Project Manager Army Corps of Engineers 1325 J Street, Room 1480 Sacramento, CA 95814

Re: Actions on Elverta Specific Plan

Dear Ms. Dadey,

The July issue of the "North Country News" carries an article regarding the public scoping for the "Elverta Owners Group" application for permits to develop approximately 776 acres of the Elverta Specific Plan. The article states that zoning for a maximum of 6187 dwelling units (averaging almost 8 residences per acre) has been granted.

This action gives me concern about the traffic impact on my residential street (Rifle Ridge Drive in the Cherry Creek Subdivision), as well as the overall traffic impact on Elverta Road and Watt Avenue. It also appears that there are valid concerns in regard to the plans and capacity for 16th Street and Dry Creek Road.

In addition to the above, where is the water and electricity going to come from for these new residences, and what will happen to residential rates as a result? What consideration has been given to the local impact of the 70,000 dwelling units that Placer County has apparently approved for the land to the north of this project?

It doesn't seem that the scoping meeting was widely publicized in the community affected by this application. It also seems that a project of this magnitude should have multiple public meetings to present the plan and address community concerns for traffic, water, and quality of life before being allowed to proceed.

Si ncerel y,

Eric Henderson 8258 Rifle Ridge Drive Elverta, CA 95626

# Letter 12

From: marlene.vallee@homeq.com [mailto:marlene.vallee@homeq.com] Sent: Friday, July 10, 2009 2:32 PM To: Dadey, Kathleen A SPK Subject: Public Scoping meeting - Elverta Specific Plan

Can you please send me information or documents regarding the Department of Transportation's recommendation for the 16th Street extension for the Elverta specific Plan?

#### Thanks!!

Marlene Vallee HomEq Servicing
Portfolio and Risk Analytics (916) 339-6155

July 11, 2009

Kathleen A. Dadey

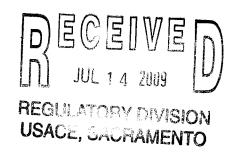
Re: Elverta Specific Plan EIR

Re: Downgrading Dry Creek Road to 2 Lanes w/ Safe Routes to School Sidewalks,

Lighting, and Safety Improvements

Ms. Dadey, our family moved from a ranch in Sonora, California to Rio Linda when my oldest son was starting kindergarten. We wanted another community of open space, ranches, orchards, horses, wildlife, creeks, and the quietness that all that brings. We have lived on Dry Creek Road for only 8 years, previously we lived on Curved Bridge Road. We have experienced the best Rio Linda has to offer in the 20 years we have lived here. All of the neighbors and friends I have met here want the same, a small rural community, without traffic and noise and the pollution they bring. We grow vegetable gardens, raise chickens, have farm animals, grow fruit and almond trees, berries, and other environmentally sound foods. Our community neighbors have acres of land that grow the most wonderful, strawberries in the entire Sacramento County area. With the increase of vehicle traffic, the pollution and noise levels will increase 100%+ thereby affecting the community's health. The local McDonalds on the corner of Elk Horn Boulevard and Rio Linda Boulevard have old photos of what this community has always been, a farming, ranching, rural community. In the mornings I can hear my neighbors donkeys, sheep, geese, horses, chickens, peacocks, and other domestic animals. This is a beautiful sound. Do you want our community to endure the sound of 4-lane traffic, congestion, pollution, and aggregation that accompanies urban and traffic sprawl? If our community wanted those things, we would live in Roseville, which when you research Roseville, you will admit it is a traffic and urban sprawl nightmare.

Dry Creek Road is the transportation route of one senior high school, one junior high school, two elementary schools, and one special needs school. When most California cities are applying for "Safe Routes to School Grants", which communities can apply to Caltrans for, these funds build sidewalks, bike/pedestrian safety lanes, traffic improvements, street crossing improvements, etc to ensure the safety of the community. The Elverta Specific Plan intends to increase safety hazards for these school children, bus drivers, parents driving their children to school, and any other local citizen taking a walk for exercise, riding their horse or bike on Dry Creek Road. Therefore, it is in the best interest of this community to keep Dry Creek Road a 2-lane road, add sidewalks for safety, and not even consider expanding to a four-lane road. Remember, the more lanes the roadway has, the higher the speed limit and the more traffic danger our community school children and local families will encounter. Again, when most communities are applying for "Safe Routes to School Grants", the Elverta Specific Plan developers are envisioning making this community more unsafe by increasing traffic flows.


Thank you, April Hawkins 7128 Dry Creek Road Rio Linda, CA 95673

U.S. Department of Homeland Security FEMA Region IX 1111 Broadway, Suite 1200 Oakland, CA. 94607-4052



July 9, 2009

Kathleen A. Dadey, Chief CA Delta Branch U. S. Army Corps of Engineers, Sacramento District 1325 J Street, Room 1480 Sacramento, California 95814-2922



Dear Ms. Dadey:

This is in response to your request for comments on the Public Notice of Intent to Prepare an Environment Impact Statement (EIS) – Elverta Specific Plan.

Please review the current effective Flood Insurance Rate Maps (FIRMs) for the County of Sacramento (Community Number 060262), Maps revised December 8, 2008. Please note that the County of Sacramento, California is a participant in the National Flood Insurance Program (NFIP). The minimum, basic NFIP floodplain management building requirements are described in Vol. 44 Code of Federal Regulations (44 CFR), Sections 59 through 65.

A summary of these NFIP floodplain management building requirements are as follows:

- All buildings constructed within a riverine floodplain, (i.e., Flood Zones A, AO, AH, AE, and A1 through A30 as delineated on the FIRM), must be elevated so that the lowest floor is at or above the Base Flood Elevation level in accordance with the effective Flood Insurance Rate Map.
- If the area of construction is located within a Regulatory Floodway as delineated on the FIRM, any *development* must not increase base flood elevation levels. The term *development* means any man-made change to improved or unimproved real estate, including but not limited to buildings, other structures, mining, dredging, filling, grading, paving, excavation or drilling operations, and storage of equipment or materials. A hydrologic and hydraulic analysis must be performed *prior* to the start of development, and must demonstrate that the development would not cause any rise in base flood levels. No rise is permitted within regulatory floodways.

Kathleen A. Dadey, Chief Page 2 July 9, 2009

• Upon completion of any development that changes existing Special Flood Hazard Areas, the NFIP directs all participating communities to submit the appropriate hydrologic and hydraulic data to FEMA for a FIRM revision. In accordance with 44 CFR, Section 65.3, as soon as practicable, but not later than six months after such data becomes available, a community shall notify FEMA of the changes by submitting technical data for a flood map revision. To obtain copies of FEMA's Flood Map Revision Application Packages, please refer to the FEMA website at <a href="http://www.fema.gov/business/nfip/forms.shtm">http://www.fema.gov/business/nfip/forms.shtm</a>.

#### **Please Note:**

. .

Many NFIP participating communities have adopted floodplain management building requirements which are more restrictive than the minimum federal standards described in 44 CFR. Please contact the local community's floodplain manager for more information on local floodplain management building requirements. The Sacramento County floodplain manager can be reached by calling George H. Booth, Senior Civil Engineer, Department of Water Resources, at (916) 874-6851.

If you have any questions or concerns, please do not hesitate to call Cynthia McKenzie of the Mitigation staff at (510) 627-7190.

Sincerely,

Gregor Blackburn, CFM, Branch Chief Floodplain Management and Insurance Branch

cc:

George H. Booth, Senior Civil Engineer, Sacramento County, Department of Water Resources Ray Lee, State of California, Department of Water Resources, Central District Cynthia McKenzie, Senior Floodplanner, CFM, DHS/FEMA Region IX Alessandro Amaglio, Environmental Officer, DHS/FEMA Region IX



Four Embarcadero Center | 17th Floor | San Francisco, CA 94111-4109 415-434-9100 office | 415-434-3947 fax | www.sheppardmullin.com

Writer's Direct Line: 415-774-3285

Our File Number: 19DC-139065

August 12, 2009

#### VIA E-MAIL AND U.S. MAIL

Kathleen Dadey
Regulatory Project Manager
United States Army Corps of Engineers
Sacramento District
1325 J Street, Room 1480
Sacramento, CA 95814-2922
Email: Kathleen.A.Dadey@usace.army.mil

Re: Elverta Specific Plan

Dear Ms. Dadey:

Thank you for issuing the Notice of Intent to Prepare a Draft Environmental Impact Statement ("NOI") for the Elverta Specific Plan Project and initiating environmental review subject to the National Environmental Policy Act ("NEPA"). John Hodgson on behalf of the Elverta Owners Group has asked that we clarify and confirm a few items on behalf of the Elverta Owners Group. We look forward to the timely completion of the EIS the Corps is preparing.

Pending Applications. The Elverta Owners Group submitted applications to the Corps in 2005. However, new applications will be submitted to the Corps to reflect project changes that have occurred over time during the local entitlement process and to minimize impacts to Corps jurisdiction. As noted in the NOI, the applications will include an infrastructure permit for common facilities that serve the entire proposed Specific Plan. We anticipate that the fill of waters of the United States associated with the Elverta Owners Group applications and the infrastructure will be approximately 45 acres.

**Project Description.** The Applicants are seeking individual permits for fill associated with the first phase of construction on 775.6 acres owned by entities participating in the Elverta Owners Group and a permit for fill associated with infrastructure necessary to serve the entire 1,745-acre Specific Plan area. We expect that non-participating landowners will choose to develop their properties at a later time according to the Specific Plan. As part of the EIS process, the Corps should consider issuing letters of permission to allow non-participating owners to fill wetlands on their lands in the Specific Plan area in a manner that is consistent with the approved permits for the Elverta Owners Group. In order to qualify for the letters of permission, the nonparticipating owners would, of course, have to conform their applications to

SHEPPARD MULLIN RICHTER & HAMPTON LLP

Kathleen A. Dadey August 12, 2009 Page 2

the project footprint and fill areas the Corps identifies in the LOP and meet other conditions of the LOP. Alternatively, they would have to file separate individual permit applications.

Impacts to Waters of the U.S. The NOI only identifies impacts to waters of the U.S. on the lands owned by Elverta Owners Group participants. The EIS should also evaluate the total impacts on waters of the U.S. from implementation of the Specific Plan as an additional 980 acres of development will occur on the lands of non-participating landowners in subsequent phases of implementation of the Specific Plan.

On-Site Mitigation. The NOI did not discuss the on-site mitigation proposed as a part of the Project. Approximately 18 acres of waters within the Specific Plan area will be avoided and enhanced as part of the Elverta Owners Group actions. The Applicants will minimize impacts to these avoided areas by restoring and buffering these areas from development. Areas adjacent to these enhanced drainages will be used to create and restore wetlands within drainage corridors. Upon completion, the created, restored and enhanced aquatic features will serve to improve water quality, to provide a visual amenity for the community, and to provide habitat for wildlife. We anticipate that further enhancement will be done as part of the development of the remainder of the Specific Plan.

Elverta Specific Plan Environmental Impact Report ("EIR) & Scope of the Environmental Impact Statement. Through the scoping process, the lead agency must determine the scope of environmental review and "identify and eliminate from detailed study the issues which are not significant or have been covered by prior environmental review." 40 C.F.R. §§ 1501.7(a)(2)-(3) (2008). NEPA also requires federal agencies to cooperate with local agencies to the fullest extent possible to reduce duplication between NEPA and state and local requirements. 40 C.F.R. §§ 1506.2 (b), (c); 33 C.F.R. Pt. 325, App. B.

During the scoping process, the lead agency may work cooperatively with others to identify the significant issues to be analyzed in depth in the EIS and to eliminate insignificant issues from further study. *Id.*; *Conservation Law Found. v. Fed. Highway Admin.*, 2007 U.S. Dist. LEXIS 64465, \*6 (D.N.H. Aug. 30, 2007) (upholding FHWA and state Department of Transportation decision during scoping process not to study rail alternative to roadway project). The Corps may also incorporate the contents of state and local environmental evaluations by reference into decision documents so long as it documents how it reached its own NEPA determination. *Northwest Sea Farms, Inc. v. U.S. Army Corps of Engineers*, 931 F. Supp. 1515, 1524 (W.D. Wash. 1996).

Sacramento County's EIR is both a Master EIR and a Program EIR that reviews the impacts of the entire Elverta Specific Plan. The County approved and certified the Final EIR for the Project on May 30, 2007 in accordance with the California Environmental Quality Act ("CEQA"). It will conduct further review of the Project as required to issue local entitlements and authorizations. To reduce duplication, the Corps should use the scoping process to identify areas that have been previously covered adequately under CEQA and present why they will not

SHEPPARD MULLIN RICHTER & HAMPTON LLP Kathleen A. Dadey August 12, 2009
Page 3

have any significant effect on the environment or incorporate relevant data and analysis from the County's EIR in this EIS. In accordance with subsection 320.4(j)(2) of the Corps' regulations, the EIS should also explain that primary responsibility for determining zoning and land use matters rests with the state and local governments and that the Corps accepts decisions by such governments on those matters unless the Corps identifies significant issues of overriding national importance.

We look forward to working with you.

Very truly yours,

Robert J. Uram

for SHEPPARD, MULLIN, RICHTER & HAMPTON LLP

W02-WEST:5BM1\401630213.5

cc: John Hodgson, The RCH Group Christopher Cox, The RCH Group Brenna Moorhead, SMRH

# **Appendix C**Air Quality Data

## APPENDIX C

# Criteria Pollutant and GHG Emissions

## Introduction to the Air Quality Models and Results

The Urban Emissions model (URBEMIS 2007), version 9.2.4, was used to quantify direct emissions of criteria pollutants and CO<sub>2</sub> from proposed project construction and operations, including offroad equipment and fugitive dust emissions during construction activities and area source and onroad vehicle pollutant emissions during operations.

GHG emissions associated with the proposed project were calculated using the URBEMIS 2007 Version 9.2.4 model and trip generation data from the project traffic analysis. Because the only GHG that URBEMIS 2007 estimates is CO<sub>2</sub>, scaling factors derived from the State of California Inventory of GHG Emissions were used to determine the relative emissions of methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>0) in order to generate emissions of GHG as CO<sub>2</sub>e. In addition to on-road trafficrelated emissions, the URBEMIS 2007 model also estimates CO<sub>2</sub> emissions from natural gas combustion for space and water heating and fuel combustion for landscape maintenance, based on land use size (e.g., number of dwelling units, square footage of retail space, etc.). Again, the appropriate scaling factors from the State GHG Inventory were used to determine the relative amounts of NH<sub>4</sub> and N<sub>2</sub>O emitted from project-related fuel combustion. Indirect emissions of GHGs from electricity generation (associated with electricity usage and water/wastewater conveyance) were based on methodologies described in the SMAQMD *Guide to Air Quality Assessment*.

Results of the URBEMIS2007 modeling (daily and annual) and GHG analysis are presented below for each alternative. This Appendix is separated into the following sub-sections:

- URBEMIS2007 MODEL RESULTS FOR CONSTRUCTION (ANNUAL AND DAILY EMISSIONS) – ALTERNATIVES A THROUGH C
- URBEMIS2007 MODEL RESULTS FOR OPERATIONS (ANNUAL, SUMMER, WINTER EMISSIONS) - ALTERNATIVE A
- URBEMIS2007 MODEL RESULTS FOR OPERATIONS (ANNUAL, SUMMER, WINTER EMISSIONS) - ALTERNATIVE B
- URBEMIS2007 MODEL RESULTS FOR OPERATIONS (ANNUAL, SUMMER, WINTER EMISSIONS) - ALTERNATIVE C
- URBEMIS2007 MODEL RESULTS FOR CONSTRUCTION (ANNUAL AND DAILY EMISSIONS) – ALTERNATIVE D
- URBEMIS2007 MODEL RESULTS FOR OPERATIONS (ANNUAL, SUMMER, WINTER EMISSIONS) - ALTERNATIVE D

- GHG ANALYSIS FOR ALTERNATIVE A
- GHG ANALYSIS FOR ALTERNATIVE B
- GHG ANALYSIS FOR ALTERNATIVE C
- GHG ANALYSIS FOR ALTERNATIVE D
- REFERENCES

# URBEMIS2007 MODEL RESULTS FOR CONSTRUCTION (ANNUAL AND DAILY EMISSIONS) – ALTERNATIVES A THROUGH C

Page: 1

3/10/2011 2:14:47 PM

#### Urbemis 2007 Version 9.2.4

#### Combined Annual Emissions Reports (Tons/Year)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Construction - Year 11.urb924

Project Name: Elverta Construction - Year 11
Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

#### Summary Report:

CONSTRUCTION EMISSION ESTIMATES

|                                     | ROG   | <u>NOx</u> | CO   | <u>SO2</u> | PM10 Dust PM10 Exha | <u>aust</u> | <u>PM10</u> | PM2.5 Dust | PM2.5<br>Exhaust | PM2.5 | <u>CO2</u> |
|-------------------------------------|-------|------------|------|------------|---------------------|-------------|-------------|------------|------------------|-------|------------|
| 2022 TOTALS (tons/year unmitigated) | 13.85 | 2.78       | 4.84 | 0.01       | 26.08               | ).14        | 26.22       | 5.45       | 0.13             | 5.58  | 1,434.99   |

#### Construction Unmitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

| <u>ROG</u> | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | PM10 Dust | PM10 Exhaust | <u>PM10</u> | PM2.5 Dust | PM2.5 Exhaust | <u>PM2.5</u> | <u>CO2</u> |
|------------|------------|-----------|------------|-----------|--------------|-------------|------------|---------------|--------------|------------|
|------------|------------|-----------|------------|-----------|--------------|-------------|------------|---------------|--------------|------------|

Page: 2 3/10/2011 2:14:47 PM

| 2022                                   | 13.85 | 2.78 | 4.84 | 0.01 | 26.08 | 0.14 | 26.22 | 5.45 | 0.13 | 5.58 | 1,434.99 |
|----------------------------------------|-------|------|------|------|-------|------|-------|------|------|------|----------|
| Fine Grading 01/01/2022-<br>04/27/2022 | 0.21  | 1.46 | 1.18 | 0.00 | 26.05 | 0.06 | 26.11 | 5.44 | 0.06 | 5.50 | 319.88   |
| Fine Grading Dust                      | 0.00  | 0.00 | 0.00 | 0.00 | 26.05 | 0.00 | 26.05 | 5.44 | 0.00 | 5.44 | 0.00     |
| Fine Grading Off Road Diesel           | 0.21  | 1.45 | 1.15 | 0.00 | 0.00  | 0.06 | 0.06  | 0.00 | 0.06 | 0.06 | 299.49   |
| Fine Grading On Road Diesel            | 0.00  | 0.01 | 0.01 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 9.95     |
| Fine Grading Worker Trips              | 0.00  | 0.00 | 0.03 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 10.45    |
| Asphalt 03/28/2022-05/15/2022          | 0.07  | 0.21 | 0.19 | 0.00 | 0.00  | 0.02 | 0.02  | 0.00 | 0.01 | 0.01 | 45.88    |
| Paving Off-Gas                         | 0.04  | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00     |
| Paving Off Road Diesel                 | 0.03  | 0.18 | 0.17 | 0.00 | 0.00  | 0.01 | 0.01  | 0.00 | 0.01 | 0.01 | 24.83    |
| Paving On Road Diesel                  | 0.00  | 0.02 | 0.01 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 18.60    |
| Paving Worker Trips                    | 0.00  | 0.00 | 0.01 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 2.45     |
| Building 04/28/2022-12/14/2022         | 0.21  | 1.11 | 3.42 | 0.01 | 0.04  | 0.06 | 0.10  | 0.01 | 0.06 | 0.07 | 1,051.78 |
| Building Off Road Diesel               | 0.14  | 0.87 | 0.99 | 0.00 | 0.00  | 0.04 | 0.04  | 0.00 | 0.04 | 0.04 | 186.39   |
| Building Vendor Trips                  | 0.02  | 0.17 | 0.30 | 0.00 | 0.01  | 0.01 | 0.01  | 0.00 | 0.01 | 0.01 | 174.37   |
| Building Worker Trips                  | 0.04  | 0.08 | 2.12 | 0.01 | 0.03  | 0.01 | 0.05  | 0.01 | 0.01 | 0.02 | 691.02   |
| Coating 08/08/2022-12/31/2022          | 13.35 | 0.00 | 0.05 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 17.44    |
| Architectural Coating                  | 13.35 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00     |
| Coating Worker Trips                   | 0.00  | 0.00 | 0.05 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 17.44    |

# Phase Assumptions

Phase: Fine Grading 1/1/2022 - 4/27/2022 - Default Fine Site Grading Description

Total Acres Disturbed: 125.5

Maximum Daily Acreage Disturbed: 31.38 Fugitive Dust Level of Detail: Default

20 lbs per acre-day

#### 3/10/2011 2:14:47 PM

On Road Truck Travel (VMT): 59.52

Off-Road Equipment:

- 1 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day
- 1 Graders (174 hp) operating at a 0.61 load factor for 8 hours per day
- 1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 8 hours per day
- 2 Scrapers (313 hp) operating at a 0.72 load factor for 8 hours per day
- 3 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day
- 1 Water Trucks (189 hp) operating at a 0.5 load factor for 8 hours per day

Phase: Paving 3/28/2022 - 5/15/2022 - Default Paving Description

Acres to be Paved: 31.38

Off-Road Equipment:

- 1 Pavers (100 hp) operating at a 0.62 load factor for 8 hours per day
- 2 Paving Equipment (104 hp) operating at a 0.53 load factor for 8 hours per day
- 2 Rollers (95 hp) operating at a 0.56 load factor for 6 hours per day

Phase: Building Construction 4/28/2022 - 12/14/2022 - Default Building Construction Description

Off-Road Equipment:

- 1 Cranes (399 hp) operating at a 0.43 load factor for 7 hours per day
- 3 Forklifts (145 hp) operating at a 0.3 load factor for 8 hours per day
- 1 Generator Sets (49 hp) operating at a 0.74 load factor for 8 hours per day
- 3 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day
- 1 Welders (45 hp) operating at a 0.45 load factor for 8 hours per day

Phase: Architectural Coating 8/8/2022 - 12/31/2022 - Default Architectural Coating Description

Rule: Residential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Residential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

3/10/2011 3:48:37 PM

#### Urbemis 2007 Version 9.2.4

# Combined Annual Emissions Reports (Tons/Year)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Construction - Year 11 Mitigated.urb924

Project Name: Elverta Construction - Year 11 Mitigated

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

# Summary Report:

CONSTRUCTION EMISSION ESTIMATES

|                                     | ROG   | <u>NOx</u> | CO   | <u>SO2</u> | PM10 Dust PM1 | 0 Exhaust | <u>PM10</u> | PM2.5 Dust | PM2.5<br>Exhaust | <u>PM2.5</u> | <u>CO2</u> |
|-------------------------------------|-------|------------|------|------------|---------------|-----------|-------------|------------|------------------|--------------|------------|
| 2022 TOTALS (tons/year unmitigated) | 13.84 | 2.76       | 4.81 | 0.01       | 12.49         | 0.14      | 12.63       | 2.61       | 0.13             | 2.74         | 1,429.89   |
| 2022 TOTALS (tons/year mitigated)   | 13.84 | 2.76       | 4.81 | 0.01       | 5.93          | 0.14      | 6.07        | 1.24       | 0.13             | 1.37         | 1,429.89   |
| Percent Reduction                   | 0.00  | 0.00       | 0.00 | 0.00       | 52.52         | 0.00      | 51.95       | 52.41      | 0.00             | 50.00        | 0.00       |

# Construction Unmitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

| <u>ROG</u> | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | PM10 Dust | PM10 Exhaust | <u>PM10</u> | PM2.5 Dust | PM2.5 Exhaust | PM2.5 | <u>CO2</u> |
|------------|------------|-----------|------------|-----------|--------------|-------------|------------|---------------|-------|------------|
|------------|------------|-----------|------------|-----------|--------------|-------------|------------|---------------|-------|------------|

Page: 2 3/10/2011 3:48:37 PM

| 2022                                   | 13.84 | 2.76 | 4.81 | 0.01 | 12.49 | 0.14 | 12.63 | 2.61 | 0.13 | 2.74 | 1,429.89 |
|----------------------------------------|-------|------|------|------|-------|------|-------|------|------|------|----------|
| Fine Grading 01/01/2022-<br>04/27/2022 | 0.21  | 1.44 | 1.15 | 0.00 | 12.45 | 0.06 | 12.51 | 2.60 | 0.05 | 2.65 | 314.79   |
| Fine Grading Dust                      | 0.00  | 0.00 | 0.00 | 0.00 | 12.45 | 0.00 | 12.45 | 2.60 | 0.00 | 2.60 | 0.00     |
| Fine Grading Off Road Diesel           | 0.21  | 1.42 | 1.11 | 0.00 | 0.00  | 0.06 | 0.06  | 0.00 | 0.05 | 0.05 | 294.39   |
| Fine Grading On Road Diesel            | 0.00  | 0.01 | 0.01 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 9.95     |
| Fine Grading Worker Trips              | 0.00  | 0.00 | 0.03 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 10.45    |
| Asphalt 03/28/2022-05/15/2022          | 0.07  | 0.21 | 0.19 | 0.00 | 0.00  | 0.02 | 0.02  | 0.00 | 0.01 | 0.01 | 45.88    |
| Paving Off-Gas                         | 0.04  | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00     |
| Paving Off Road Diesel                 | 0.03  | 0.18 | 0.17 | 0.00 | 0.00  | 0.01 | 0.01  | 0.00 | 0.01 | 0.01 | 24.83    |
| Paving On Road Diesel                  | 0.00  | 0.02 | 0.01 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 18.60    |
| Paving Worker Trips                    | 0.00  | 0.00 | 0.01 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 2.45     |
| Building 04/28/2022-12/14/2022         | 0.21  | 1.11 | 3.42 | 0.01 | 0.04  | 0.06 | 0.10  | 0.01 | 0.06 | 0.07 | 1,051.78 |
| Building Off Road Diesel               | 0.14  | 0.87 | 0.99 | 0.00 | 0.00  | 0.04 | 0.04  | 0.00 | 0.04 | 0.04 | 186.39   |
| Building Vendor Trips                  | 0.02  | 0.17 | 0.30 | 0.00 | 0.01  | 0.01 | 0.01  | 0.00 | 0.01 | 0.01 | 174.37   |
| Building Worker Trips                  | 0.04  | 0.08 | 2.12 | 0.01 | 0.03  | 0.01 | 0.05  | 0.01 | 0.01 | 0.02 | 691.02   |
| Coating 08/08/2022-12/31/2022          | 13.35 | 0.00 | 0.05 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 17.44    |
| Architectural Coating                  | 13.35 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00     |
| Coating Worker Trips                   | 0.00  | 0.00 | 0.05 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 17.44    |

# Phase Assumptions

Phase: Fine Grading 1/1/2022 - 4/27/2022 - Default Fine Site Grading Description

Total Acres Disturbed: 125.5

Maximum Daily Acreage Disturbed: 15 Fugitive Dust Level of Detail: Default

20 lbs per acre-day

#### 3/10/2011 3:48:37 PM

On Road Truck Travel (VMT): 59.52

Off-Road Equipment:

- 1 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day
- 1 Graders (174 hp) operating at a 0.61 load factor for 8 hours per day
- 1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 8 hours per day
- 2 Scrapers (313 hp) operating at a 0.72 load factor for 8 hours per day
- 3 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day
- 1 Water Trucks (189 hp) operating at a 0.5 load factor for 8 hours per day

Phase: Paving 3/28/2022 - 5/15/2022 - Default Paving Description

Acres to be Paved: 31.38

Off-Road Equipment:

- 1 Pavers (100 hp) operating at a 0.62 load factor for 8 hours per day
- 2 Paving Equipment (104 hp) operating at a 0.53 load factor for 8 hours per day
- 2 Rollers (95 hp) operating at a 0.56 load factor for 6 hours per day

Phase: Building Construction 4/28/2022 - 12/14/2022 - Default Building Construction Description

Off-Road Equipment:

- 1 Cranes (399 hp) operating at a 0.43 load factor for 7 hours per day
- 3 Forklifts (145 hp) operating at a 0.3 load factor for 8 hours per day
- 1 Generator Sets (49 hp) operating at a 0.74 load factor for 8 hours per day
- 3 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day
- 1 Welders (45 hp) operating at a 0.45 load factor for 8 hours per day

Phase: Architectural Coating 8/8/2022 - 12/31/2022 - Default Architectural Coating Description

Rule: Residential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Residential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Page: 4
3/10/2011 3:48:37 PM

# Construction Mitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Annual Tons Per Year, Mitigated

|                                        | ROG   | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | PM10 Dust | PM10 Exhaust | <u>PM10</u> | PM2.5 Dust | PM2.5 Exhaust | PM2.5 | <u>CO2</u> |
|----------------------------------------|-------|------------|-----------|------------|-----------|--------------|-------------|------------|---------------|-------|------------|
| 2022                                   | 13.84 | 2.76       | 4.81      | 0.01       | 5.93      | 0.14         | 6.07        | 1.24       | 0.13          | 1.37  | 1,429.89   |
| Fine Grading 01/01/2022-<br>04/27/2022 | 0.21  | 1.44       | 1.15      | 0.00       | 5.89      | 0.06         | 5.95        | 1.23       | 0.05          | 1.28  | 314.79     |
| Fine Grading Dust                      | 0.00  | 0.00       | 0.00      | 0.00       | 5.89      | 0.00         | 5.89        | 1.23       | 0.00          | 1.23  | 0.00       |
| Fine Grading Off Road Diesel           | 0.21  | 1.42       | 1.11      | 0.00       | 0.00      | 0.06         | 0.06        | 0.00       | 0.05          | 0.05  | 294.39     |
| Fine Grading On Road Diesel            | 0.00  | 0.01       | 0.01      | 0.00       | 0.00      | 0.00         | 0.00        | 0.00       | 0.00          | 0.00  | 9.95       |
| Fine Grading Worker Trips              | 0.00  | 0.00       | 0.03      | 0.00       | 0.00      | 0.00         | 0.00        | 0.00       | 0.00          | 0.00  | 10.45      |
| Asphalt 03/28/2022-05/15/2022          | 0.07  | 0.21       | 0.19      | 0.00       | 0.00      | 0.02         | 0.02        | 0.00       | 0.01          | 0.01  | 45.88      |
| Paving Off-Gas                         | 0.04  | 0.00       | 0.00      | 0.00       | 0.00      | 0.00         | 0.00        | 0.00       | 0.00          | 0.00  | 0.00       |
| Paving Off Road Diesel                 | 0.03  | 0.18       | 0.17      | 0.00       | 0.00      | 0.01         | 0.01        | 0.00       | 0.01          | 0.01  | 24.83      |
| Paving On Road Diesel                  | 0.00  | 0.02       | 0.01      | 0.00       | 0.00      | 0.00         | 0.00        | 0.00       | 0.00          | 0.00  | 18.60      |
| Paving Worker Trips                    | 0.00  | 0.00       | 0.01      | 0.00       | 0.00      | 0.00         | 0.00        | 0.00       | 0.00          | 0.00  | 2.45       |
| Building 04/28/2022-12/14/2022         | 0.21  | 1.11       | 3.42      | 0.01       | 0.04      | 0.06         | 0.10        | 0.01       | 0.06          | 0.07  | 1,051.78   |
| Building Off Road Diesel               | 0.14  | 0.87       | 0.99      | 0.00       | 0.00      | 0.04         | 0.04        | 0.00       | 0.04          | 0.04  | 186.39     |
| Building Vendor Trips                  | 0.02  | 0.17       | 0.30      | 0.00       | 0.01      | 0.01         | 0.01        | 0.00       | 0.01          | 0.01  | 174.37     |
| Building Worker Trips                  | 0.04  | 0.08       | 2.12      | 0.01       | 0.03      | 0.01         | 0.05        | 0.01       | 0.01          | 0.02  | 691.02     |
| Coating 08/08/2022-12/31/2022          | 13.35 | 0.00       | 0.05      | 0.00       | 0.00      | 0.00         | 0.00        | 0.00       | 0.00          | 0.00  | 17.44      |
| Architectural Coating                  | 13.35 | 0.00       | 0.00      | 0.00       | 0.00      | 0.00         | 0.00        | 0.00       | 0.00          | 0.00  | 0.00       |
| Coating Worker Trips                   | 0.00  | 0.00       | 0.05      | 0.00       | 0.00      | 0.00         | 0.00        | 0.00       | 0.00          | 0.00  | 17.44      |

# 3/10/2011 3:48:37 PM

# Construction Related Mitigation Measures

The following mitigation measures apply to Phase: Fine Grading 1/1/2022 - 4/27/2022 - Default Fine Site Grading Description

For Soil Stablizing Measures, the Water exposed surfaces 2x daily watering mitigation reduces emissions by:

PM10: 55% PM25: 55%

For Unpaved Roads Measures, the Reduce speed on unpaved roads to less than 15 mph mitigation reduces emissions by:

PM10: 44% PM25: 44%

3/10/2011 2:14:07 PM

#### Urbemis 2007 Version 9.2.4

# Combined Summer Emissions Reports (Pounds/Day)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Construction - Year 11.urb924

Project Name: Elverta Construction - Year 11
Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

# Summary Report:

CONSTRUCTION EMISSION ESTIMATES

|                                   | ROG    | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | PM10 Dust PM10 | <u>Exhaust</u> | <u>PM10</u> | PM2.5 Dust | PM2.5<br>Exhaust | <u>PM2.5</u> | <u>CO2</u> |
|-----------------------------------|--------|------------|-----------|------------|----------------|----------------|-------------|------------|------------------|--------------|------------|
| 2022 TOTALS (lbs/day unmitigated) | 256.85 | 47.16      | 52.17     | 0.11       | 627.66         | 2.34           | 630.00      | 131.09     | 2.15             | 133.24       | 15,370.42  |

# Construction Unmitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

|                                                  | ROG  | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | PM10 Dust | PM10 Exhaust | <u>PM10</u> | PM2.5 Dust | PM2.5 Exhaust | PM2.5  | <u>CO2</u> |
|--------------------------------------------------|------|------------|-----------|------------|-----------|--------------|-------------|------------|---------------|--------|------------|
| Time Slice 1/3/2022-3/25/2022<br>Active Days: 60 | 5.17 | 35.23      | 28.54     | 0.00       | 627.62    | 1.46         | 629.08      | 131.07     | 1.34          | 132.42 | 7,708.06   |
| Fine Grading 01/01/2022-<br>04/27/2022           | 5.17 | 35.23      | 28.54     | 0.00       | 627.62    | 1.46         | 629.08      | 131.07     | 1.34          | 132.42 | 7,708.06   |
| Fine Grading Dust                                | 0.00 | 0.00       | 0.00      | 0.00       | 627.60    | 0.00         | 627.60      | 131.07     | 0.00          | 131.07 | 0.00       |
| Fine Grading Off Road Diesel                     | 5.11 | 34.88      | 27.61     | 0.00       | 0.00      | 1.44         | 1.44        | 0.00       | 1.33          | 1.33   | 7,216.54   |
| Fine Grading On Road Diesel                      | 0.04 | 0.31       | 0.16      | 0.00       | 0.01      | 0.01         | 0.02        | 0.00       | 0.01          | 0.01   | 239.64     |
| Fine Grading Worker Trips                        | 0.02 | 0.03       | 0.77      | 0.00       | 0.01      | 0.01         | 0.02        | 0.00       | 0.00          | 0.01   | 251.88     |

Page: 2 3/10/2011 2:14:07 PM

| Time Slice 3/28/2022-4/27/2022<br>Active Days: 23 | 9.38 | <u>47.16</u> | 39.32        | 0.02        | <u>627.66</u> | <u>2.34</u> | <u>630.00</u> | <u>131.09</u> | <u>2.15</u> | <u>133.24</u> | 10,329.59        |
|---------------------------------------------------|------|--------------|--------------|-------------|---------------|-------------|---------------|---------------|-------------|---------------|------------------|
| Asphalt 03/28/2022-05/15/2022                     | 4.21 | 11.94        | 10.77        | 0.01        | 0.04          | 0.88        | 0.92          | 0.01          | 0.81        | 0.82          | 2,621.53         |
| Paving Off-Gas                                    | 2.35 | 0.00         | 0.00         | 0.00        | 0.00          | 0.00        | 0.00          | 0.00          | 0.00        | 0.00          | 0.00             |
| Paving Off Road Diesel                            | 1.70 | 10.53        | 9.66         | 0.00        | 0.00          | 0.82        | 0.82          | 0.00          | 0.75        | 0.75          | 1,418.81         |
| Paving On Road Diesel                             | 0.16 | 1.39         | 0.69         | 0.01        | 0.04          | 0.05        | 0.09          | 0.01          | 0.05        | 0.06          | 1,062.79         |
| Paving Worker Trips                               | 0.01 | 0.02         | 0.43         | 0.00        | 0.01          | 0.00        | 0.01          | 0.00          | 0.00        | 0.00          | 139.93           |
| Fine Grading 01/01/2022-<br>04/27/2022            | 5.17 | 35.23        | 28.54        | 0.00        | 627.62        | 1.46        | 629.08        | 131.07        | 1.34        | 132.42        | 7,708.06         |
| Fine Grading Dust                                 | 0.00 | 0.00         | 0.00         | 0.00        | 627.60        | 0.00        | 627.60        | 131.07        | 0.00        | 131.07        | 0.00             |
| Fine Grading Off Road Diesel                      | 5.11 | 34.88        | 27.61        | 0.00        | 0.00          | 1.44        | 1.44          | 0.00          | 1.33        | 1.33          | 7,216.54         |
| Fine Grading On Road Diesel                       | 0.04 | 0.31         | 0.16         | 0.00        | 0.01          | 0.01        | 0.02          | 0.00          | 0.01        | 0.01          | 239.64           |
| Fine Grading Worker Trips                         | 0.02 | 0.03         | 0.77         | 0.00        | 0.01          | 0.01        | 0.02          | 0.00          | 0.00        | 0.01          | 251.88           |
| Time Slice 4/28/2022-5/13/2022<br>Active Days: 12 | 6.74 | 25.40        | <u>52.17</u> | <u>0.11</u> | 0.49          | 1.65        | 2.14          | 0.17          | 1.49        | 1.67          | <u>15,370.42</u> |
| Asphalt 03/28/2022-05/15/2022                     | 4.21 | 11.94        | 10.77        | 0.01        | 0.04          | 0.88        | 0.92          | 0.01          | 0.81        | 0.82          | 2,621.53         |
| Paving Off-Gas                                    | 2.35 | 0.00         | 0.00         | 0.00        | 0.00          | 0.00        | 0.00          | 0.00          | 0.00        | 0.00          | 0.00             |
| Paving Off Road Diesel                            | 1.70 | 10.53        | 9.66         | 0.00        | 0.00          | 0.82        | 0.82          | 0.00          | 0.75        | 0.75          | 1,418.81         |
| Paving On Road Diesel                             | 0.16 | 1.39         | 0.69         | 0.01        | 0.04          | 0.05        | 0.09          | 0.01          | 0.05        | 0.06          | 1,062.79         |
| Paving Worker Trips                               | 0.01 | 0.02         | 0.43         | 0.00        | 0.01          | 0.00        | 0.01          | 0.00          | 0.00        | 0.00          | 139.93           |
| Building 04/28/2022-12/14/2022                    | 2.52 | 13.46        | 41.40        | 0.10        | 0.45          | 0.77        | 1.22          | 0.16          | 0.69        | 0.85          | 12,748.89        |
| Building Off Road Diesel                          | 1.71 | 10.50        | 12.03        | 0.00        | 0.00          | 0.50        | 0.50          | 0.00          | 0.46        | 0.46          | 2,259.28         |
| Building Vendor Trips                             | 0.28 | 2.03         | 3.62         | 0.02        | 0.08          | 0.10        | 0.18          | 0.03          | 0.09        | 0.12          | 2,113.60         |
| Building Worker Trips                             | 0.54 | 0.94         | 25.75        | 0.08        | 0.37          | 0.17        | 0.55          | 0.13          | 0.14        | 0.28          | 8,376.01         |

Page: 3
3/10/2011 2:14:07 PM

| Time Slice 5/16/2022-8/5/2022<br>Active Days: 60    | 2.52          | 13.46 | 41.40 | 0.10 | 0.45 | 0.77 | 1.22 | 0.16 | 0.69 | 0.85 | 12,748.89 |
|-----------------------------------------------------|---------------|-------|-------|------|------|------|------|------|------|------|-----------|
| Building 04/28/2022-12/14/2022                      | 2.52          | 13.46 | 41.40 | 0.10 | 0.45 | 0.77 | 1.22 | 0.16 | 0.69 | 0.85 | 12,748.89 |
| Building Off Road Diesel                            | 1.71          | 10.50 | 12.03 | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.46 | 0.46 | 2,259.28  |
| Building Vendor Trips                               | 0.28          | 2.03  | 3.62  | 0.02 | 0.08 | 0.10 | 0.18 | 0.03 | 0.09 | 0.12 | 2,113.60  |
| Building Worker Trips                               | 0.54          | 0.94  | 25.75 | 0.08 | 0.37 | 0.17 | 0.55 | 0.13 | 0.14 | 0.28 | 8,376.01  |
| Time Slice 8/8/2022-12/14/2022<br>Active Days: 93   | <u>256.85</u> | 13.50 | 42.42 | 0.11 | 0.46 | 0.78 | 1.24 | 0.17 | 0.69 | 0.86 | 13,081.13 |
| Building 04/28/2022-12/14/2022                      | 2.52          | 13.46 | 41.40 | 0.10 | 0.45 | 0.77 | 1.22 | 0.16 | 0.69 | 0.85 | 12,748.89 |
| Building Off Road Diesel                            | 1.71          | 10.50 | 12.03 | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.46 | 0.46 | 2,259.28  |
| Building Vendor Trips                               | 0.28          | 2.03  | 3.62  | 0.02 | 0.08 | 0.10 | 0.18 | 0.03 | 0.09 | 0.12 | 2,113.60  |
| Building Worker Trips                               | 0.54          | 0.94  | 25.75 | 0.08 | 0.37 | 0.17 | 0.55 | 0.13 | 0.14 | 0.28 | 8,376.01  |
| Coating 08/08/2022-12/31/2022                       | 254.32        | 0.04  | 1.02  | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 332.24    |
| Architectural Coating                               | 254.30        | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00      |
| Coating Worker Trips                                | 0.02          | 0.04  | 1.02  | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 332.24    |
| Time Slice 12/15/2022-12/30/2022<br>Active Days: 12 | 254.32        | 0.04  | 1.02  | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 332.24    |
| Coating 08/08/2022-12/31/2022                       | 254.32        | 0.04  | 1.02  | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 332.24    |
| Architectural Coating                               | 254.30        | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00      |
| Coating Worker Trips                                | 0.02          | 0.04  | 1.02  | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 332.24    |

# Phase Assumptions

Phase: Fine Grading 1/1/2022 - 4/27/2022 - Default Fine Site Grading Description

Total Acres Disturbed: 125.5

Maximum Daily Acreage Disturbed: 31.38

Fugitive Dust Level of Detail: Default

20 lbs per acre-day

#### 3/10/2011 2:14:07 PM

On Road Truck Travel (VMT): 59.52

Off-Road Equipment:

- 1 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day
- 1 Graders (174 hp) operating at a 0.61 load factor for 8 hours per day
- 1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 8 hours per day
- 2 Scrapers (313 hp) operating at a 0.72 load factor for 8 hours per day
- 3 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day
- 1 Water Trucks (189 hp) operating at a 0.5 load factor for 8 hours per day

Phase: Paving 3/28/2022 - 5/15/2022 - Default Paving Description

Acres to be Paved: 31.38

Off-Road Equipment:

- 1 Pavers (100 hp) operating at a 0.62 load factor for 8 hours per day
- 2 Paving Equipment (104 hp) operating at a 0.53 load factor for 8 hours per day
- 2 Rollers (95 hp) operating at a 0.56 load factor for 6 hours per day

Phase: Building Construction 4/28/2022 - 12/14/2022 - Default Building Construction Description

Off-Road Equipment:

- 1 Cranes (399 hp) operating at a 0.43 load factor for 7 hours per day
- 3 Forklifts (145 hp) operating at a 0.3 load factor for 8 hours per day
- 1 Generator Sets (49 hp) operating at a 0.74 load factor for 8 hours per day
- 3 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day
- 1 Welders (45 hp) operating at a 0.45 load factor for 8 hours per day

Phase: Architectural Coating 8/8/2022 - 12/31/2022 - Default Architectural Coating Description

Rule: Residential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Residential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

3/10/2011 3:49:00 PM

#### Urbemis 2007 Version 9.2.4

# Combined Summer Emissions Reports (Pounds/Day)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Construction - Year 11 Mitigated.urb924

Project Name: Elverta Construction - Year 11 Mitigated

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

# Summary Report:

CONSTRUCTION EMISSION ESTIMATES

|                                   | ROG    | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | PM10 Dust PM1 | 10 Exhaust | <u>PM10</u> | PM2.5 Dust | PM2.5<br>Exhaust | PM2.5 | <u>CO2</u> |
|-----------------------------------|--------|------------|-----------|------------|---------------|------------|-------------|------------|------------------|-------|------------|
| 2022 TOTALS (lbs/day unmitigated) | 256.85 | 46.58      | 52.17     | 0.11       | 300.06        | 2.30       | 302.37      | 62.67      | 2.12             | 64.79 | 15,370.42  |
| 2022 TOTALS (lbs/day mitigated)   | 256.85 | 46.58      | 52.17     | 0.11       | 141.99        | 2.30       | 144.30      | 29.66      | 2.12             | 31.78 | 15,370.42  |

# Construction Unmitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

| ROG | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | PM10 Dust | PM10 Exhaust | <u>PM10</u> | PM2.5 Dust | PM2.5 Exhaust | PM2.5 | <u>CO2</u> |
|-----|------------|-----------|------------|-----------|--------------|-------------|------------|---------------|-------|------------|
|-----|------------|-----------|------------|-----------|--------------|-------------|------------|---------------|-------|------------|

Page: 2 3/10/2011 3:49:00 PM

| Time Slice 1/3/2022-3/25/2022                     | 5.08 | 34.64        | 27.73 | 0.00 | 300.02        | 1.43        | 301.45        | 62.66        | 1.31        | 63.97        | 7,585.26  |
|---------------------------------------------------|------|--------------|-------|------|---------------|-------------|---------------|--------------|-------------|--------------|-----------|
| Active Days: 60                                   | 3.00 | 34.04        | 21.10 | 0.00 | 300.02        | 1.40        | 301.43        | 02.00        | 1.51        | 03.57        | 7,300.20  |
| Fine Grading 01/01/2022-<br>04/27/2022            | 5.08 | 34.64        | 27.73 | 0.00 | 300.02        | 1.43        | 301.45        | 62.66        | 1.31        | 63.97        | 7,585.26  |
| Fine Grading Dust                                 | 0.00 | 0.00         | 0.00  | 0.00 | 300.00        | 0.00        | 300.00        | 62.65        | 0.00        | 62.65        | 0.00      |
| Fine Grading Off Road Diesel                      | 5.03 | 34.30        | 26.80 | 0.00 | 0.00          | 1.41        | 1.41          | 0.00         | 1.30        | 1.30         | 7,093.74  |
| Fine Grading On Road Diesel                       | 0.04 | 0.31         | 0.16  | 0.00 | 0.01          | 0.01        | 0.02          | 0.00         | 0.01        | 0.01         | 239.64    |
| Fine Grading Worker Trips                         | 0.02 | 0.03         | 0.77  | 0.00 | 0.01          | 0.01        | 0.02          | 0.00         | 0.00        | 0.01         | 251.88    |
| Time Slice 3/28/2022-4/27/2022<br>Active Days: 23 | 9.30 | <u>46.58</u> | 38.51 | 0.02 | <u>300.06</u> | <u>2.30</u> | <u>302.37</u> | <u>62.67</u> | <u>2.12</u> | <u>64.79</u> | 10,206.80 |
| Asphalt 03/28/2022-05/15/2022                     | 4.21 | 11.94        | 10.77 | 0.01 | 0.04          | 0.88        | 0.92          | 0.01         | 0.81        | 0.82         | 2,621.53  |
| Paving Off-Gas                                    | 2.35 | 0.00         | 0.00  | 0.00 | 0.00          | 0.00        | 0.00          | 0.00         | 0.00        | 0.00         | 0.00      |
| Paving Off Road Diesel                            | 1.70 | 10.53        | 9.66  | 0.00 | 0.00          | 0.82        | 0.82          | 0.00         | 0.75        | 0.75         | 1,418.81  |
| Paving On Road Diesel                             | 0.16 | 1.39         | 0.69  | 0.01 | 0.04          | 0.05        | 0.09          | 0.01         | 0.05        | 0.06         | 1,062.79  |
| Paving Worker Trips                               | 0.01 | 0.02         | 0.43  | 0.00 | 0.01          | 0.00        | 0.01          | 0.00         | 0.00        | 0.00         | 139.93    |
| Fine Grading 01/01/2022-<br>04/27/2022            | 5.08 | 34.64        | 27.73 | 0.00 | 300.02        | 1.43        | 301.45        | 62.66        | 1.31        | 63.97        | 7,585.26  |
| Fine Grading Dust                                 | 0.00 | 0.00         | 0.00  | 0.00 | 300.00        | 0.00        | 300.00        | 62.65        | 0.00        | 62.65        | 0.00      |
| Fine Grading Off Road Diesel                      | 5.03 | 34.30        | 26.80 | 0.00 | 0.00          | 1.41        | 1.41          | 0.00         | 1.30        | 1.30         | 7,093.74  |
| Fine Grading On Road Diesel                       | 0.04 | 0.31         | 0.16  | 0.00 | 0.01          | 0.01        | 0.02          | 0.00         | 0.01        | 0.01         | 239.64    |
| Fine Grading Worker Trips                         | 0.02 | 0.03         | 0.77  | 0.00 | 0.01          | 0.01        | 0.02          | 0.00         | 0.00        | 0.01         | 251.88    |

Page: 3 3/10/2011 3:49:00 PM

| Time Slice 4/28/2022-5/13/2022<br>Active Days: 12 | 6.74          | 25.40 | <u>52.17</u> | <u>0.11</u> | 0.49 | 1.65 | 2.14 | 0.17 | 1.49 | 1.67 | <u>15,370.42</u> |
|---------------------------------------------------|---------------|-------|--------------|-------------|------|------|------|------|------|------|------------------|
| Asphalt 03/28/2022-05/15/2022                     | 4.21          | 11.94 | 10.77        | 0.01        | 0.04 | 0.88 | 0.92 | 0.01 | 0.81 | 0.82 | 2,621.53         |
| Paving Off-Gas                                    | 2.35          | 0.00  | 0.00         | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00             |
| Paving Off Road Diesel                            | 1.70          | 10.53 | 9.66         | 0.00        | 0.00 | 0.82 | 0.82 | 0.00 | 0.75 | 0.75 | 1,418.81         |
| Paving On Road Diesel                             | 0.16          | 1.39  | 0.69         | 0.01        | 0.04 | 0.05 | 0.09 | 0.01 | 0.05 | 0.06 | 1,062.79         |
| Paving Worker Trips                               | 0.01          | 0.02  | 0.43         | 0.00        | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 139.93           |
| Building 04/28/2022-12/14/2022                    | 2.52          | 13.46 | 41.40        | 0.10        | 0.45 | 0.77 | 1.22 | 0.16 | 0.69 | 0.85 | 12,748.89        |
| Building Off Road Diesel                          | 1.71          | 10.50 | 12.03        | 0.00        | 0.00 | 0.50 | 0.50 | 0.00 | 0.46 | 0.46 | 2,259.28         |
| Building Vendor Trips                             | 0.28          | 2.03  | 3.62         | 0.02        | 0.08 | 0.10 | 0.18 | 0.03 | 0.09 | 0.12 | 2,113.60         |
| Building Worker Trips                             | 0.54          | 0.94  | 25.75        | 0.08        | 0.37 | 0.17 | 0.55 | 0.13 | 0.14 | 0.28 | 8,376.01         |
| Time Slice 5/16/2022-8/5/2022<br>Active Days: 60  | 2.52          | 13.46 | 41.40        | 0.10        | 0.45 | 0.77 | 1.22 | 0.16 | 0.69 | 0.85 | 12,748.89        |
| Building 04/28/2022-12/14/2022                    | 2.52          | 13.46 | 41.40        | 0.10        | 0.45 | 0.77 | 1.22 | 0.16 | 0.69 | 0.85 | 12,748.89        |
| Building Off Road Diesel                          | 1.71          | 10.50 | 12.03        | 0.00        | 0.00 | 0.50 | 0.50 | 0.00 | 0.46 | 0.46 | 2,259.28         |
| <b>Building Vendor Trips</b>                      | 0.28          | 2.03  | 3.62         | 0.02        | 0.08 | 0.10 | 0.18 | 0.03 | 0.09 | 0.12 | 2,113.60         |
| Building Worker Trips                             | 0.54          | 0.94  | 25.75        | 0.08        | 0.37 | 0.17 | 0.55 | 0.13 | 0.14 | 0.28 | 8,376.01         |
| Time Slice 8/8/2022-12/14/2022<br>Active Days: 93 | <u>256.85</u> | 13.50 | 42.42        | 0.11        | 0.46 | 0.78 | 1.24 | 0.17 | 0.69 | 0.86 | 13,081.13        |
| Building 04/28/2022-12/14/2022                    | 2.52          | 13.46 | 41.40        | 0.10        | 0.45 | 0.77 | 1.22 | 0.16 | 0.69 | 0.85 | 12,748.89        |
| <b>Building Off Road Diesel</b>                   | 1.71          | 10.50 | 12.03        | 0.00        | 0.00 | 0.50 | 0.50 | 0.00 | 0.46 | 0.46 | 2,259.28         |
| Building Vendor Trips                             | 0.28          | 2.03  | 3.62         | 0.02        | 0.08 | 0.10 | 0.18 | 0.03 | 0.09 | 0.12 | 2,113.60         |
| Building Worker Trips                             | 0.54          | 0.94  | 25.75        | 0.08        | 0.37 | 0.17 | 0.55 | 0.13 | 0.14 | 0.28 | 8,376.01         |
| Coating 08/08/2022-12/31/2022                     | 254.32        | 0.04  | 1.02         | 0.00        | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 332.24           |
| Architectural Coating                             | 254.30        | 0.00  | 0.00         | 0.00        | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00             |
| Coating Worker Trips                              | 0.02          | 0.04  | 1.02         | 0.00        | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 332.24           |
|                                                   |               |       |              |             |      |      |      |      |      |      |                  |

Page: 4

#### 3/10/2011 3:49:00 PM

| Time Slice 12/15/2022-12/30/2022<br>Active Days: 12 | 254.32 | 0.04 | 1.02 | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 332.24 |
|-----------------------------------------------------|--------|------|------|------|------|------|------|------|------|------|--------|
| Coating 08/08/2022-12/31/2022                       | 254.32 | 0.04 | 1.02 | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 332.24 |
| Architectural Coating                               | 254.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   |
| Coating Worker Trips                                | 0.02   | 0.04 | 1.02 | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 332.24 |

#### **Phase Assumptions**

Phase: Fine Grading 1/1/2022 - 4/27/2022 - Default Fine Site Grading Description

Total Acres Disturbed: 125.5

Maximum Daily Acreage Disturbed: 15 Fugitive Dust Level of Detail: Default

20 lbs per acre-day

On Road Truck Travel (VMT): 59.52

Off-Road Equipment:

- 1 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day
- 1 Graders (174 hp) operating at a 0.61 load factor for 8 hours per day
- 1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 8 hours per day
- 2 Scrapers (313 hp) operating at a 0.72 load factor for 8 hours per day
- 3 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day
- 1 Water Trucks (189 hp) operating at a 0.5 load factor for 8 hours per day

Phase: Paving 3/28/2022 - 5/15/2022 - Default Paving Description

Acres to be Paved: 31.38

Off-Road Equipment:

- 1 Pavers (100 hp) operating at a 0.62 load factor for 8 hours per day
- 2 Paving Equipment (104 hp) operating at a 0.53 load factor for 8 hours per day
- 2 Rollers (95 hp) operating at a 0.56 load factor for 6 hours per day

Phase: Building Construction 4/28/2022 - 12/14/2022 - Default Building Construction Description

#### 3/10/2011 3:49:00 PM

#### Off-Road Equipment:

- 1 Cranes (399 hp) operating at a 0.43 load factor for 7 hours per day
- 3 Forklifts (145 hp) operating at a 0.3 load factor for 8 hours per day
- 1 Generator Sets (49 hp) operating at a 0.74 load factor for 8 hours per day
- 3 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day
- 1 Welders (45 hp) operating at a 0.45 load factor for 8 hours per day

Phase: Architectural Coating 8/8/2022 - 12/31/2022 - Default Architectural Coating Description

Rule: Residential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Residential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

#### Construction Mitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Summer Pounds Per Day, Mitigated

|                                                  | ROG  | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | PM10 Dust | PM10 Exhaust | <u>PM10</u> | PM2.5 Dust | PM2.5 Exhaust | <u>PM2.5</u> | <u>CO2</u> |
|--------------------------------------------------|------|------------|-----------|------------|-----------|--------------|-------------|------------|---------------|--------------|------------|
| Time Slice 1/3/2022-3/25/2022<br>Active Days: 60 | 5.08 | 34.64      | 27.73     | 0.00       | 141.95    | 1.43         | 143.38      | 29.65      | 1.31          | 30.96        | 7,585.26   |
| Fine Grading 01/01/2022-<br>04/27/2022           | 5.08 | 34.64      | 27.73     | 0.00       | 141.95    | 1.43         | 143.38      | 29.65      | 1.31          | 30.96        | 7,585.26   |
| Fine Grading Dust                                | 0.00 | 0.00       | 0.00      | 0.00       | 141.93    | 0.00         | 141.93      | 29.64      | 0.00          | 29.64        | 0.00       |
| Fine Grading Off Road Diesel                     | 5.03 | 34.30      | 26.80     | 0.00       | 0.00      | 1.41         | 1.41        | 0.00       | 1.30          | 1.30         | 7,093.74   |
| Fine Grading On Road Diesel                      | 0.04 | 0.31       | 0.16      | 0.00       | 0.01      | 0.01         | 0.02        | 0.00       | 0.01          | 0.01         | 239.64     |
| Fine Grading Worker Trips                        | 0.02 | 0.03       | 0.77      | 0.00       | 0.01      | 0.01         | 0.02        | 0.00       | 0.00          | 0.01         | 251.88     |

Page: 6
3/10/2011 3:49:00 PM

| Time Slice 3/28/2022-4/27/2022<br>Active Days: 23 | 9.30 | <u>46.58</u> | 38.51        | 0.02        | <u>141.99</u> | <u>2.30</u> | <u>144.30</u> | <u>29.66</u> | <u>2.12</u> | <u>31.78</u> | 10,206.80        |
|---------------------------------------------------|------|--------------|--------------|-------------|---------------|-------------|---------------|--------------|-------------|--------------|------------------|
| Asphalt 03/28/2022-05/15/2022                     | 4.21 | 11.94        | 10.77        | 0.01        | 0.04          | 0.88        | 0.92          | 0.01         | 0.81        | 0.82         | 2,621.53         |
| Paving Off-Gas                                    | 2.35 | 0.00         | 0.00         | 0.00        | 0.00          | 0.00        | 0.00          | 0.00         | 0.00        | 0.00         | 0.00             |
| Paving Off Road Diesel                            | 1.70 | 10.53        | 9.66         | 0.00        | 0.00          | 0.82        | 0.82          | 0.00         | 0.75        | 0.75         | 1,418.81         |
| Paving On Road Diesel                             | 0.16 | 1.39         | 0.69         | 0.01        | 0.04          | 0.05        | 0.09          | 0.01         | 0.05        | 0.06         | 1,062.79         |
| Paving Worker Trips                               | 0.01 | 0.02         | 0.43         | 0.00        | 0.01          | 0.00        | 0.01          | 0.00         | 0.00        | 0.00         | 139.93           |
| Fine Grading 01/01/2022-<br>04/27/2022            | 5.08 | 34.64        | 27.73        | 0.00        | 141.95        | 1.43        | 143.38        | 29.65        | 1.31        | 30.96        | 7,585.26         |
| Fine Grading Dust                                 | 0.00 | 0.00         | 0.00         | 0.00        | 141.93        | 0.00        | 141.93        | 29.64        | 0.00        | 29.64        | 0.00             |
| Fine Grading Off Road Diesel                      | 5.03 | 34.30        | 26.80        | 0.00        | 0.00          | 1.41        | 1.41          | 0.00         | 1.30        | 1.30         | 7,093.74         |
| Fine Grading On Road Diesel                       | 0.04 | 0.31         | 0.16         | 0.00        | 0.01          | 0.01        | 0.02          | 0.00         | 0.01        | 0.01         | 239.64           |
| Fine Grading Worker Trips                         | 0.02 | 0.03         | 0.77         | 0.00        | 0.01          | 0.01        | 0.02          | 0.00         | 0.00        | 0.01         | 251.88           |
| Time Slice 4/28/2022-5/13/2022<br>Active Days: 12 | 6.74 | 25.40        | <u>52.17</u> | <u>0.11</u> | 0.49          | 1.65        | 2.14          | 0.17         | 1.49        | 1.67         | <u>15,370.42</u> |
| Asphalt 03/28/2022-05/15/2022                     | 4.21 | 11.94        | 10.77        | 0.01        | 0.04          | 0.88        | 0.92          | 0.01         | 0.81        | 0.82         | 2,621.53         |
| Paving Off-Gas                                    | 2.35 | 0.00         | 0.00         | 0.00        | 0.00          | 0.00        | 0.00          | 0.00         | 0.00        | 0.00         | 0.00             |
| Paving Off Road Diesel                            | 1.70 | 10.53        | 9.66         | 0.00        | 0.00          | 0.82        | 0.82          | 0.00         | 0.75        | 0.75         | 1,418.81         |
| Paving On Road Diesel                             | 0.16 | 1.39         | 0.69         | 0.01        | 0.04          | 0.05        | 0.09          | 0.01         | 0.05        | 0.06         | 1,062.79         |
| Paving Worker Trips                               | 0.01 | 0.02         | 0.43         | 0.00        | 0.01          | 0.00        | 0.01          | 0.00         | 0.00        | 0.00         | 139.93           |
| Building 04/28/2022-12/14/2022                    | 2.52 | 13.46        | 41.40        | 0.10        | 0.45          | 0.77        | 1.22          | 0.16         | 0.69        | 0.85         | 12,748.89        |
| <b>Building Off Road Diesel</b>                   | 1.71 | 10.50        | 12.03        | 0.00        | 0.00          | 0.50        | 0.50          | 0.00         | 0.46        | 0.46         | 2,259.28         |
| Building Vendor Trips                             | 0.28 | 2.03         | 3.62         | 0.02        | 0.08          | 0.10        | 0.18          | 0.03         | 0.09        | 0.12         | 2,113.60         |
| Building Worker Trips                             | 0.54 | 0.94         | 25.75        | 0.08        | 0.37          | 0.17        | 0.55          | 0.13         | 0.14        | 0.28         | 8,376.01         |

Page: 7

# 3/10/2011 3:49:00 PM

| Time Slice 5/16/2022-8/5/2022<br>Active Days: 60    | 2.52          | 13.46 | 41.40 | 0.10 | 0.45 | 0.77 | 1.22 | 0.16 | 0.69 | 0.85 | 12,748.89 |
|-----------------------------------------------------|---------------|-------|-------|------|------|------|------|------|------|------|-----------|
| Building 04/28/2022-12/14/2022                      | 2.52          | 13.46 | 41.40 | 0.10 | 0.45 | 0.77 | 1.22 | 0.16 | 0.69 | 0.85 | 12,748.89 |
| Building Off Road Diesel                            | 1.71          | 10.50 | 12.03 | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.46 | 0.46 | 2,259.28  |
| Building Vendor Trips                               | 0.28          | 2.03  | 3.62  | 0.02 | 0.08 | 0.10 | 0.18 | 0.03 | 0.09 | 0.12 | 2,113.60  |
| Building Worker Trips                               | 0.54          | 0.94  | 25.75 | 0.08 | 0.37 | 0.17 | 0.55 | 0.13 | 0.14 | 0.28 | 8,376.01  |
| Time Slice 8/8/2022-12/14/2022<br>Active Days: 93   | <u>256.85</u> | 13.50 | 42.42 | 0.11 | 0.46 | 0.78 | 1.24 | 0.17 | 0.69 | 0.86 | 13,081.13 |
| Building 04/28/2022-12/14/2022                      | 2.52          | 13.46 | 41.40 | 0.10 | 0.45 | 0.77 | 1.22 | 0.16 | 0.69 | 0.85 | 12,748.89 |
| <b>Building Off Road Diesel</b>                     | 1.71          | 10.50 | 12.03 | 0.00 | 0.00 | 0.50 | 0.50 | 0.00 | 0.46 | 0.46 | 2,259.28  |
| Building Vendor Trips                               | 0.28          | 2.03  | 3.62  | 0.02 | 0.08 | 0.10 | 0.18 | 0.03 | 0.09 | 0.12 | 2,113.60  |
| <b>Building Worker Trips</b>                        | 0.54          | 0.94  | 25.75 | 0.08 | 0.37 | 0.17 | 0.55 | 0.13 | 0.14 | 0.28 | 8,376.01  |
| Coating 08/08/2022-12/31/2022                       | 254.32        | 0.04  | 1.02  | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 332.24    |
| Architectural Coating                               | 254.30        | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00      |
| Coating Worker Trips                                | 0.02          | 0.04  | 1.02  | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 332.24    |
| Time Slice 12/15/2022-12/30/2022<br>Active Days: 12 | 254.32        | 0.04  | 1.02  | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 332.24    |
| Coating 08/08/2022-12/31/2022                       | 254.32        | 0.04  | 1.02  | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 332.24    |
| Architectural Coating                               | 254.30        | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00      |
| Coating Worker Trips                                | 0.02          | 0.04  | 1.02  | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 332.24    |

# Construction Related Mitigation Measures

The following mitigation measures apply to Phase: Fine Grading 1/1/2022 - 4/27/2022 - Default Fine Site Grading Description

For Soil Stablizing Measures, the Water exposed surfaces 2x daily watering mitigation reduces emissions by:

PM10: 55% PM25: 55%

For Unpaved Roads Measures, the Reduce speed on unpaved roads to less than 15 mph mitigation reduces emissions by:

PM10: 44% PM25: 44%

# URBEMIS2007 MODEL RESULTS FOR OPERATIONS (ANNUAL, SUMMER, WINTER EMISSIONS) - ALTERNATIVE A

Page: 1

11/19/2010 3:28:15 PM

#### Urbemis 2007 Version 9.2.4

# Combined Annual Emissions Reports (Tons/Year)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Operations - Preferred Alt.urb924

Project Name: Elverta Operations - Preferred Alt

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

# Summary Report:

#### AREA SOURCE EMISSION ESTIMATES

|                                            | <u>ROG</u>  | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | PM2.5 | <u>CO2</u> |
|--------------------------------------------|-------------|------------|-----------|------------|-------------|-------|------------|
| TOTALS (tons/year, unmitigated)            | 94.55       | 21.90      | 238.57    | 0.68       | 34.17       | 32.89 | 28,189.59  |
| OPERATIONAL (VEHICLE) EMISSION ESTIMATES   |             |            |           |            |             |       |            |
|                                            | ROG         | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | PM2.5 | <u>CO2</u> |
| TOTALS (tons/year, unmitigated)            | 42.69       | 29.80      | 390.39    | 0.96       | 164.59      | 31.28 | 97,053.96  |
| SUM OF AREA SOURCE AND OPERATIONAL EMISSIO | N ESTIMATES |            |           |            |             |       |            |
|                                            | ROG         | <u>NOx</u> | CO        | <u>SO2</u> | <u>PM10</u> | PM2.5 | <u>CO2</u> |
| TOTALS (tons/year, unmitigated)            | 137.24      | 51.70      | 628.96    | 1.64       | 198.76      | 64.17 | 125,243.55 |

Page: 2 11/19/2010 3:28:15 PM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

| <u>Source</u>                   | ROG   | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | <u>PM2.5</u> | <u>CO2</u> |
|---------------------------------|-------|------------|-----------|------------|-------------|--------------|------------|
| Natural Gas                     | 1.35  | 17.54      | 7.72      | 0.00       | 0.03        | 0.03         | 22,340.10  |
| Hearth                          | 23.03 | 4.11       | 208.93    | 0.68       | 34.08       | 32.80        | 5,814.18   |
| Landscape                       | 3.91  | 0.25       | 21.92     | 0.00       | 0.06        | 0.06         | 35.31      |
| Consumer Products               | 51.00 |            |           |            |             |              |            |
| Architectural Coatings          | 15.26 |            |           |            |             |              |            |
| TOTALS (tons/year, unmitigated) | 94.55 | 21.90      | 238.57    | 0.68       | 34.17       | 32.89        | 28,189.59  |

# Area Source Changes to Defaults

# Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

| <u>Source</u>                   | ROG   | NOX   | CO     | SO2  | PM10   | PM25  | CO2       |
|---------------------------------|-------|-------|--------|------|--------|-------|-----------|
| Single family housing           | 33.58 | 24.37 | 320.24 | 0.79 | 135.28 | 25.71 | 79,774.95 |
| Apartments low rise             | 4.24  | 2.91  | 38.21  | 0.09 | 16.14  | 3.07  | 9,519.51  |
| Elementary school               | 1.57  | 0.33  | 4.24   | 0.01 | 1.77   | 0.34  | 1,043.38  |
| Strip mall                      | 3.01  | 1.99  | 25.08  | 0.06 | 10.28  | 1.95  | 6,059.66  |
| General office building         | 0.29  | 0.20  | 2.62   | 0.01 | 1.12   | 0.21  | 656.46    |
| TOTALS (tons/year, unmitigated) | 42.69 | 29.80 | 390.39 | 0.96 | 164.59 | 31.28 | 97,053.96 |

Operational Settings:

Page: 3 11/19/2010 3:28:15 PM

Includes correction for passby trips

Includes the following double counting adjustment for internal trips:

Residential Trip % Reduction: 12.93 Nonresidential Trip % Reduction: 50

Analysis Year: 2030 Season: Annual

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

| Summary of Land Uses |
|----------------------|
|----------------------|

| Land Use Type           | Acreage  | Trip Rate | Unit Type      | No. Units | Total Trips | Total VMT  |
|-------------------------|----------|-----------|----------------|-----------|-------------|------------|
| Single family housing   | 1,302.50 | 7.97      | dwelling units | 5,317.00  | 42,360.29   | 431,871.54 |
| Apartments low rise     | 37.70    | 5.79      | dwelling units | 873.00    | 5,054.84    | 51,535.06  |
| Elementary school       |          | 0.64      | students       | 1,200.00  | 774.00      | 5,653.30   |
| Strip mall              |          | 25.27     | 1000 sq ft     | 233.00    | 5,887.91    | 32,796.54  |
| General office building |          | 7.89      | 1000 sq ft     | 48.00     | 378.96      | 3,564.45   |
|                         |          |           |                |           | 54,456.00   | 525,420.89 |

#### Vehicle Fleet Mix

| Vehicle Type                        | Percent Type | Non-Catalyst | Catalyst | Diesel |
|-------------------------------------|--------------|--------------|----------|--------|
| Light Auto                          | 47.5         | 0.0          | 100.0    | 0.0    |
| Light Truck < 3750 lbs              | 10.0         | 0.0          | 99.0     | 1.0    |
| Light Truck 3751-5750 lbs           | 22.9         | 0.0          | 100.0    | 0.0    |
| Med Truck 5751-8500 lbs             | 10.1         | 0.0          | 100.0    | 0.0    |
| Lite-Heavy Truck 8501-10,000 lbs    | 2.1          | 0.0          | 81.0     | 19.0   |
| Lite-Heavy Truck 10,001-14,000 lbs  | 0.9          | 0.0          | 55.6     | 44.4   |
| Med-Heavy Truck 14,001-33,000 lbs   | 1.6          | 0.0          | 18.8     | 81.2   |
| Heavy-Heavy Truck 33,001-60,000 lbs | 0.4          | 0.0          | 0.0      | 100.0  |

Page: 4 11/19/2010 3:28:15 PM

| Vehicle Fleet Mix                     |           |              |              |         |            |          |  |  |  |  |
|---------------------------------------|-----------|--------------|--------------|---------|------------|----------|--|--|--|--|
| Vehicle Type                          |           | Percent Type | Non-Catalyst | C       | Catalyst   | Diesel   |  |  |  |  |
| Other Bus                             |           | 0.1          | 0.0          |         | 0.0        | 100.0    |  |  |  |  |
| Urban Bus                             |           | 0.0          | 0.0          |         | 0.0        | 0.0      |  |  |  |  |
| Motorcycle                            |           | 3.5          | 34.3         |         | 65.7       | 0.0      |  |  |  |  |
| School Bus                            |           | 0.1          | 0.0          |         | 0.0        | 100.0    |  |  |  |  |
| Motor Home                            |           | 0.8          | 0.0          |         | 87.5       | 12.5     |  |  |  |  |
|                                       |           | Travel Cond  | litions      |         |            |          |  |  |  |  |
|                                       |           | Residential  |              |         | Commercial |          |  |  |  |  |
|                                       | Home-Work | Home-Shop    | Home-Other   | Commute | Non-Work   | Customer |  |  |  |  |
| Urban Trip Length (miles)             | 10.8      | 7.3          | 7.5          | 10.8    | 7.3        | 7.3      |  |  |  |  |
| Rural Trip Length (miles)             | 15.0      | 10.0         | 10.0         | 15.0    | 10.0       | 10.0     |  |  |  |  |
| Trip speeds (mph)                     | 35.0      | 35.0         | 35.0         | 35.0    | 35.0       | 35.0     |  |  |  |  |
| % of Trips - Residential              | 32.9      | 18.0         | 49.1         |         |            |          |  |  |  |  |
|                                       |           |              |              |         |            |          |  |  |  |  |
| % of Trips - Commercial (by land use) |           |              |              |         |            |          |  |  |  |  |
| Elementary school                     |           |              |              | 20.0    | 10.0       | 70.0     |  |  |  |  |
| Strip mall                            |           |              |              | 2.0     | 1.0        | 97.0     |  |  |  |  |
| General office building               |           |              |              | 35.0    | 17.5       | 47.5     |  |  |  |  |

Page: 1

11/19/2010 3:27:32 PM

#### Urbemis 2007 Version 9.2.4

# Combined Summer Emissions Reports (Pounds/Day)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Operations - Preferred Alt.urb924

Project Name: Elverta Operations - Preferred Alt

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

# Summary Report:

#### AREA SOURCE EMISSION ESTIMATES

|                                                       | <u>ROG</u> | <u>NOx</u> | CO        | <u>SO2</u> | <u>PM10</u> | PM2.5        | <u>CO2</u> |  |
|-------------------------------------------------------|------------|------------|-----------|------------|-------------|--------------|------------|--|
| TOTALS (lbs/day, unmitigated)                         | 413.87     | 98.85      | 285.81    | 0.01       | 0.83        | 0.82         | 122,803.83 |  |
| OPERATIONAL (VEHICLE) EMISSION ESTIMATES              |            |            |           |            |             |              |            |  |
|                                                       | ROG        | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | PM10        | PM2.5        | <u>CO2</u> |  |
| TOTALS (lbs/day, unmitigated)                         | 245.28     | 138.86     | 2,261.99  | 5.68       | 901.86      | 171.39       | 569,959.94 |  |
| SUM OF AREA SOURCE AND OPERATIONAL EMISSION ESTIMATES |            |            |           |            |             |              |            |  |
|                                                       | ROG        | <u>NOx</u> | CO        | <u>SO2</u> | <u>PM10</u> | <u>PM2.5</u> | <u>CO2</u> |  |
| TOTALS (lbs/day, unmitigated)                         | 659.15     | 237.71     | 2,547.80  | 5.69       | 902.69      | 172.21       | 692,763.77 |  |

Page: 2 11/19/2010 3:27:32 PM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

| <u>Source</u>                 | ROG    | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | PM2.5 | <u>CO2</u> |
|-------------------------------|--------|------------|-----------|------------|-------------|-------|------------|
| Natural Gas                   | 7.41   | 96.09      | 42.28     | 0.00       | 0.18        | 0.18  | 122,411.49 |
| Hearth - No Summer Emissions  |        |            |           |            |             |       |            |
| Landscape                     | 43.39  | 2.76       | 243.53    | 0.01       | 0.65        | 0.64  | 392.34     |
| Consumer Products             | 279.44 |            |           |            |             |       |            |
| Architectural Coatings        | 83.63  |            |           |            |             |       |            |
| TOTALS (lbs/day, unmitigated) | 413.87 | 98.85      | 285.81    | 0.01       | 0.83        | 0.82  | 122,803.83 |

# Area Source Changes to Defaults

# Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

| <u>Source</u>                 | ROG    | NOX    | CO       | SO2  | PM10   | PM25   | CO2        |
|-------------------------------|--------|--------|----------|------|--------|--------|------------|
| Single family housing         | 191.25 | 113.49 | 1,857.48 | 4.67 | 741.28 | 140.87 | 468,486.65 |
| Apartments low rise           | 24.61  | 13.54  | 221.65   | 0.56 | 88.46  | 16.81  | 55,904.32  |
| Elementary school             | 11.27  | 1.54   | 24.41    | 0.06 | 9.70   | 1.84   | 6,127.71   |
| Strip mall                    | 16.50  | 9.35   | 143.29   | 0.35 | 56.30  | 10.71  | 35,585.37  |
| General office building       | 1.65   | 0.94   | 15.16    | 0.04 | 6.12   | 1.16   | 3,855.89   |
| TOTALS (lbs/day, unmitigated) | 245.28 | 138.86 | 2,261.99 | 5.68 | 901.86 | 171.39 | 569,959.94 |

Operational Settings:

Page: 3 11/19/2010 3:27:32 PM

Includes correction for passby trips

Includes the following double counting adjustment for internal trips:

Residential Trip % Reduction: 12.93 Nonresidential Trip % Reduction: 50

Analysis Year: 2030 Temperature (F): 95 Season: Summer

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

# Summary of Land Uses

| Land Use Type           | Acreage  | Trip Rate | Unit Type      | No. Units | Total Trips | Total VMT  |
|-------------------------|----------|-----------|----------------|-----------|-------------|------------|
| Single family housing   | 1,302.50 | 7.97      | dwelling units | 5,317.00  | 42,360.29   | 431,871.54 |
| Apartments low rise     | 37.70    | 5.79      | dwelling units | 873.00    | 5,054.84    | 51,535.06  |
| Elementary school       |          | 0.64      | students       | 1,200.00  | 774.00      | 5,653.30   |
| Strip mall              |          | 25.27     | 1000 sq ft     | 233.00    | 5,887.91    | 32,796.54  |
| General office building |          | 7.89      | 1000 sq ft     | 48.00     | 378.96      | 3,564.45   |
|                         |          |           |                |           | 54,456.00   | 525,420.89 |

#### Vehicle Fleet Mix

| Vehicle Type                        | Percent Type | Non-Catalyst | Catalyst | Diesel |
|-------------------------------------|--------------|--------------|----------|--------|
| Light Auto                          | 47.5         | 0.0          | 100.0    | 0.0    |
| Light Truck < 3750 lbs              | 10.0         | 0.0          | 99.0     | 1.0    |
| Light Truck 3751-5750 lbs           | 22.9         | 0.0          | 100.0    | 0.0    |
| Med Truck 5751-8500 lbs             | 10.1         | 0.0          | 100.0    | 0.0    |
| Lite-Heavy Truck 8501-10,000 lbs    | 2.1          | 0.0          | 81.0     | 19.0   |
| Lite-Heavy Truck 10,001-14,000 lbs  | 0.9          | 0.0          | 55.6     | 44.4   |
| Med-Heavy Truck 14,001-33,000 lbs   | 1.6          | 0.0          | 18.8     | 81.2   |
| Heavy-Heavy Truck 33,001-60,000 lbs | 0.4          | 0.0          | 0.0      | 100.0  |

Page: 4 11/19/2010 3:27:32 PM

| Vehicle Fleet Mix                     |           |              |              |         |            |          |  |  |
|---------------------------------------|-----------|--------------|--------------|---------|------------|----------|--|--|
| Vehicle Type                          |           | Percent Type | Non-Catalyst |         | Catalyst   | Diesel   |  |  |
| Other Bus                             |           | 0.1          | 0.0          |         | 0.0        | 100.0    |  |  |
| Urban Bus                             |           | 0.0          | 0.0          |         | 0.0        | 0.0      |  |  |
| Motorcycle                            |           | 3.5          | 34.3         |         | 65.7       | 0.0      |  |  |
| School Bus                            |           | 0.1          | 0.0          |         | 0.0        | 100.0    |  |  |
| Motor Home                            |           | 0.8          | 0.0          |         | 87.5       | 12.5     |  |  |
| <u>Travel Conditions</u>              |           |              |              |         |            |          |  |  |
|                                       |           | Residential  |              |         | Commercial |          |  |  |
|                                       | Home-Work | Home-Shop    | Home-Other   | Commute | Non-Work   | Customer |  |  |
| Urban Trip Length (miles)             | 10.8      | 7.3          | 7.5          | 10.8    | 7.3        | 7.3      |  |  |
| Rural Trip Length (miles)             | 15.0      | 10.0         | 10.0         | 15.0    | 10.0       | 10.0     |  |  |
| Trip speeds (mph)                     | 35.0      | 35.0         | 35.0         | 35.0    | 35.0       | 35.0     |  |  |
| % of Trips - Residential              | 32.9      | 18.0         | 49.1         |         |            |          |  |  |
|                                       |           |              |              |         |            |          |  |  |
| % of Trips - Commercial (by land use) |           |              |              |         |            |          |  |  |
| Elementary school                     |           |              |              | 20.0    | 10.0       | 70.0     |  |  |
| Strip mall                            |           |              |              | 2.0     | 1.0        | 97.0     |  |  |
| General office building               |           |              |              | 35.0    | 17.5       | 47.5     |  |  |

Page: 1

11/19/2010 3:28:05 PM

#### Urbemis 2007 Version 9.2.4

# Combined Winter Emissions Reports (Pounds/Day)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Operations - Preferred Alt.urb924

Project Name: Elverta Operations - Preferred Alt

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

# Summary Report:

#### AREA SOURCE EMISSION ESTIMATES

|                                             | <u>ROG</u>   | <u>NOx</u> | CO        | <u>SO2</u> | <u>PM10</u> | PM2.5        | <u>CO2</u> |
|---------------------------------------------|--------------|------------|-----------|------------|-------------|--------------|------------|
| TOTALS (lbs/day, unmitigated)               | 933.44       | 227.64     | 5,151.43  | 16.83      | 834.01      | 802.81       | 304,324.62 |
| OPERATIONAL (VEHICLE) EMISSION ESTIMATES    |              |            |           |            |             |              |            |
|                                             | ROG          | <u>NOx</u> | CO        | <u>SO2</u> | <u>PM10</u> | PM2.5        | <u>CO2</u> |
| TOTALS (lbs/day, unmitigated)               | 211.24       | 212.18     | 1,893.41  | 4.52       | 901.86      | 171.39       | 455,487.70 |
| SUM OF AREA SOURCE AND OPERATIONAL EMISSION | ON ESTIMATES |            |           |            |             |              |            |
|                                             | ROG          | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | <u>PM2.5</u> | <u>CO2</u> |
| TOTALS (lbs/day, unmitigated)               | 1,144.68     | 439.82     | 7,044.84  | 21.35      | 1,735.87    | 974.20       | 759,812.32 |

Page: 2 11/19/2010 3:28:05 PM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

| <u>Source</u>                     | ROG    | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | <u>PM2.5</u> | <u>CO2</u> |
|-----------------------------------|--------|------------|-----------|------------|-------------|--------------|------------|
| Natural Gas                       | 7.41   | 96.09      | 42.28     | 0.00       | 0.18        | 0.18         | 122,411.49 |
| Hearth                            | 562.96 | 131.55     | 5,109.15  | 16.83      | 833.83      | 802.63       | 181,913.13 |
| Landscaping - No Winter Emissions |        |            |           |            |             |              |            |
| Consumer Products                 | 279.44 |            |           |            |             |              |            |
| Architectural Coatings            | 83.63  |            |           |            |             |              |            |
| TOTALS (lbs/day, unmitigated)     | 933.44 | 227.64     | 5,151.43  | 16.83      | 834.01      | 802.81       | 304,324.62 |

# Area Source Changes to Defaults

# Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

| <u>Source</u>                 | ROG    | NOX    | CO       | SO2  | PM10   | PM25   | CO2        |
|-------------------------------|--------|--------|----------|------|--------|--------|------------|
| Single family housing         | 169.56 | 173.62 | 1,549.31 | 3.72 | 741.28 | 140.87 | 374,395.79 |
| Apartments low rise           | 20.40  | 20.72  | 184.88   | 0.44 | 88.46  | 16.81  | 44,676.50  |
| Elementary school             | 3.34   | 2.34   | 20.82    | 0.05 | 9.70   | 1.84   | 4,896.04   |
| Strip mall                    | 16.49  | 14.06  | 125.73   | 0.28 | 56.30  | 10.71  | 28,440.06  |
| General office building       | 1.45   | 1.44   | 12.67    | 0.03 | 6.12   | 1.16   | 3,079.31   |
| TOTALS (lbs/day, unmitigated) | 211.24 | 212.18 | 1,893.41 | 4.52 | 901.86 | 171.39 | 455,487.70 |

Operational Settings:

Page: 3 11/19/2010 3:28:05 PM

Includes correction for passby trips

Includes the following double counting adjustment for internal trips:

Residential Trip % Reduction: 12.93 Nonresidential Trip % Reduction: 50

Analysis Year: 2030 Temperature (F): 50 Season: Winter

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

| Summary of Land Uses |
|----------------------|
|----------------------|

| Land Use Type           | Acreage  | Trip Rate | Unit Type      | No. Units | Total Trips | Total VMT  |
|-------------------------|----------|-----------|----------------|-----------|-------------|------------|
| Single family housing   | 1,302.50 | 7.97      | dwelling units | 5,317.00  | 42,360.29   | 431,871.54 |
| Apartments low rise     | 37.70    | 5.79      | dwelling units | 873.00    | 5,054.84    | 51,535.06  |
| Elementary school       |          | 0.64      | students       | 1,200.00  | 774.00      | 5,653.30   |
| Strip mall              |          | 25.27     | 1000 sq ft     | 233.00    | 5,887.91    | 32,796.54  |
| General office building |          | 7.89      | 1000 sq ft     | 48.00     | 378.96      | 3,564.45   |
|                         |          |           |                |           | 54,456.00   | 525,420.89 |

#### Vehicle Fleet Mix

| Vehicle Type                        | Percent Type | Non-Catalyst | Catalyst | Diesel |
|-------------------------------------|--------------|--------------|----------|--------|
| Light Auto                          | 47.5         | 0.0          | 100.0    | 0.0    |
| Light Truck < 3750 lbs              | 10.0         | 0.0          | 99.0     | 1.0    |
| Light Truck 3751-5750 lbs           | 22.9         | 0.0          | 100.0    | 0.0    |
| Med Truck 5751-8500 lbs             | 10.1         | 0.0          | 100.0    | 0.0    |
| Lite-Heavy Truck 8501-10,000 lbs    | 2.1          | 0.0          | 81.0     | 19.0   |
| Lite-Heavy Truck 10,001-14,000 lbs  | 0.9          | 0.0          | 55.6     | 44.4   |
| Med-Heavy Truck 14,001-33,000 lbs   | 1.6          | 0.0          | 18.8     | 81.2   |
| Heavy-Heavy Truck 33,001-60,000 lbs | 0.4          | 0.0          | 0.0      | 100.0  |

Page: 4 11/19/2010 3:28:05 PM

|                                       |           | Vehicle Flee | t Mix        |         |          |          |
|---------------------------------------|-----------|--------------|--------------|---------|----------|----------|
| Vehicle Type                          |           | Percent Type | Non-Catalyst | C       | Catalyst | Diesel   |
| Other Bus                             |           | 0.1          | 0.0          |         | 0.0      | 100.0    |
| Urban Bus                             |           | 0.0          | 0.0          |         | 0.0      | 0.0      |
| Motorcycle                            |           | 3.5          | 34.3         |         | 65.7     | 0.0      |
| School Bus                            |           | 0.1          | 0.0          |         | 0.0      | 100.0    |
| Motor Home                            |           | 0.8          | 0.0          |         | 87.5     | 12.5     |
|                                       |           | Travel Cond  | litions      |         |          |          |
|                                       |           | Residential  |              |         |          |          |
|                                       | Home-Work | Home-Shop    | Home-Other   | Commute | Non-Work | Customer |
| Urban Trip Length (miles)             | 10.8      | 7.3          | 7.5          | 10.8    | 7.3      | 7.3      |
| Rural Trip Length (miles)             | 15.0      | 10.0         | 10.0         | 15.0    | 10.0     | 10.0     |
| Trip speeds (mph)                     | 35.0      | 35.0         | 35.0         | 35.0    | 35.0     | 35.0     |
| % of Trips - Residential              | 32.9      | 18.0         | 49.1         |         |          |          |
|                                       |           |              |              |         |          |          |
| % of Trips - Commercial (by land use) |           |              |              |         |          |          |
| Elementary school                     |           |              |              | 20.0    | 10.0     | 70.0     |
| Strip mall                            |           |              |              | 2.0     | 1.0      | 97.0     |
| General office building               |           |              |              | 35.0    | 17.5     | 47.5     |

# URBEMIS2007 MODEL RESULTS FOR OPERATIONS (ANNUAL, SUMMER, WINTER EMISSIONS) - ALTERNATIVE B

Page: 1

11/19/2010 3:41:31 PM

#### Urbemis 2007 Version 9.2.4

# Combined Annual Emissions Reports (Tons/Year)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Operations - Minimal Impact Alt.urb924

Project Name: Elverta Operations - Minimal Impact Alt

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

# Summary Report:

| $\Delta P = \Delta$ | SULIBUE | EMISSION | <b>FSTIMATES</b> |
|---------------------|---------|----------|------------------|
|                     |         |          |                  |

|                                                       | <u>ROG</u> | <u>NOx</u> | <u>co</u> | <u>SO2</u> | <u>PM10</u> | <u>PM2.5</u> | <u>CO2</u> |
|-------------------------------------------------------|------------|------------|-----------|------------|-------------|--------------|------------|
| TOTALS (tons/year, unmitigated)                       | 92.05      | 20.43      | 233.50    | 0.68       | 34.16       | 32.88        | 26,394.45  |
| OPERATIONAL (VEHICLE) EMISSION ESTIMATES              |            |            |           |            |             |              |            |
|                                                       | ROG        | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | PM2.5        | <u>CO2</u> |
| TOTALS (tons/year, unmitigated)                       | 40.61      | 28.63      | 375.24    | 0.94       | 158.27      | 30.07        | 93,319.96  |
| SUM OF AREA SOURCE AND OPERATIONAL EMISSION ESTIMATES |            |            |           |            |             |              |            |
|                                                       | ROG        | <u>NOx</u> | CO        | <u>SO2</u> | <u>PM10</u> | PM2.5        | <u>CO2</u> |
| TOTALS (tons/year, unmitigated)                       | 132.66     | 49.06      | 608.74    | 1.62       | 192.43      | 62.95        | 119,714.41 |

Page: 2 11/19/2010 3:41:31 PM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

| <u>Source</u>                   | ROG   | <u>NOx</u> | CO     | <u>SO2</u> | <u>PM10</u> | PM2.5 | <u>CO2</u> |
|---------------------------------|-------|------------|--------|------------|-------------|-------|------------|
| Natural Gas                     | 1.24  | 16.13      | 7.06   | 0.00       | 0.03        | 0.03  | 20,553.29  |
| Hearth                          | 23.03 | 4.10       | 208.93 | 0.68       | 34.08       | 32.80 | 5,812.92   |
| Landscape                       | 3.11  | 0.20       | 17.51  | 0.00       | 0.05        | 0.05  | 28.24      |
| Consumer Products               | 51.00 |            |        |            |             |       |            |
| Architectural Coatings          | 13.67 |            |        |            |             |       |            |
| TOTALS (tons/year, unmitigated) | 92.05 | 20.43      | 233.50 | 0.68       | 34.16       | 32.88 | 26,394.45  |

# Area Source Changes to Defaults

# Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

| <u>Source</u>                   | ROG   | NOX   | CO     | SO2  | PM10   | PM25  | CO2       |
|---------------------------------|-------|-------|--------|------|--------|-------|-----------|
| Single family housing           | 27.31 | 19.90 | 261.52 | 0.65 | 110.48 | 20.99 | 65,146.06 |
| Apartments low rise             | 9.74  | 6.72  | 88.27  | 0.22 | 37.29  | 7.09  | 21,989.97 |
| Elementary school               | 0.79  | 0.17  | 2.12   | 0.01 | 0.89   | 0.17  | 521.69    |
| Strip mall                      | 2.47  | 1.63  | 20.57  | 0.05 | 8.43   | 1.60  | 4,970.22  |
| General office building         | 0.30  | 0.21  | 2.76   | 0.01 | 1.18   | 0.22  | 692.02    |
| TOTALS (tons/year, unmitigated) | 40.61 | 28.63 | 375.24 | 0.94 | 158.27 | 30.07 | 93,319.96 |

Operational Settings:

Page: 3 11/19/2010 3:41:31 PM

Includes correction for passby trips

Includes the following double counting adjustment for internal trips:

Residential Trip % Reduction: 10.82 Nonresidential Trip % Reduction: 50

Analysis Year: 2030 Season: Annual

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

# Summary of Land Uses

| Land Use Type           | Acreage  | Trip Rate | Unit Type      | No. Units | Total Trips | Total VMT  |
|-------------------------|----------|-----------|----------------|-----------|-------------|------------|
| Single family housing   | 1,055.25 | 8.20      | dwelling units | 4,221.00  | 34,592.39   | 352,676.21 |
| Apartments low rise     | 85.61    | 5.93      | dwelling units | 1,969.00  | 11,676.62   | 119,045.42 |
| Elementary school       |          | 0.64      | students       | 600.00    | 387.00      | 2,826.65   |
| Strip mall              |          | 25.27     | 1000 sq ft     | 191.11    | 4,829.35    | 26,900.20  |
| General office building |          | 7.90      | 1000 sq ft     | 50.60     | 399.49      | 3,757.52   |
|                         |          |           |                |           | 51,884.85   | 505,206.00 |

#### Vehicle Fleet Mix

| Vehicle Type                        | Percent Type | Non-Catalyst | Catalyst | Diesel |
|-------------------------------------|--------------|--------------|----------|--------|
| Light Auto                          | 47.5         | 0.0          | 100.0    | 0.0    |
| Light Truck < 3750 lbs              | 10.0         | 0.0          | 99.0     | 1.0    |
| Light Truck 3751-5750 lbs           | 22.9         | 0.0          | 100.0    | 0.0    |
| Med Truck 5751-8500 lbs             | 10.1         | 0.0          | 100.0    | 0.0    |
| Lite-Heavy Truck 8501-10,000 lbs    | 2.1          | 0.0          | 81.0     | 19.0   |
| Lite-Heavy Truck 10,001-14,000 lbs  | 0.9          | 0.0          | 55.6     | 44.4   |
| Med-Heavy Truck 14,001-33,000 lbs   | 1.6          | 0.0          | 18.8     | 81.2   |
| Heavy-Heavy Truck 33,001-60,000 lbs | 0.4          | 0.0          | 0.0      | 100.0  |

Page: 4 11/19/2010 3:41:31 PM

| Vehicle Fleet Mix                     |           |              |              |         |            |          |  |  |
|---------------------------------------|-----------|--------------|--------------|---------|------------|----------|--|--|
| Vehicle Type                          |           | Percent Type | Non-Catalyst | C       | Catalyst   | Diesel   |  |  |
| Other Bus                             |           | 0.1          | 0.0          |         | 0.0        | 100.0    |  |  |
| Urban Bus                             |           | 0.0          | 0.0          |         | 0.0        | 0.0      |  |  |
| Motorcycle                            |           | 3.5          | 34.3         |         | 65.7       | 0.0      |  |  |
| School Bus                            |           | 0.1          | 0.0          |         | 0.0        | 100.0    |  |  |
| Motor Home                            |           | 0.8          | 0.0          |         | 87.5       | 12.5     |  |  |
|                                       |           | Travel Cond  | litions      |         |            |          |  |  |
|                                       |           | Residential  |              |         | Commercial |          |  |  |
|                                       | Home-Work | Home-Shop    | Home-Other   | Commute | Non-Work   | Customer |  |  |
| Urban Trip Length (miles)             | 10.8      | 7.3          | 7.5          | 10.8    | 7.3        | 7.3      |  |  |
| Rural Trip Length (miles)             | 15.0      | 10.0         | 10.0         | 15.0    | 10.0       | 10.0     |  |  |
| Trip speeds (mph)                     | 35.0      | 35.0         | 35.0         | 35.0    | 35.0       | 35.0     |  |  |
| % of Trips - Residential              | 32.9      | 18.0         | 49.1         |         |            |          |  |  |
|                                       |           |              |              |         |            |          |  |  |
| % of Trips - Commercial (by land use) |           |              |              |         |            |          |  |  |
| Elementary school                     |           |              |              | 20.0    | 10.0       | 70.0     |  |  |
| Strip mall                            |           |              |              | 2.0     | 1.0        | 97.0     |  |  |
| General office building               |           |              |              | 35.0    | 17.5       | 47.5     |  |  |

Page: 1

#### 11/19/2010 3:40:54 PM

#### Urbemis 2007 Version 9.2.4

# Combined Summer Emissions Reports (Pounds/Day)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Operations - Minimal Impact Alt.urb924

Project Name: Elverta Operations - Minimal Impact Alt

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

# Summary Report:

#### AREA SOURCE EMISSION ESTIMATES

|                                           | ROG          | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | PM2.5  | <u>CO2</u> |
|-------------------------------------------|--------------|------------|-----------|------------|-------------|--------|------------|
| TOTALS (lbs/day, unmitigated)             | 395.72       | 90.58      | 233.28    | 0.01       | 0.69        | 0.69   | 112,934.55 |
| OPERATIONAL (VEHICLE) EMISSION ESTIMATES  |              |            |           |            |             |        |            |
| OPERATIONAL (VEHICLE) EIVISSION ESTIMATES |              |            |           |            |             |        |            |
|                                           | ROG          | <u>NOx</u> | CO        | <u>SO2</u> | <u>PM10</u> | PM2.5  | <u>CO2</u> |
| TOTALS (lbs/day, unmitigated)             | 232.66       | 133.39     | 2,174.58  | 5.46       | 867.17      | 164.78 | 548,031.58 |
|                                           |              |            |           |            |             |        |            |
| SUM OF AREA SOURCE AND OPERATIONAL EMISSI | ON ESTIMATES |            |           |            |             |        |            |
|                                           | ROG          | <u>NOx</u> | <u>co</u> | <u>SO2</u> | <u>PM10</u> | PM2.5  | <u>CO2</u> |
| TOTALS (lbs/day, unmitigated)             | 628.38       | 223.97     | 2,407.86  | 5.47       | 867.86      | 165.47 | 660,966.13 |

Page: 2 11/19/2010 3:40:54 PM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

| <u>Source</u>                 | ROG    | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | PM2.5 | <u>CO2</u> |
|-------------------------------|--------|------------|-----------|------------|-------------|-------|------------|
| Natural Gas                   | 6.81   | 88.37      | 38.67     | 0.00       | 0.17        | 0.17  | 112,620.77 |
| Hearth - No Summer Emissions  |        |            |           |            |             |       |            |
| Landscape                     | 34.55  | 2.21       | 194.61    | 0.01       | 0.52        | 0.52  | 313.78     |
| Consumer Products             | 279.44 |            |           |            |             |       |            |
| Architectural Coatings        | 74.92  |            |           |            |             |       |            |
| TOTALS (lbs/day, unmitigated) | 395.72 | 90.58      | 233.28    | 0.01       | 0.69        | 0.69  | 112,934.55 |

## Area Source Changes to Defaults

# Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

| Source                        | ROG    | NOX    | CO       | SO2  | PM10   | PM25   | CO2        |
|-------------------------------|--------|--------|----------|------|--------|--------|------------|
| Single family housing         | 155.27 | 92.68  | 1,516.86 | 3.81 | 605.35 | 115.03 | 382,576.95 |
| Apartments low rise           | 56.49  | 31.28  | 512.01   | 1.29 | 204.34 | 38.83  | 129,138.38 |
| Elementary school             | 5.63   | 0.77   | 12.20    | 0.03 | 4.85   | 0.92   | 3,063.86   |
| Strip mall                    | 13.53  | 7.67   | 117.53   | 0.29 | 46.18  | 8.78   | 29,187.64  |
| General office building       | 1.74   | 0.99   | 15.98    | 0.04 | 6.45   | 1.22   | 4,064.75   |
| TOTALS (lbs/day, unmitigated) | 232.66 | 133.39 | 2,174.58 | 5.46 | 867.17 | 164.78 | 548,031.58 |

Operational Settings:

Page: 3 11/19/2010 3:40:54 PM

Includes correction for passby trips

Includes the following double counting adjustment for internal trips:

Residential Trip % Reduction: 10.82 Nonresidential Trip % Reduction: 50

Analysis Year: 2030 Temperature (F): 95 Season: Summer

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

## Summary of Land Uses

| Land Use Type           | Acreage  | Trip Rate | Unit Type      | No. Units | Total Trips | Total VMT  |
|-------------------------|----------|-----------|----------------|-----------|-------------|------------|
| Single family housing   | 1,055.25 | 8.20      | dwelling units | 4,221.00  | 34,592.39   | 352,676.21 |
| Apartments low rise     | 85.61    | 5.93      | dwelling units | 1,969.00  | 11,676.62   | 119,045.42 |
| Elementary school       |          | 0.64      | students       | 600.00    | 387.00      | 2,826.65   |
| Strip mall              |          | 25.27     | 1000 sq ft     | 191.11    | 4,829.35    | 26,900.20  |
| General office building |          | 7.90      | 1000 sq ft     | 50.60     | 399.49      | 3,757.52   |
|                         |          |           |                |           | 51,884.85   | 505,206.00 |

#### Vehicle Fleet Mix

| Vehicle Type                        | Percent Type | Non-Catalyst | Catalyst | Diesel |
|-------------------------------------|--------------|--------------|----------|--------|
| Light Auto                          | 47.5         | 0.0          | 100.0    | 0.0    |
| Light Truck < 3750 lbs              | 10.0         | 0.0          | 99.0     | 1.0    |
| Light Truck 3751-5750 lbs           | 22.9         | 0.0          | 100.0    | 0.0    |
| Med Truck 5751-8500 lbs             | 10.1         | 0.0          | 100.0    | 0.0    |
| Lite-Heavy Truck 8501-10,000 lbs    | 2.1          | 0.0          | 81.0     | 19.0   |
| Lite-Heavy Truck 10,001-14,000 lbs  | 0.9          | 0.0          | 55.6     | 44.4   |
| Med-Heavy Truck 14,001-33,000 lbs   | 1.6          | 0.0          | 18.8     | 81.2   |
| Heavy-Heavy Truck 33,001-60,000 lbs | 0.4          | 0.0          | 0.0      | 100.0  |

Page: 4 11/19/2010 3:40:54 PM

| Vehicle Fleet Mix                     |             |              |              |         |            |          |  |  |  |
|---------------------------------------|-------------|--------------|--------------|---------|------------|----------|--|--|--|
| Vehicle Type                          |             | Percent Type | Non-Catalyst | C       | Catalyst   | Diesel   |  |  |  |
| Other Bus                             |             | 0.1          | 0.0          |         | 0.0        | 100.0    |  |  |  |
| Urban Bus                             |             | 0.0          | 0.0          |         | 0.0        | 0.0      |  |  |  |
| Motorcycle                            |             | 3.5          | 34.3         |         | 65.7       | 0.0      |  |  |  |
| School Bus                            |             | 0.1          | 0.0          |         | 0.0        | 100.0    |  |  |  |
| Motor Home                            |             | 0.8          | 0.0          |         | 87.5       | 12.5     |  |  |  |
| <u>Travel Conditions</u>              |             |              |              |         |            |          |  |  |  |
|                                       | Residential |              |              |         | Commercial |          |  |  |  |
|                                       | Home-Work   | Home-Shop    | Home-Other   | Commute | Non-Work   | Customer |  |  |  |
| Urban Trip Length (miles)             | 10.8        | 7.3          | 7.5          | 10.8    | 7.3        | 7.3      |  |  |  |
| Rural Trip Length (miles)             | 15.0        | 10.0         | 10.0         | 15.0    | 10.0       | 10.0     |  |  |  |
| Trip speeds (mph)                     | 35.0        | 35.0         | 35.0         | 35.0    | 35.0       | 35.0     |  |  |  |
| % of Trips - Residential              | 32.9        | 18.0         | 49.1         |         |            |          |  |  |  |
|                                       |             |              |              |         |            |          |  |  |  |
| % of Trips - Commercial (by land use) |             |              |              |         |            |          |  |  |  |
| Elementary school                     |             |              |              | 20.0    | 10.0       | 70.0     |  |  |  |
| Strip mall                            |             |              |              | 2.0     | 1.0        | 97.0     |  |  |  |
| General office building               |             |              |              | 35.0    | 17.5       | 47.5     |  |  |  |

Page: 1

11/19/2010 3:41:22 PM

#### Urbemis 2007 Version 9.2.4

# Combined Winter Emissions Reports (Pounds/Day)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Operations - Minimal Impact Alt.urb924

Project Name: Elverta Operations - Minimal Impact Alt

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

## Summary Report:

#### AREA SOURCE EMISSION ESTIMATES

|                                                       | ROG      | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | PM2.5  | <u>CO2</u> |  |  |
|-------------------------------------------------------|----------|------------|-----------|------------|-------------|--------|------------|--|--|
| TOTALS (lbs/day, unmitigated)                         | 924.02   | 217.95     | 5,146.99  | 16.82      | 833.84      | 802.64 | 292,019.55 |  |  |
| OPERATIONAL (VEHICLE) EMISSION ESTIMATES              |          |            |           |            |             |        |            |  |  |
|                                                       | ROG      | <u>NOx</u> | CO        | <u>SO2</u> | <u>PM10</u> | PM2.5  | <u>CO2</u> |  |  |
| TOTALS (lbs/day, unmitigated)                         | 202.19   | 203.86     | 1,819.16  | 4.34       | 867.17      | 164.78 | 437,963.49 |  |  |
| SUM OF AREA SOURCE AND OPERATIONAL EMISSION ESTIMATES |          |            |           |            |             |        |            |  |  |
|                                                       | ROG      | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | PM2.5  | <u>CO2</u> |  |  |
| TOTALS (lbs/day, unmitigated)                         | 1,126.21 | 421.81     | 6,966.15  | 21.16      | 1,701.01    | 967.42 | 729,983.04 |  |  |

Page: 2

11/19/2010 3:41:22 PM

# Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

| <u>Source</u>                     | ROG    | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | <u>PM2.5</u> | <u>CO2</u> |
|-----------------------------------|--------|------------|-----------|------------|-------------|--------------|------------|
| Natural Gas                       | 6.81   | 88.37      | 38.67     | 0.00       | 0.17        | 0.17         | 112,620.77 |
| Hearth                            | 562.85 | 129.58     | 5,108.32  | 16.82      | 833.67      | 802.47       | 179,398.78 |
| Landscaping - No Winter Emissions |        |            |           |            |             |              |            |
| Consumer Products                 | 279.44 |            |           |            |             |              |            |
| Architectural Coatings            | 74.92  |            |           |            |             |              |            |
| TOTALS (lbs/day, unmitigated)     | 924.02 | 217.95     | 5,146.99  | 16.82      | 833.84      | 802.64       | 292,019.55 |

## Area Source Changes to Defaults

# Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

| <u>Source</u>                 | ROG    | NOX    | CO       | SO2  | PM10   | PM25   | CO2        |
|-------------------------------|--------|--------|----------|------|--------|--------|------------|
| Single family housing         | 138.38 | 141.78 | 1,265.20 | 3.04 | 605.35 | 115.03 | 305,740.19 |
| Apartments low rise           | 47.09  | 47.86  | 427.07   | 1.02 | 204.34 | 38.83  | 103,202.22 |
| Elementary school             | 1.67   | 1.17   | 10.41    | 0.02 | 4.85   | 0.92   | 2,448.02   |
| Strip mall                    | 13.52  | 11.53  | 103.12   | 0.23 | 46.18  | 8.78   | 23,326.95  |
| General office building       | 1.53   | 1.52   | 13.36    | 0.03 | 6.45   | 1.22   | 3,246.11   |
| TOTALS (lbs/day, unmitigated) | 202.19 | 203.86 | 1,819.16 | 4.34 | 867.17 | 164.78 | 437,963.49 |

Operational Settings:

Page: 3 11/19/2010 3:41:22 PM

Includes correction for passby trips

Includes the following double counting adjustment for internal trips:

Residential Trip % Reduction: 10.82 Nonresidential Trip % Reduction: 50

Analysis Year: 2030 Temperature (F): 50 Season: Winter

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

## Summary of Land Uses

| Land Use Type           | Acreage  | Trip Rate | Unit Type      | No. Units | Total Trips | Total VMT  |
|-------------------------|----------|-----------|----------------|-----------|-------------|------------|
| Single family housing   | 1,055.25 | 8.20      | dwelling units | 4,221.00  | 34,592.39   | 352,676.21 |
| Apartments low rise     | 85.61    | 5.93      | dwelling units | 1,969.00  | 11,676.62   | 119,045.42 |
| Elementary school       |          | 0.64      | students       | 600.00    | 387.00      | 2,826.65   |
| Strip mall              |          | 25.27     | 1000 sq ft     | 191.11    | 4,829.35    | 26,900.20  |
| General office building |          | 7.90      | 1000 sq ft     | 50.60     | 399.49      | 3,757.52   |
|                         |          |           |                |           | 51,884.85   | 505,206.00 |

#### Vehicle Fleet Mix

| Vehicle Type                        | Percent Type | Non-Catalyst | Catalyst | Diesel |
|-------------------------------------|--------------|--------------|----------|--------|
| Light Auto                          | 47.5         | 0.0          | 100.0    | 0.0    |
| Light Truck < 3750 lbs              | 10.0         | 0.0          | 99.0     | 1.0    |
| Light Truck 3751-5750 lbs           | 22.9         | 0.0          | 100.0    | 0.0    |
| Med Truck 5751-8500 lbs             | 10.1         | 0.0          | 100.0    | 0.0    |
| Lite-Heavy Truck 8501-10,000 lbs    | 2.1          | 0.0          | 81.0     | 19.0   |
| Lite-Heavy Truck 10,001-14,000 lbs  | 0.9          | 0.0          | 55.6     | 44.4   |
| Med-Heavy Truck 14,001-33,000 lbs   | 1.6          | 0.0          | 18.8     | 81.2   |
| Heavy-Heavy Truck 33,001-60,000 lbs | 0.4          | 0.0          | 0.0      | 100.0  |

Page: 4 11/19/2010 3:41:22 PM

General office building

| Vehicle Fleet Mix                     |             |              |              |         |            |          |  |  |
|---------------------------------------|-------------|--------------|--------------|---------|------------|----------|--|--|
| Vehicle Type                          |             | Percent Type | Non-Catalyst |         | Catalyst   | Diesel   |  |  |
| Other Bus                             |             | 0.1          | 0.0          |         | 0.0        | 100.0    |  |  |
| Urban Bus                             |             | 0.0          | 0.0          |         | 0.0        | 0.0      |  |  |
| Motorcycle                            |             | 3.5          | 34.3         |         | 65.7       | 0.0      |  |  |
| School Bus                            |             | 0.1          | 0.0          |         | 0.0        | 100.0    |  |  |
| Motor Home                            |             | 0.8          | 0.0          |         | 87.5       | 12.5     |  |  |
| Travel Conditions                     |             |              |              |         |            |          |  |  |
|                                       | Residential |              |              |         | Commercial |          |  |  |
|                                       | Home-Work   | Home-Shop    | Home-Other   | Commute | Non-Work   | Customer |  |  |
| Urban Trip Length (miles)             | 10.8        | 7.3          | 7.5          | 10.8    | 7.3        | 7.3      |  |  |
| Rural Trip Length (miles)             | 15.0        | 10.0         | 10.0         | 15.0    | 10.0       | 10.0     |  |  |
| Trip speeds (mph)                     | 35.0        | 35.0         | 35.0         | 35.0    | 35.0       | 35.0     |  |  |
| % of Trips - Residential              | 32.9        | 18.0         | 49.1         |         |            |          |  |  |
|                                       |             |              |              |         |            |          |  |  |
| % of Trips - Commercial (by land use) |             |              |              |         |            |          |  |  |
| Elementary school                     |             |              |              | 20.0    | 10.0       | 70.0     |  |  |
| Strip mall                            |             |              |              | 2.0     | 1.0        | 97.0     |  |  |

35.0

17.5

47.5

# URBEMIS2007 MODEL RESULTS FOR OPERATIONS (ANNUAL, SUMMER, WINTER EMISSIONS) - ALTERNATIVE C

Page: 1

11/19/2010 3:47:14 PM

#### Urbemis 2007 Version 9.2.4

# Combined Annual Emissions Reports (Tons/Year)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Operations - Approved SP Alt.urb924

Project Name: Elverta Operations - Approved SP Alt

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

## Summary Report:

#### AREA SOURCE EMISSION ESTIMATES

|                                            | ROG          | NOx        | <u>co</u> | <u>SO2</u> | PM10        | PM2.5 | <u>CO2</u> |
|--------------------------------------------|--------------|------------|-----------|------------|-------------|-------|------------|
| TOTALS (tons/year, unmitigated)            | 94.52        | 21.84      | 238.52    | 0.68       | 34.17       | 32.89 | 28,125.90  |
| ODEDATIONAL (VEHICLE) EMISSION ESTIMATES   |              |            |           |            |             |       |            |
| OPERATIONAL (VEHICLE) EMISSION ESTIMATES   |              |            |           |            |             |       |            |
|                                            | ROG          | <u>NOx</u> | CO        | <u>SO2</u> | <u>PM10</u> | PM2.5 | <u>CO2</u> |
| TOTALS (tons/year, unmitigated)            | 42.95        | 30.09      | 394.40    | 0.98       | 166.33      | 31.62 | 98,081.93  |
| SUM OF AREA SOURCE AND OPERATIONAL EMISSIC | ON ESTIMATES |            |           |            |             |       |            |
|                                            | ROG          | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | PM2.5 | <u>CO2</u> |
| TOTALS (tons/year, unmitigated)            | 137.47       | 51.93      | 632.92    | 1.66       | 200.50      | 64.51 | 126,207.83 |

Page: 2 11/19/2010 3:47:14 PM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

| <u>Source</u>                   | ROG   | <u>NOx</u> | CO     | <u>SO2</u> | <u>PM10</u> | PM2.5 | <u>CO2</u> |
|---------------------------------|-------|------------|--------|------------|-------------|-------|------------|
| Natural Gas                     | 1.35  | 17.48      | 7.67   | 0.00       | 0.03        | 0.03  | 22,276.41  |
| Hearth                          | 23.03 | 4.11       | 208.93 | 0.68       | 34.08       | 32.80 | 5,814.18   |
| Landscape                       | 3.91  | 0.25       | 21.92  | 0.00       | 0.06        | 0.06  | 35.31      |
| Consumer Products               | 51.00 |            |        |            |             |       |            |
| Architectural Coatings          | 15.23 |            |        |            |             |       |            |
| TOTALS (tons/year, unmitigated) | 94.52 | 21.84      | 238.52 | 0.68       | 34.17       | 32.89 | 28,125.90  |

## Area Source Changes to Defaults

## Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

| <u>Source</u>                   | ROG   | NOX   | СО     | SO2  | PM10   | PM25  | CO2       |
|---------------------------------|-------|-------|--------|------|--------|-------|-----------|
| Single family housing           | 34.15 | 24.85 | 326.57 | 0.81 | 137.96 | 26.22 | 81,351.37 |
| Apartments low rise             | 4.30  | 2.97  | 38.97  | 0.10 | 16.46  | 3.13  | 9,707.63  |
| Elementary school               | 1.58  | 0.33  | 4.29   | 0.01 | 1.79   | 0.34  | 1,057.29  |
| Strip mall                      | 2.57  | 1.70  | 21.42  | 0.05 | 8.77   | 1.67  | 5,174.59  |
| General office building         | 0.35  | 0.24  | 3.15   | 0.01 | 1.35   | 0.26  | 791.05    |
| TOTALS (tons/year, unmitigated) | 42.95 | 30.09 | 394.40 | 0.98 | 166.33 | 31.62 | 98,081.93 |

Operational Settings:

Page: 3 11/19/2010 3:47:14 PM

Includes correction for passby trips

Includes the following double counting adjustment for internal trips:

Residential Trip % Reduction: 11.21 Nonresidential Trip % Reduction: 49.33

Analysis Year: 2030 Season: Annual

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

## Summary of Land Uses

| Land Use Type           | Acreage  | Trip Rate | Unit Type      | No. Units | Total Trips | Total VMT  |
|-------------------------|----------|-----------|----------------|-----------|-------------|------------|
| Single family housing   | 1,302.50 | 8.12      | dwelling units | 5,317.00  | 43,197.36   | 440,405.66 |
| Apartments low rise     | 37.70    | 5.90      | dwelling units | 873.00    | 5,154.72    | 52,553.43  |
| Elementary school       |          | 0.65      | students       | 1,200.00  | 784.32      | 5,728.69   |
| Strip mall              |          | 25.61     | 1000 sq ft     | 196.35    | 5,027.93    | 28,006.34  |
| General office building |          | 8.00      | 1000 sq ft     | 57.08     | 456.66      | 4,295.25   |
|                         |          |           |                |           | 54,620.99   | 530,989.37 |

#### Vehicle Fleet Mix

| Vehicle Type                        | Percent Type | Non-Catalyst | Catalyst | Diesel |
|-------------------------------------|--------------|--------------|----------|--------|
| Light Auto                          | 47.5         | 0.0          | 100.0    | 0.0    |
| Light Truck < 3750 lbs              | 10.0         | 0.0          | 99.0     | 1.0    |
| Light Truck 3751-5750 lbs           | 22.9         | 0.0          | 100.0    | 0.0    |
| Med Truck 5751-8500 lbs             | 10.1         | 0.0          | 100.0    | 0.0    |
| Lite-Heavy Truck 8501-10,000 lbs    | 2.1          | 0.0          | 81.0     | 19.0   |
| Lite-Heavy Truck 10,001-14,000 lbs  | 0.9          | 0.0          | 55.6     | 44.4   |
| Med-Heavy Truck 14,001-33,000 lbs   | 1.6          | 0.0          | 18.8     | 81.2   |
| Heavy-Heavy Truck 33,001-60,000 lbs | 0.4          | 0.0          | 0.0      | 100.0  |

Page: 4 11/19/2010 3:47:14 PM

|                                       |             | Vehicle Flee | t Mix        |         |            |          |  |
|---------------------------------------|-------------|--------------|--------------|---------|------------|----------|--|
| Vehicle Type                          |             | Percent Type | Non-Catalyst |         | Catalyst   | Diesel   |  |
| Other Bus                             |             | 0.1          | 0.0          |         | 0.0        | 100.0    |  |
| Urban Bus                             |             | 0.0          | 0.0          |         | 0.0        | 0.0      |  |
| Motorcycle                            |             | 3.5          | 34.3         |         | 65.7       | 0.0      |  |
| School Bus                            |             | 0.1          | 0.0          |         | 0.0        | 100.0    |  |
| Motor Home                            |             | 0.8          | 0.0          |         | 87.5       | 12.5     |  |
| <u>Travel Conditions</u>              |             |              |              |         |            |          |  |
|                                       | Residential |              |              |         | Commercial |          |  |
|                                       | Home-Work   | Home-Shop    | Home-Other   | Commute | Non-Work   | Customer |  |
| Urban Trip Length (miles)             | 10.8        | 7.3          | 7.5          | 10.8    | 7.3        | 7.3      |  |
| Rural Trip Length (miles)             | 15.0        | 10.0         | 10.0         | 15.0    | 10.0       | 10.0     |  |
| Trip speeds (mph)                     | 35.0        | 35.0         | 35.0         | 35.0    | 35.0       | 35.0     |  |
| % of Trips - Residential              | 32.9        | 18.0         | 49.1         |         |            |          |  |
|                                       |             |              |              |         |            |          |  |
| % of Trips - Commercial (by land use) |             |              |              |         |            |          |  |
| Elementary school                     |             |              |              | 20.0    | 10.0       | 70.0     |  |
| Strip mall                            |             |              |              | 2.0     | 1.0        | 97.0     |  |
| General office building               |             |              |              | 35.0    | 17.5       | 47.5     |  |

Page: 1

11/19/2010 3:46:38 PM

#### Urbemis 2007 Version 9.2.4

# Combined Summer Emissions Reports (Pounds/Day)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Operations - Approved SP Alt.urb924

Project Name: Elverta Operations - Approved SP Alt

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

## Summary Report:

#### AREA SOURCE EMISSION ESTIMATES

|                                             | ROG          | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | <u>PM2.5</u> | <u>CO2</u> |
|---------------------------------------------|--------------|------------|-----------|------------|-------------|--------------|------------|
| TOTALS (lbs/day, unmitigated)               | 413.68       | 98.56      | 285.57    | 0.01       | 0.83        | 0.82         | 122,454.86 |
| OPERATIONAL (VEHICLE) EMISSION ESTIMATES    |              |            |           |            |             |              |            |
|                                             | ROG          | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | <u>PM2.5</u> | <u>CO2</u> |
| TOTALS (lbs/day, unmitigated)               | 246.57       | 140.23     | 2,285.57  | 5.74       | 911.42      | 173.20       | 575,997.05 |
| SUM OF AREA SOURCE AND OPERATIONAL EMISSION | ON ESTIMATES |            |           |            |             |              |            |
|                                             | ROG          | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | PM2.5        | <u>CO2</u> |
| TOTALS (lbs/day, unmitigated)               | 660.25       | 238.79     | 2,571.14  | 5.75       | 912.25      | 174.02       | 698,451.91 |

Page: 2 11/19/2010 3:46:38 PM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

| <u>Source</u>                 | ROG    | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | PM2.5 | <u>CO2</u> |
|-------------------------------|--------|------------|-----------|------------|-------------|-------|------------|
| Natural Gas                   | 7.38   | 95.80      | 42.04     | 0.00       | 0.18        | 0.18  | 122,062.52 |
| Hearth - No Summer Emissions  |        |            |           |            |             |       |            |
| Landscape                     | 43.39  | 2.76       | 243.53    | 0.01       | 0.65        | 0.64  | 392.34     |
| Consumer Products             | 279.44 |            |           |            |             |       |            |
| Architectural Coatings        | 83.47  |            |           |            |             |       |            |
| TOTALS (lbs/day, unmitigated) | 413.68 | 98.56      | 285.57    | 0.01       | 0.83        | 0.82  | 122,454.86 |

## Area Source Changes to Defaults

# Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

| <u>Source</u>                 | ROG    | NOX    | CO       | SO2  | PM10   | PM25   | CO2        |
|-------------------------------|--------|--------|----------|------|--------|--------|------------|
| Single family housing         | 194.25 | 115.73 | 1,894.18 | 4.76 | 755.93 | 143.65 | 477,744.31 |
| Apartments low rise           | 24.97  | 13.81  | 226.03   | 0.57 | 90.21  | 17.14  | 57,009.03  |
| Elementary school             | 11.30  | 1.57   | 24.73    | 0.06 | 9.83   | 1.87   | 6,209.43   |
| Strip mall                    | 14.07  | 7.98   | 122.36   | 0.30 | 48.08  | 9.14   | 30,387.84  |
| General office building       | 1.98   | 1.14   | 18.27    | 0.05 | 7.37   | 1.40   | 4,646.44   |
| TOTALS (lbs/day, unmitigated) | 246.57 | 140.23 | 2,285.57 | 5.74 | 911.42 | 173.20 | 575,997.05 |

Operational Settings:

Page: 3 11/19/2010 3:46:38 PM

Includes correction for passby trips

Includes the following double counting adjustment for internal trips:

Residential Trip % Reduction: 11.21 Nonresidential Trip % Reduction: 49.33

Analysis Year: 2030 Temperature (F): 95 Season: Summer

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

#### Summary of Land Uses

| Land Use Type           | Acreage  | Trip Rate | Unit Type      | No. Units | Total Trips | Total VMT  |
|-------------------------|----------|-----------|----------------|-----------|-------------|------------|
| Single family housing   | 1,302.50 | 8.12      | dwelling units | 5,317.00  | 43,197.36   | 440,405.66 |
| Apartments low rise     | 37.70    | 5.90      | dwelling units | 873.00    | 5,154.72    | 52,553.43  |
| Elementary school       |          | 0.65      | students       | 1,200.00  | 784.32      | 5,728.69   |
| Strip mall              |          | 25.61     | 1000 sq ft     | 196.35    | 5,027.93    | 28,006.34  |
| General office building |          | 8.00      | 1000 sq ft     | 57.08     | 456.66      | 4,295.25   |
|                         |          |           |                |           | 54,620.99   | 530,989.37 |

#### Vehicle Fleet Mix

| Vehicle Type                        | Percent Type | Non-Catalyst | Catalyst | Diesel |
|-------------------------------------|--------------|--------------|----------|--------|
| Light Auto                          | 47.5         | 0.0          | 100.0    | 0.0    |
| Light Truck < 3750 lbs              | 10.0         | 0.0          | 99.0     | 1.0    |
| Light Truck 3751-5750 lbs           | 22.9         | 0.0          | 100.0    | 0.0    |
| Med Truck 5751-8500 lbs             | 10.1         | 0.0          | 100.0    | 0.0    |
| Lite-Heavy Truck 8501-10,000 lbs    | 2.1          | 0.0          | 81.0     | 19.0   |
| Lite-Heavy Truck 10,001-14,000 lbs  | 0.9          | 0.0          | 55.6     | 44.4   |
| Med-Heavy Truck 14,001-33,000 lbs   | 1.6          | 0.0          | 18.8     | 81.2   |
| Heavy-Heavy Truck 33,001-60,000 lbs | 0.4          | 0.0          | 0.0      | 100.0  |

Page: 4 11/19/2010 3:46:38 PM

|                                       |             | Vehicle Flee | t Mix        |         |            |          |  |
|---------------------------------------|-------------|--------------|--------------|---------|------------|----------|--|
| Vehicle Type                          |             | Percent Type | Non-Catalyst | C       | Catalyst   | Diesel   |  |
| Other Bus                             |             | 0.1          | 0.0          |         | 0.0        | 100.0    |  |
| Urban Bus                             |             | 0.0          | 0.0          |         | 0.0        | 0.0      |  |
| Motorcycle                            |             | 3.5          | 34.3         |         | 65.7       | 0.0      |  |
| School Bus                            |             | 0.1          | 0.0          |         | 0.0        | 100.0    |  |
| Motor Home                            |             | 0.8          | 0.0          |         | 87.5       | 12.5     |  |
| Travel Conditions                     |             |              |              |         |            |          |  |
|                                       | Residential |              |              | (       | Commercial |          |  |
|                                       | Home-Work   | Home-Shop    | Home-Other   | Commute | Non-Work   | Customer |  |
| Urban Trip Length (miles)             | 10.8        | 7.3          | 7.5          | 10.8    | 7.3        | 7.3      |  |
| Rural Trip Length (miles)             | 15.0        | 10.0         | 10.0         | 15.0    | 10.0       | 10.0     |  |
| Trip speeds (mph)                     | 35.0        | 35.0         | 35.0         | 35.0    | 35.0       | 35.0     |  |
| % of Trips - Residential              | 32.9        | 18.0         | 49.1         |         |            |          |  |
|                                       |             |              |              |         |            |          |  |
| % of Trips - Commercial (by land use) |             |              |              |         |            |          |  |
| Elementary school                     |             |              |              | 20.0    | 10.0       | 70.0     |  |
|                                       |             |              |              |         |            |          |  |
| Strip mall                            |             |              |              | 2.0     | 1.0        | 97.0     |  |

Page: 1

#### 11/19/2010 3:47:05 PM

#### Urbemis 2007 Version 9.2.4

# Combined Winter Emissions Reports (Pounds/Day)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Operations - Approved SP Alt.urb924

Project Name: Elverta Operations - Approved SP Alt

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

## Summary Report:

| A D E A | 00110 | ·   | 001011 | EOTIM 4 | A TEO |
|---------|-------|-----|--------|---------|-------|
| ARFA    | SOUR  | :MI | SSION  | ESTIM.  | AIES  |

|                                             | <u>ROG</u>   | <u>NOx</u> | CO        | <u>SO2</u> | <u>PM10</u> | PM2.5        | <u>CO2</u> |
|---------------------------------------------|--------------|------------|-----------|------------|-------------|--------------|------------|
| TOTALS (lbs/day, unmitigated)               | 933.25       | 227.35     | 5,151.19  | 16.83      | 834.01      | 802.81       | 303,975.65 |
| OPERATIONAL (VEHICLE) EMISSION ESTIMATES    |              |            |           |            |             |              |            |
|                                             | ROG          | <u>NOx</u> | CO        | <u>SO2</u> | <u>PM10</u> | PM2.5        | <u>CO2</u> |
| TOTALS (lbs/day, unmitigated)               | 212.84       | 214.31     | 1,912.19  | 4.57       | 911.42      | 173.20       | 460,311.62 |
| SUM OF AREA SOURCE AND OPERATIONAL EMISSION | ON ESTIMATES |            |           |            |             |              |            |
|                                             | ROG          | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | <u>PM2.5</u> | <u>CO2</u> |
| TOTALS (lbs/day, unmitigated)               | 1,146.09     | 441.66     | 7,063.38  | 21.40      | 1,745.43    | 976.01       | 764,287.27 |

Page: 2 11/19/2010 3:47:05 PM

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

| <u>Source</u>                     | ROG    | <u>NOx</u> | CO       | <u>SO2</u> | <u>PM10</u> | PM2.5  | <u>CO2</u> |
|-----------------------------------|--------|------------|----------|------------|-------------|--------|------------|
| Natural Gas                       | 7.38   | 95.80      | 42.04    | 0.00       | 0.18        | 0.18   | 122,062.52 |
| Hearth                            | 562.96 | 131.55     | 5,109.15 | 16.83      | 833.83      | 802.63 | 181,913.13 |
| Landscaping - No Winter Emissions |        |            |          |            |             |        |            |
| Consumer Products                 | 279.44 |            |          |            |             |        |            |
| Architectural Coatings            | 83.47  |            |          |            |             |        |            |
| TOTALS (lbs/day, unmitigated)     | 933.25 | 227.35     | 5,151.19 | 16.83      | 834.01      | 802.81 | 303,975.65 |

## Area Source Changes to Defaults

# Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

| <u>Source</u>                 | ROG    | NOX    | CO       | SO2  | PM10   | PM25   | CO2        |
|-------------------------------|--------|--------|----------|------|--------|--------|------------|
| Single family housing         | 172.84 | 177.05 | 1,579.93 | 3.79 | 755.93 | 143.65 | 381,794.14 |
| Apartments low rise           | 20.79  | 21.13  | 188.53   | 0.45 | 90.21  | 17.14  | 45,559.34  |
| Elementary school             | 3.38   | 2.38   | 21.10    | 0.05 | 9.83   | 1.87   | 4,961.33   |
| Strip mall                    | 14.08  | 12.01  | 107.36   | 0.24 | 48.08  | 9.14   | 24,286.16  |
| General office building       | 1.75   | 1.74   | 15.27    | 0.04 | 7.37   | 1.40   | 3,710.65   |
| TOTALS (lbs/day, unmitigated) | 212.84 | 214.31 | 1,912.19 | 4.57 | 911.42 | 173.20 | 460,311.62 |

Operational Settings:

Page: 3 11/19/2010 3:47:05 PM

Includes correction for passby trips

Includes the following double counting adjustment for internal trips:

Residential Trip % Reduction: 11.21 Nonresidential Trip % Reduction: 49.33

Analysis Year: 2030 Temperature (F): 50 Season: Winter

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

## Summary of Land Uses

| Land Use Type           | Acreage  | Trip Rate | Unit Type      | No. Units | Total Trips | Total VMT  |
|-------------------------|----------|-----------|----------------|-----------|-------------|------------|
| Single family housing   | 1,302.50 | 8.12      | dwelling units | 5,317.00  | 43,197.36   | 440,405.66 |
| Apartments low rise     | 37.70    | 5.90      | dwelling units | 873.00    | 5,154.72    | 52,553.43  |
| Elementary school       |          | 0.65      | students       | 1,200.00  | 784.32      | 5,728.69   |
| Strip mall              |          | 25.61     | 1000 sq ft     | 196.35    | 5,027.93    | 28,006.34  |
| General office building |          | 8.00      | 1000 sq ft     | 57.08     | 456.66      | 4,295.25   |
|                         |          |           |                |           | 54,620.99   | 530,989.37 |

#### Vehicle Fleet Mix

| Vehicle Type                        | Percent Type | Non-Catalyst | Catalyst | Diesel |
|-------------------------------------|--------------|--------------|----------|--------|
| Light Auto                          | 47.5         | 0.0          | 100.0    | 0.0    |
| Light Truck < 3750 lbs              | 10.0         | 0.0          | 99.0     | 1.0    |
| Light Truck 3751-5750 lbs           | 22.9         | 0.0          | 100.0    | 0.0    |
| Med Truck 5751-8500 lbs             | 10.1         | 0.0          | 100.0    | 0.0    |
| Lite-Heavy Truck 8501-10,000 lbs    | 2.1          | 0.0          | 81.0     | 19.0   |
| Lite-Heavy Truck 10,001-14,000 lbs  | 0.9          | 0.0          | 55.6     | 44.4   |
| Med-Heavy Truck 14,001-33,000 lbs   | 1.6          | 0.0          | 18.8     | 81.2   |
| Heavy-Heavy Truck 33,001-60,000 lbs | 0.4          | 0.0          | 0.0      | 100.0  |

Page: 4 11/19/2010 3:47:05 PM

|                                       |           | Vehicle Flee | t Mix        |            |          |          |  |  |
|---------------------------------------|-----------|--------------|--------------|------------|----------|----------|--|--|
| Vehicle Type                          |           | Percent Type | Non-Catalyst | C          | Catalyst | Diesel   |  |  |
| Other Bus                             |           | 0.1          | 0.0          |            | 0.0      | 100.0    |  |  |
| Urban Bus                             |           | 0.0          | 0.0          |            | 0.0      | 0.0      |  |  |
| Motorcycle                            |           | 3.5          | 34.3         |            | 65.7     | 0.0      |  |  |
| School Bus                            |           | 0.1          | 0.0          |            | 0.0      | 100.0    |  |  |
| Motor Home                            |           | 0.8          | 0.0          |            | 87.5     | 12.5     |  |  |
|                                       |           | Travel Cond  | litions      |            |          |          |  |  |
|                                       |           | Residential  |              | Commercial |          |          |  |  |
|                                       | Home-Work | Home-Shop    | Home-Other   | Commute    | Non-Work | Customer |  |  |
| Urban Trip Length (miles)             | 10.8      | 7.3          | 7.5          | 10.8       | 7.3      | 7.3      |  |  |
| Rural Trip Length (miles)             | 15.0      | 10.0         | 10.0         | 15.0       | 10.0     | 10.0     |  |  |
| Trip speeds (mph)                     | 35.0      | 35.0         | 35.0         | 35.0       | 35.0     | 35.0     |  |  |
| % of Trips - Residential              | 32.9      | 18.0         | 49.1         |            |          |          |  |  |
|                                       |           |              |              |            |          |          |  |  |
| % of Trips - Commercial (by land use) |           |              |              |            |          |          |  |  |
| Elementary school                     |           |              |              | 20.0       | 10.0     | 70.0     |  |  |
| Strip mall                            |           |              |              | 2.0        | 1.0      | 97.0     |  |  |
| General office building               |           |              |              | 35.0       | 17.5     | 47.5     |  |  |

# URBEMIS2007 MODEL RESULTS FOR CONSTRUCTION (ANNUAL AND DAILY EMISSIONS) – ALTERNATIVE D

3/10/2011 4:06:01 PM

#### Urbemis 2007 Version 9.2.4

# Combined Annual Emissions Reports (Tons/Year)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Construction No Fed Alt - Year 4.urb924

Project Name: Elverta Construction No Fed Permit - Year 4

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

## Summary Report:

CONSTRUCTION EMISSION ESTIMATES

|                                     | ROG  | <u>NOx</u> | CO   | <u>SO2</u> | PM10 Dust PM10 | Exhaust | <u>PM10</u> | PM2.5 Dust | PM2.5<br>Exhaust | <u>PM2.5</u> | <u>CO2</u> |
|-------------------------------------|------|------------|------|------------|----------------|---------|-------------|------------|------------------|--------------|------------|
| 2015 TOTALS (tons/year unmitigated) | 8.40 | 4.16       | 5.42 | 0.01       | 20.77          | 0.22    | 21.00       | 4.34       | 0.20             | 4.55         | 1,032.94   |

## Construction Unmitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

| ROG  | NOx  | CO        | SO2 | PM10 Dust   | PM10 Exhaust   | PM10     | PM2.5 Dust    | PM2.5 Exhaust    | PM2.5    | CO2 |
|------|------|-----------|-----|-------------|----------------|----------|---------------|------------------|----------|-----|
| 1100 | INOX | <u>00</u> | 002 | I WITO DUST | I WITO EXHAUSE | <u> </u> | I IVIZ.O DUST | I IVIZ.J ENHAUST | 1 1012.0 | 002 |

Page: 2 3/10/2011 4:06:01 PM

| 2015                                   | 8.40 | 4.16 | 5.42 | 0.01 | 20.77 | 0.22 | 21.00 | 4.34 | 0.20 | 4.55 | 1,032.94 |
|----------------------------------------|------|------|------|------|-------|------|-------|------|------|------|----------|
| Fine Grading 01/01/2015-<br>04/27/2015 | 0.29 | 2.29 | 1.38 | 0.00 | 20.75 | 0.11 | 20.86 | 4.33 | 0.10 | 4.43 | 312.96   |
| Fine Grading Dust                      | 0.00 | 0.00 | 0.00 | 0.00 | 20.75 | 0.00 | 20.75 | 4.33 | 0.00 | 4.33 | 0.00     |
| Fine Grading Off Road Diesel           | 0.29 | 2.27 | 1.31 | 0.00 | 0.00  | 0.11 | 0.11  | 0.00 | 0.10 | 0.10 | 299.49   |
| Fine Grading On Road Diesel            | 0.00 | 0.01 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 3.02     |
| Fine Grading Worker Trips              | 0.00 | 0.00 | 0.07 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 10.45    |
| Asphalt 04/15/2015-05/15/2015          | 0.06 | 0.20 | 0.13 | 0.00 | 0.00  | 0.01 | 0.02  | 0.00 | 0.01 | 0.01 | 31.06    |
| Paving Off-Gas                         | 0.03 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00     |
| Paving Off Road Diesel                 | 0.02 | 0.15 | 0.10 | 0.00 | 0.00  | 0.01 | 0.01  | 0.00 | 0.01 | 0.01 | 14.63    |
| Paving On Road Diesel                  | 0.00 | 0.05 | 0.02 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 14.82    |
| Paving Worker Trips                    | 0.00 | 0.00 | 0.01 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 1.61     |
| Building 04/28/2015-12/14/2015         | 0.31 | 1.67 | 3.85 | 0.00 | 0.02  | 0.10 | 0.12  | 0.01 | 0.09 | 0.10 | 678.82   |
| Building Off Road Diesel               | 0.22 | 1.33 | 1.06 | 0.00 | 0.00  | 0.08 | 0.08  | 0.00 | 0.08 | 0.08 | 186.39   |
| Building Vendor Trips                  | 0.02 | 0.23 | 0.28 | 0.00 | 0.00  | 0.01 | 0.01  | 0.00 | 0.01 | 0.01 | 93.56    |
| Building Worker Trips                  | 0.06 | 0.10 | 2.51 | 0.00 | 0.02  | 0.01 | 0.03  | 0.01 | 0.01 | 0.01 | 398.87   |
| Coating 08/08/2015-12/31/2015          | 7.74 | 0.00 | 0.06 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 10.10    |
| Architectural Coating                  | 7.73 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00     |
| Coating Worker Trips                   | 0.00 | 0.00 | 0.06 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 10.10    |

## Phase Assumptions

Phase: Fine Grading 1/1/2015 - 4/27/2015 - Default Fine Site Grading Description

Total Acres Disturbed: 100

Maximum Daily Acreage Disturbed: 25 Fugitive Dust Level of Detail: Default

20 lbs per acre-day

#### 3/10/2011 4:06:01 PM

On Road Truck Travel (VMT): 18.07

Off-Road Equipment:

- 1 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day
- 1 Graders (174 hp) operating at a 0.61 load factor for 8 hours per day
- 1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 8 hours per day
- 2 Scrapers (313 hp) operating at a 0.72 load factor for 8 hours per day
- 3 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day
- 1 Water Trucks (189 hp) operating at a 0.5 load factor for 8 hours per day

Phase: Paving 4/15/2015 - 5/15/2015 - Default Paving Description

Acres to be Paved: 25
Off-Road Equipment:

- 1 Pavers (100 hp) operating at a 0.62 load factor for 8 hours per day
- 2 Paving Equipment (104 hp) operating at a 0.53 load factor for 6 hours per day
- 2 Rollers (95 hp) operating at a 0.56 load factor for 6 hours per day

Phase: Building Construction 4/28/2015 - 12/14/2015 - Default Building Construction Description

Off-Road Equipment:

- 1 Cranes (399 hp) operating at a 0.43 load factor for 7 hours per day
- 3 Forklifts (145 hp) operating at a 0.3 load factor for 8 hours per day
- 1 Generator Sets (49 hp) operating at a 0.74 load factor for 8 hours per day
- 3 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day
- 1 Welders (45 hp) operating at a 0.45 load factor for 8 hours per day

Phase: Architectural Coating 8/8/2015 - 12/31/2015 - Default Architectural Coating Description

Rule: Residential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Residential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

3/10/2011 4:03:49 PM

#### Urbemis 2007 Version 9.2.4

# Combined Annual Emissions Reports (Tons/Year)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Construction No Fed Alt - Year 4 Mitigated.urb924

Project Name: Elverta Construction No Fed Permit - Year 4 Mitigated

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

## Summary Report:

CONSTRUCTION EMISSION ESTIMATES

|                                     | ROG  | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | PM10 Dust PM1 | 10 Exhaust | <u>PM10</u> | PM2.5 Dust | PM2.5<br>Exhaust | PM2.5 | <u>CO2</u> |
|-------------------------------------|------|------------|-----------|------------|---------------|------------|-------------|------------|------------------|-------|------------|
| 2015 TOTALS (tons/year unmitigated) | 8.39 | 4.12       | 5.39      | 0.01       | 12.47         | 0.22       | 12.69       | 2.61       | 0.20             | 2.81  | 1,027.84   |
| 2015 TOTALS (tons/year mitigated)   | 8.39 | 4.12       | 5.39      | 0.01       | 5.91          | 0.22       | 6.13        | 1.24       | 0.20             | 1.44  | 1,027.84   |
| Percent Reduction                   | 0.00 | 0.00       | 0.00      | 0.00       | 52.59         | 0.00       | 51.68       | 52.53      | 0.00             | 48.75 | 0.00       |

## Construction Unmitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

| ROG | NOv        | CO        | SO2        | PM10 Dust   | PM10 Exhaust | PM10   | PM2.5 Dust   | PM2.5 Exhaust | PM2.5   | CO2        |
|-----|------------|-----------|------------|-------------|--------------|--------|--------------|---------------|---------|------------|
| RUG | <u>NOX</u> | <u>CO</u> | <u>302</u> | PIVITO DUST | PM10 Exhaust | PIVITU | PIVIZ.5 DUST | PM2.5 Exhaust | PIVIZ.5 | <u>CO2</u> |

Page: 2 3/10/2011 4:03:49 PM

| 2015                                   | 8.39 | 4.12 | 5.39 | 0.01 | 12.47 | 0.22 | 12.69 | 2.61 | 0.20 | 2.81 | 1,027.84 |
|----------------------------------------|------|------|------|------|-------|------|-------|------|------|------|----------|
| Fine Grading 01/01/2015-<br>04/27/2015 | 0.29 | 2.25 | 1.34 | 0.00 | 12.45 | 0.10 | 12.55 | 2.60 | 0.10 | 2.70 | 307.86   |
| Fine Grading Dust                      | 0.00 | 0.00 | 0.00 | 0.00 | 12.45 | 0.00 | 12.45 | 2.60 | 0.00 | 2.60 | 0.00     |
| Fine Grading Off Road Diesel           | 0.28 | 2.23 | 1.27 | 0.00 | 0.00  | 0.10 | 0.10  | 0.00 | 0.09 | 0.09 | 294.39   |
| Fine Grading On Road Diesel            | 0.00 | 0.01 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 3.02     |
| Fine Grading Worker Trips              | 0.00 | 0.00 | 0.07 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 10.45    |
| Asphalt 04/15/2015-05/15/2015          | 0.06 | 0.20 | 0.13 | 0.00 | 0.00  | 0.01 | 0.02  | 0.00 | 0.01 | 0.01 | 31.06    |
| Paving Off-Gas                         | 0.03 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00     |
| Paving Off Road Diesel                 | 0.02 | 0.15 | 0.10 | 0.00 | 0.00  | 0.01 | 0.01  | 0.00 | 0.01 | 0.01 | 14.63    |
| Paving On Road Diesel                  | 0.00 | 0.05 | 0.02 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 14.82    |
| Paving Worker Trips                    | 0.00 | 0.00 | 0.01 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 1.61     |
| Building 04/28/2015-12/14/2015         | 0.31 | 1.67 | 3.85 | 0.00 | 0.02  | 0.10 | 0.12  | 0.01 | 0.09 | 0.10 | 678.82   |
| Building Off Road Diesel               | 0.22 | 1.33 | 1.06 | 0.00 | 0.00  | 0.08 | 0.08  | 0.00 | 0.08 | 0.08 | 186.39   |
| Building Vendor Trips                  | 0.02 | 0.23 | 0.28 | 0.00 | 0.00  | 0.01 | 0.01  | 0.00 | 0.01 | 0.01 | 93.56    |
| Building Worker Trips                  | 0.06 | 0.10 | 2.51 | 0.00 | 0.02  | 0.01 | 0.03  | 0.01 | 0.01 | 0.01 | 398.87   |
| Coating 08/08/2015-12/31/2015          | 7.74 | 0.00 | 0.06 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 10.10    |
| Architectural Coating                  | 7.73 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 0.00     |
| Coating Worker Trips                   | 0.00 | 0.00 | 0.06 | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | 10.10    |

## Phase Assumptions

Phase: Fine Grading 1/1/2015 - 4/27/2015 - Default Fine Site Grading Description

Total Acres Disturbed: 100

Maximum Daily Acreage Disturbed: 15 Fugitive Dust Level of Detail: Default

20 lbs per acre-day

#### 3/10/2011 4:03:49 PM

On Road Truck Travel (VMT): 18.07

Off-Road Equipment:

- 1 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day
- 1 Graders (174 hp) operating at a 0.61 load factor for 8 hours per day
- 1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 8 hours per day
- 2 Scrapers (313 hp) operating at a 0.72 load factor for 8 hours per day
- 3 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day
- 1 Water Trucks (189 hp) operating at a 0.5 load factor for 8 hours per day

Phase: Paving 4/15/2015 - 5/15/2015 - Default Paving Description

Acres to be Paved: 25
Off-Road Equipment:

- 1 Pavers (100 hp) operating at a 0.62 load factor for 8 hours per day
- 2 Paving Equipment (104 hp) operating at a 0.53 load factor for 6 hours per day
- 2 Rollers (95 hp) operating at a 0.56 load factor for 6 hours per day

Phase: Building Construction 4/28/2015 - 12/14/2015 - Default Building Construction Description

Off-Road Equipment:

- 1 Cranes (399 hp) operating at a 0.43 load factor for 7 hours per day
- 3 Forklifts (145 hp) operating at a 0.3 load factor for 8 hours per day
- 1 Generator Sets (49 hp) operating at a 0.74 load factor for 8 hours per day
- 3 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day
- 1 Welders (45 hp) operating at a 0.45 load factor for 8 hours per day

Phase: Architectural Coating 8/8/2015 - 12/31/2015 - Default Architectural Coating Description

Rule: Residential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Residential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Page: 4
3/10/2011 4:03:49 PM

# Construction Mitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Annual Tons Per Year, Mitigated

|                                        | ROG  | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | PM10 Dust | PM10 Exhaust | <u>PM10</u> | PM2.5 Dust | PM2.5 Exhaust | PM2.5 | <u>CO2</u> |
|----------------------------------------|------|------------|-----------|------------|-----------|--------------|-------------|------------|---------------|-------|------------|
| 2015                                   | 8.39 | 4.12       | 5.39      | 0.01       | 5.91      | 0.22         | 6.13        | 1.24       | 0.20          | 1.44  | 1,027.84   |
| Fine Grading 01/01/2015-<br>04/27/2015 | 0.29 | 2.25       | 1.34      | 0.00       | 5.89      | 0.10         | 5.99        | 1.23       | 0.10          | 1.33  | 307.86     |
| Fine Grading Dust                      | 0.00 | 0.00       | 0.00      | 0.00       | 5.89      | 0.00         | 5.89        | 1.23       | 0.00          | 1.23  | 0.00       |
| Fine Grading Off Road Diesel           | 0.28 | 2.23       | 1.27      | 0.00       | 0.00      | 0.10         | 0.10        | 0.00       | 0.09          | 0.09  | 294.39     |
| Fine Grading On Road Diesel            | 0.00 | 0.01       | 0.00      | 0.00       | 0.00      | 0.00         | 0.00        | 0.00       | 0.00          | 0.00  | 3.02       |
| Fine Grading Worker Trips              | 0.00 | 0.00       | 0.07      | 0.00       | 0.00      | 0.00         | 0.00        | 0.00       | 0.00          | 0.00  | 10.45      |
| Asphalt 04/15/2015-05/15/2015          | 0.06 | 0.20       | 0.13      | 0.00       | 0.00      | 0.01         | 0.02        | 0.00       | 0.01          | 0.01  | 31.06      |
| Paving Off-Gas                         | 0.03 | 0.00       | 0.00      | 0.00       | 0.00      | 0.00         | 0.00        | 0.00       | 0.00          | 0.00  | 0.00       |
| Paving Off Road Diesel                 | 0.02 | 0.15       | 0.10      | 0.00       | 0.00      | 0.01         | 0.01        | 0.00       | 0.01          | 0.01  | 14.63      |
| Paving On Road Diesel                  | 0.00 | 0.05       | 0.02      | 0.00       | 0.00      | 0.00         | 0.00        | 0.00       | 0.00          | 0.00  | 14.82      |
| Paving Worker Trips                    | 0.00 | 0.00       | 0.01      | 0.00       | 0.00      | 0.00         | 0.00        | 0.00       | 0.00          | 0.00  | 1.61       |
| Building 04/28/2015-12/14/2015         | 0.31 | 1.67       | 3.85      | 0.00       | 0.02      | 0.10         | 0.12        | 0.01       | 0.09          | 0.10  | 678.82     |
| Building Off Road Diesel               | 0.22 | 1.33       | 1.06      | 0.00       | 0.00      | 0.08         | 0.08        | 0.00       | 0.08          | 0.08  | 186.39     |
| Building Vendor Trips                  | 0.02 | 0.23       | 0.28      | 0.00       | 0.00      | 0.01         | 0.01        | 0.00       | 0.01          | 0.01  | 93.56      |
| Building Worker Trips                  | 0.06 | 0.10       | 2.51      | 0.00       | 0.02      | 0.01         | 0.03        | 0.01       | 0.01          | 0.01  | 398.87     |
| Coating 08/08/2015-12/31/2015          | 7.74 | 0.00       | 0.06      | 0.00       | 0.00      | 0.00         | 0.00        | 0.00       | 0.00          | 0.00  | 10.10      |
| Architectural Coating                  | 7.73 | 0.00       | 0.00      | 0.00       | 0.00      | 0.00         | 0.00        | 0.00       | 0.00          | 0.00  | 0.00       |
| Coating Worker Trips                   | 0.00 | 0.00       | 0.06      | 0.00       | 0.00      | 0.00         | 0.00        | 0.00       | 0.00          | 0.00  | 10.10      |

## 3/10/2011 4:03:49 PM

## Construction Related Mitigation Measures

The following mitigation measures apply to Phase: Fine Grading 1/1/2015 - 4/27/2015 - Default Fine Site Grading Description

For Soil Stablizing Measures, the Water exposed surfaces 2x daily watering mitigation reduces emissions by:

PM10: 55% PM25: 55%

For Unpaved Roads Measures, the Reduce speed on unpaved roads to less than 15 mph mitigation reduces emissions by:

PM10: 44% PM25: 44%

#### 3/10/2011 4:06:22 PM

#### Urbemis 2007 Version 9.2.4

# Combined Summer Emissions Reports (Pounds/Day)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Construction No Fed Alt - Year 4.urb924

Project Name: Elverta Construction No Fed Permit - Year 4

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

## Summary Report:

CONSTRUCTION EMISSION ESTIMATES

|                                   | ROG    | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | PM10 Dust PM10 E | Exhaust | <u>PM10</u> | PM2.5 Dust | PM2.5<br>Exhaust | PM2.5  | <u>CO2</u> |
|-----------------------------------|--------|------------|-----------|------------|------------------|---------|-------------|------------|------------------|--------|------------|
| 2015 TOTALS (lbs/day unmitigated) | 152.52 | 72.61      | 58.18     | 0.07       | 500.07           | 3.84    | 503.91      | 104.44     | 3.54             | 107.98 | 10,928.94  |

## Construction Unmitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

|                                                  | ROG  | <u>NOx</u> | CO    | <u>SO2</u> | PM10 Dust | PM10 Exhaust | <u>PM10</u> | PM2.5 Dust | PM2.5 Exhaust | PM2.5  | <u>CO2</u> |
|--------------------------------------------------|------|------------|-------|------------|-----------|--------------|-------------|------------|---------------|--------|------------|
| Time Slice 1/1/2015-4/14/2015<br>Active Days: 74 | 7.05 | 55.08      | 33.21 | 0.00       | 500.01    | 2.56         | 502.58      | 104.42     | 2.36          | 106.78 | 7,541.11   |
| Fine Grading 01/01/2015-<br>04/27/2015           | 7.05 | 55.08      | 33.21 | 0.00       | 500.01    | 2.56         | 502.58      | 104.42     | 2.36          | 106.78 | 7,541.11   |
| Fine Grading Dust                                | 0.00 | 0.00       | 0.00  | 0.00       | 500.00    | 0.00         | 500.00      | 104.42     | 0.00          | 104.42 | 0.00       |
| Fine Grading Off Road Diesel                     | 6.99 | 54.76      | 31.53 | 0.00       | 0.00      | 2.55         | 2.55        | 0.00       | 2.34          | 2.34   | 7,216.54   |
| Fine Grading On Road Diesel                      | 0.02 | 0.25       | 0.10  | 0.00       | 0.00      | 0.01         | 0.01        | 0.00       | 0.01          | 0.01   | 72.76      |
| Fine Grading Worker Trips                        | 0.04 | 0.06       | 1.59  | 0.00       | 0.01      | 0.01         | 0.02        | 0.00       | 0.00          | 0.01   | 251.81     |

Page: 2 3/10/2011 4:06:22 PM

| Time Slice 4/15/2015-4/27/2015<br>Active Days: 9  | 12.40 | <u>72.61</u> | 44.73        | 0.02 | <u>500.07</u> | <u>3.84</u> | <u>503.91</u> | <u>104.44</u> | <u>3.54</u> | <u>107.98</u> | 10,241.88 |
|---------------------------------------------------|-------|--------------|--------------|------|---------------|-------------|---------------|---------------|-------------|---------------|-----------|
| Asphalt 04/15/2015-05/15/2015                     | 5.35  | 17.53        | 11.52        | 0.01 | 0.05          | 1.28        | 1.33          | 0.02          | 1.18        | 1.20          | 2,700.77  |
| Paving Off-Gas                                    | 2.85  | 0.00         | 0.00         | 0.00 | 0.00          | 0.00        | 0.00          | 0.00          | 0.00        | 0.00          | 0.00      |
| Paving Off Road Diesel                            | 2.12  | 13.07        | 8.93         | 0.00 | 0.00          | 1.11        | 1.11          | 0.00          | 1.02        | 1.02          | 1,272.41  |
| Paving On Road Diesel                             | 0.36  | 4.42         | 1.70         | 0.01 | 0.05          | 0.17        | 0.22          | 0.01          | 0.16        | 0.17          | 1,288.47  |
| Paving Worker Trips                               | 0.02  | 0.04         | 0.88         | 0.00 | 0.01          | 0.00        | 0.01          | 0.00          | 0.00        | 0.00          | 139.90    |
| Fine Grading 01/01/2015-<br>04/27/2015            | 7.05  | 55.08        | 33.21        | 0.00 | 500.01        | 2.56        | 502.58        | 104.42        | 2.36        | 106.78        | 7,541.11  |
| Fine Grading Dust                                 | 0.00  | 0.00         | 0.00         | 0.00 | 500.00        | 0.00        | 500.00        | 104.42        | 0.00        | 104.42        | 0.00      |
| Fine Grading Off Road Diesel                      | 6.99  | 54.76        | 31.53        | 0.00 | 0.00          | 2.55        | 2.55          | 0.00          | 2.34        | 2.34          | 7,216.54  |
| Fine Grading On Road Diesel                       | 0.02  | 0.25         | 0.10         | 0.00 | 0.00          | 0.01        | 0.01          | 0.00          | 0.01        | 0.01          | 72.76     |
| Fine Grading Worker Trips                         | 0.04  | 0.06         | 1.59         | 0.00 | 0.01          | 0.01        | 0.02          | 0.00          | 0.00        | 0.01          | 251.81    |
| Time Slice 4/28/2015-5/15/2015<br>Active Days: 14 | 9.11  | 37.78        | <u>58.18</u> | 0.07 | 0.31          | 2.53        | 2.83          | 0.11          | 2.31        | 2.42          | 10,928.94 |
| Asphalt 04/15/2015-05/15/2015                     | 5.35  | 17.53        | 11.52        | 0.01 | 0.05          | 1.28        | 1.33          | 0.02          | 1.18        | 1.20          | 2,700.77  |
| Paving Off-Gas                                    | 2.85  | 0.00         | 0.00         | 0.00 | 0.00          | 0.00        | 0.00          | 0.00          | 0.00        | 0.00          | 0.00      |
| Paving Off Road Diesel                            | 2.12  | 13.07        | 8.93         | 0.00 | 0.00          | 1.11        | 1.11          | 0.00          | 1.02        | 1.02          | 1,272.41  |
| Paving On Road Diesel                             | 0.36  | 4.42         | 1.70         | 0.01 | 0.05          | 0.17        | 0.22          | 0.01          | 0.16        | 0.17          | 1,288.47  |
| Paving Worker Trips                               | 0.02  | 0.04         | 0.88         | 0.00 | 0.01          | 0.00        | 0.01          | 0.00          | 0.00        | 0.00          | 139.90    |
| Building 04/28/2015-12/14/2015                    | 3.76  | 20.25        | 46.67        | 0.06 | 0.26          | 1.24        | 1.50          | 0.09          | 1.13        | 1.22          | 8,228.17  |
| Building Off Road Diesel                          | 2.69  | 16.17        | 12.80        | 0.00 | 0.00          | 1.03        | 1.03          | 0.00          | 0.94        | 0.94          | 2,259.28  |
| Building Vendor Trips                             | 0.28  | 2.84         | 3.41         | 0.01 | 0.04          | 0.12        | 0.16          | 0.01          | 0.11        | 0.12          | 1,134.11  |
| Building Worker Trips                             | 0.78  | 1.24         | 30.45        | 0.05 | 0.22          | 0.10        | 0.32          | 0.08          | 0.08        | 0.16          | 4,834.77  |

Page: 3
3/10/2011 4:06:22 PM

| Time Slice 5/18/2015-8/7/2015<br>Active Days: 60    | 3.76          | 20.25 | 46.67 | 0.06 | 0.26 | 1.24 | 1.50 | 0.09 | 1.13 | 1.22 | 8,228.17 |
|-----------------------------------------------------|---------------|-------|-------|------|------|------|------|------|------|------|----------|
| Building 04/28/2015-12/14/2015                      | 3.76          | 20.25 | 46.67 | 0.06 | 0.26 | 1.24 | 1.50 | 0.09 | 1.13 | 1.22 | 8,228.17 |
| Building Off Road Diesel                            | 2.69          | 16.17 | 12.80 | 0.00 | 0.00 | 1.03 | 1.03 | 0.00 | 0.94 | 0.94 | 2,259.28 |
| Building Vendor Trips                               | 0.28          | 2.84  | 3.41  | 0.01 | 0.04 | 0.12 | 0.16 | 0.01 | 0.11 | 0.12 | 1,134.11 |
| Building Worker Trips                               | 0.78          | 1.24  | 30.45 | 0.05 | 0.22 | 0.10 | 0.32 | 0.08 | 0.08 | 0.16 | 4,834.77 |
| Time Slice 8/10/2015-12/14/2015<br>Active Days: 91  | <u>152.52</u> | 20.30 | 47.89 | 0.06 | 0.27 | 1.25 | 1.51 | 0.09 | 1.13 | 1.23 | 8,422.42 |
| Building 04/28/2015-12/14/2015                      | 3.76          | 20.25 | 46.67 | 0.06 | 0.26 | 1.24 | 1.50 | 0.09 | 1.13 | 1.22 | 8,228.17 |
| Building Off Road Diesel                            | 2.69          | 16.17 | 12.80 | 0.00 | 0.00 | 1.03 | 1.03 | 0.00 | 0.94 | 0.94 | 2,259.28 |
| Building Vendor Trips                               | 0.28          | 2.84  | 3.41  | 0.01 | 0.04 | 0.12 | 0.16 | 0.01 | 0.11 | 0.12 | 1,134.11 |
| Building Worker Trips                               | 0.78          | 1.24  | 30.45 | 0.05 | 0.22 | 0.10 | 0.32 | 0.08 | 0.08 | 0.16 | 4,834.77 |
| Coating 08/08/2015-12/31/2015                       | 148.76        | 0.05  | 1.22  | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 194.25   |
| Architectural Coating                               | 148.73        | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00     |
| Coating Worker Trips                                | 0.03          | 0.05  | 1.22  | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 194.25   |
| Time Slice 12/15/2015-12/31/2015<br>Active Days: 13 | 148.76        | 0.05  | 1.22  | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 194.25   |
| Coating 08/08/2015-12/31/2015                       | 148.76        | 0.05  | 1.22  | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 194.25   |
| Architectural Coating                               | 148.73        | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00     |
| Coating Worker Trips                                | 0.03          | 0.05  | 1.22  | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 194.25   |

## Phase Assumptions

Phase: Fine Grading 1/1/2015 - 4/27/2015 - Default Fine Site Grading Description

Total Acres Disturbed: 100

Maximum Daily Acreage Disturbed: 25 Fugitive Dust Level of Detail: Default

20 lbs per acre-day

#### 3/10/2011 4:06:22 PM

On Road Truck Travel (VMT): 18.07

Off-Road Equipment:

- 1 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day
- 1 Graders (174 hp) operating at a 0.61 load factor for 8 hours per day
- 1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 8 hours per day
- 2 Scrapers (313 hp) operating at a 0.72 load factor for 8 hours per day
- 3 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day
- 1 Water Trucks (189 hp) operating at a 0.5 load factor for 8 hours per day

Phase: Paving 4/15/2015 - 5/15/2015 - Default Paving Description

Acres to be Paved: 25
Off-Road Equipment:

- 1 Pavers (100 hp) operating at a 0.62 load factor for 8 hours per day
- 2 Paving Equipment (104 hp) operating at a 0.53 load factor for 6 hours per day
- 2 Rollers (95 hp) operating at a 0.56 load factor for 6 hours per day

Phase: Building Construction 4/28/2015 - 12/14/2015 - Default Building Construction Description

Off-Road Equipment:

- 1 Cranes (399 hp) operating at a 0.43 load factor for 7 hours per day
- 3 Forklifts (145 hp) operating at a 0.3 load factor for 8 hours per day
- 1 Generator Sets (49 hp) operating at a 0.74 load factor for 8 hours per day
- 3 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day
- 1 Welders (45 hp) operating at a 0.45 load factor for 8 hours per day

Phase: Architectural Coating 8/8/2015 - 12/31/2015 - Default Architectural Coating Description

Rule: Residential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Residential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

3/10/2011 4:04:06 PM

#### Urbemis 2007 Version 9.2.4

# Combined Summer Emissions Reports (Pounds/Day)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Construction No Fed Alt - Year 4 Mitigated.urb924

Project Name: Elverta Construction No Fed Permit - Year 4 Mitigated

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

## Summary Report:

CONSTRUCTION EMISSION ESTIMATES

|                                   | ROG    | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | PM10 Dust PM1 | 0 Exhaust | <u>PM10</u> | PM2.5 Dust | PM2.5<br>Exhaust | PM2.5 | <u>CO2</u> |
|-----------------------------------|--------|------------|-----------|------------|---------------|-----------|-------------|------------|------------------|-------|------------|
| 2015 TOTALS (lbs/day unmitigated) | 152.52 | 71.69      | 58.18     | 0.07       | 300.07        | 3.77      | 303.84      | 62.67      | 3.47             | 66.15 | 10,928.94  |
| 2015 TOTALS (lbs/day mitigated)   | 152.52 | 71.69      | 58.18     | 0.07       | 142.00        | 3.77      | 145.77      | 29.66      | 3.47             | 33.13 | 10.928.94  |

## Construction Unmitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

| <u>ROG</u> | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | PM10 Dust | PM10 Exhaust | <u>PM10</u> | PM2.5 Dust | PM2.5 Exhaust | PM2.5 | <u>CO2</u> |
|------------|------------|-----------|------------|-----------|--------------|-------------|------------|---------------|-------|------------|
|------------|------------|-----------|------------|-----------|--------------|-------------|------------|---------------|-------|------------|

Page: 2 3/10/2011 4:04:06 PM

| Time Slice 1/1/2015-4/14/2015<br>Active Days: 74 | 6.91  | 54.16        | 32.39 | 0.00 | 300.01        | 2.49        | 302.50        | 62.66        | 2.29        | 64.95        | 7,418.31  |
|--------------------------------------------------|-------|--------------|-------|------|---------------|-------------|---------------|--------------|-------------|--------------|-----------|
| Fine Grading 01/01/2015-<br>04/27/2015           | 6.91  | 54.16        | 32.39 | 0.00 | 300.01        | 2.49        | 302.50        | 62.66        | 2.29        | 64.95        | 7,418.31  |
| Fine Grading Dust                                | 0.00  | 0.00         | 0.00  | 0.00 | 300.00        | 0.00        | 300.00        | 62.65        | 0.00        | 62.65        | 0.00      |
| Fine Grading Off Road Diesel                     | 6.85  | 53.84        | 30.71 | 0.00 | 0.00          | 2.48        | 2.48          | 0.00         | 2.28        | 2.28         | 7,093.74  |
| Fine Grading On Road Diesel                      | 0.02  | 0.25         | 0.10  | 0.00 | 0.00          | 0.01        | 0.01          | 0.00         | 0.01        | 0.01         | 72.76     |
| Fine Grading Worker Trips                        | 0.04  | 0.06         | 1.59  | 0.00 | 0.01          | 0.01        | 0.02          | 0.00         | 0.00        | 0.01         | 251.81    |
| Time Slice 4/15/2015-4/27/2015<br>Active Days: 9 | 12.26 | <u>71.69</u> | 43.91 | 0.02 | <u>300.07</u> | <u>3.77</u> | <u>303.84</u> | <u>62.67</u> | <u>3.47</u> | <u>66.15</u> | 10,119.09 |
| Asphalt 04/15/2015-05/15/2015                    | 5.35  | 17.53        | 11.52 | 0.01 | 0.05          | 1.28        | 1.33          | 0.02         | 1.18        | 1.20         | 2,700.77  |
| Paving Off-Gas                                   | 2.85  | 0.00         | 0.00  | 0.00 | 0.00          | 0.00        | 0.00          | 0.00         | 0.00        | 0.00         | 0.00      |
| Paving Off Road Diesel                           | 2.12  | 13.07        | 8.93  | 0.00 | 0.00          | 1.11        | 1.11          | 0.00         | 1.02        | 1.02         | 1,272.41  |
| Paving On Road Diesel                            | 0.36  | 4.42         | 1.70  | 0.01 | 0.05          | 0.17        | 0.22          | 0.01         | 0.16        | 0.17         | 1,288.47  |
| Paving Worker Trips                              | 0.02  | 0.04         | 0.88  | 0.00 | 0.01          | 0.00        | 0.01          | 0.00         | 0.00        | 0.00         | 139.90    |
| Fine Grading 01/01/2015-<br>04/27/2015           | 6.91  | 54.16        | 32.39 | 0.00 | 300.01        | 2.49        | 302.50        | 62.66        | 2.29        | 64.95        | 7,418.31  |
| Fine Grading Dust                                | 0.00  | 0.00         | 0.00  | 0.00 | 300.00        | 0.00        | 300.00        | 62.65        | 0.00        | 62.65        | 0.00      |
| Fine Grading Off Road Diesel                     | 6.85  | 53.84        | 30.71 | 0.00 | 0.00          | 2.48        | 2.48          | 0.00         | 2.28        | 2.28         | 7,093.74  |
| Fine Grading On Road Diesel                      | 0.02  | 0.25         | 0.10  | 0.00 | 0.00          | 0.01        | 0.01          | 0.00         | 0.01        | 0.01         | 72.76     |
| Fine Grading Worker Trips                        | 0.04  | 0.06         | 1.59  | 0.00 | 0.01          | 0.01        | 0.02          | 0.00         | 0.00        | 0.01         | 251.81    |

Page: 3 3/10/2011 4:04:06 PM

| Time Slice 4/28/2015-5/15/2015<br>Active Days: 14  | 9.11          | 37.78 | <u>58.18</u> | 0.07 | 0.31 | 2.53 | 2.83 | 0.11 | 2.31 | 2.42 | 10,928.94 |
|----------------------------------------------------|---------------|-------|--------------|------|------|------|------|------|------|------|-----------|
| Asphalt 04/15/2015-05/15/2015                      | 5.35          | 17.53 | 11.52        | 0.01 | 0.05 | 1.28 | 1.33 | 0.02 | 1.18 | 1.20 | 2,700.77  |
| Paving Off-Gas                                     | 2.85          | 0.00  | 0.00         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00      |
| Paving Off Road Diesel                             | 2.12          | 13.07 | 8.93         | 0.00 | 0.00 | 1.11 | 1.11 | 0.00 | 1.02 | 1.02 | 1,272.41  |
| Paving On Road Diesel                              | 0.36          | 4.42  | 1.70         | 0.01 | 0.05 | 0.17 | 0.22 | 0.01 | 0.16 | 0.17 | 1,288.47  |
| Paving Worker Trips                                | 0.02          | 0.04  | 0.88         | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 139.90    |
| Building 04/28/2015-12/14/2015                     | 3.76          | 20.25 | 46.67        | 0.06 | 0.26 | 1.24 | 1.50 | 0.09 | 1.13 | 1.22 | 8,228.17  |
| Building Off Road Diesel                           | 2.69          | 16.17 | 12.80        | 0.00 | 0.00 | 1.03 | 1.03 | 0.00 | 0.94 | 0.94 | 2,259.28  |
| Building Vendor Trips                              | 0.28          | 2.84  | 3.41         | 0.01 | 0.04 | 0.12 | 0.16 | 0.01 | 0.11 | 0.12 | 1,134.11  |
| Building Worker Trips                              | 0.78          | 1.24  | 30.45        | 0.05 | 0.22 | 0.10 | 0.32 | 0.08 | 0.08 | 0.16 | 4,834.77  |
| Time Slice 5/18/2015-8/7/2015<br>Active Days: 60   | 3.76          | 20.25 | 46.67        | 0.06 | 0.26 | 1.24 | 1.50 | 0.09 | 1.13 | 1.22 | 8,228.17  |
| Building 04/28/2015-12/14/2015                     | 3.76          | 20.25 | 46.67        | 0.06 | 0.26 | 1.24 | 1.50 | 0.09 | 1.13 | 1.22 | 8,228.17  |
| Building Off Road Diesel                           | 2.69          | 16.17 | 12.80        | 0.00 | 0.00 | 1.03 | 1.03 | 0.00 | 0.94 | 0.94 | 2,259.28  |
| Building Vendor Trips                              | 0.28          | 2.84  | 3.41         | 0.01 | 0.04 | 0.12 | 0.16 | 0.01 | 0.11 | 0.12 | 1,134.11  |
| Building Worker Trips                              | 0.78          | 1.24  | 30.45        | 0.05 | 0.22 | 0.10 | 0.32 | 0.08 | 0.08 | 0.16 | 4,834.77  |
| Time Slice 8/10/2015-12/14/2015<br>Active Days: 91 | <u>152.52</u> | 20.30 | 47.89        | 0.06 | 0.27 | 1.25 | 1.51 | 0.09 | 1.13 | 1.23 | 8,422.42  |
| Building 04/28/2015-12/14/2015                     | 3.76          | 20.25 | 46.67        | 0.06 | 0.26 | 1.24 | 1.50 | 0.09 | 1.13 | 1.22 | 8,228.17  |
| Building Off Road Diesel                           | 2.69          | 16.17 | 12.80        | 0.00 | 0.00 | 1.03 | 1.03 | 0.00 | 0.94 | 0.94 | 2,259.28  |
| Building Vendor Trips                              | 0.28          | 2.84  | 3.41         | 0.01 | 0.04 | 0.12 | 0.16 | 0.01 | 0.11 | 0.12 | 1,134.11  |
| Building Worker Trips                              | 0.78          | 1.24  | 30.45        | 0.05 | 0.22 | 0.10 | 0.32 | 0.08 | 0.08 | 0.16 | 4,834.77  |
| Coating 08/08/2015-12/31/2015                      | 148.76        | 0.05  | 1.22         | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 194.25    |
| Architectural Coating                              | 148.73        | 0.00  | 0.00         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00      |
| Coating Worker Trips                               | 0.03          | 0.05  | 1.22         | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 194.25    |

Page: 4

### 3/10/2011 4:04:06 PM

| Time Slice 12/15/2015-12/31/2015<br>Active Days: 13 | 148.76 | 0.05 | 1.22 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 194.25 |
|-----------------------------------------------------|--------|------|------|------|------|------|------|------|------|------|--------|
| Coating 08/08/2015-12/31/2015                       | 148.76 | 0.05 | 1.22 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 194.25 |
| Architectural Coating                               | 148.73 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00   |
| Coating Worker Trips                                | 0.03   | 0.05 | 1.22 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 194.25 |

### **Phase Assumptions**

Phase: Fine Grading 1/1/2015 - 4/27/2015 - Default Fine Site Grading Description

Total Acres Disturbed: 100

Maximum Daily Acreage Disturbed: 15 Fugitive Dust Level of Detail: Default

20 lbs per acre-day

On Road Truck Travel (VMT): 18.07

Off-Road Equipment:

- 1 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day
- 1 Graders (174 hp) operating at a 0.61 load factor for 8 hours per day
- 1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 8 hours per day
- 2 Scrapers (313 hp) operating at a 0.72 load factor for 8 hours per day
- 3 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day
- 1 Water Trucks (189 hp) operating at a 0.5 load factor for 8 hours per day

Phase: Paving 4/15/2015 - 5/15/2015 - Default Paving Description

Acres to be Paved: 25
Off-Road Equipment:

- 1 Pavers (100 hp) operating at a 0.62 load factor for 8 hours per day
- 2 Paving Equipment (104 hp) operating at a 0.53 load factor for 6 hours per day
- 2 Rollers (95 hp) operating at a 0.56 load factor for 6 hours per day

Phase: Building Construction 4/28/2015 - 12/14/2015 - Default Building Construction Description

### Page: 5

### 3/10/2011 4:04:06 PM

### Off-Road Equipment:

- 1 Cranes (399 hp) operating at a 0.43 load factor for 7 hours per day
- 3 Forklifts (145 hp) operating at a 0.3 load factor for 8 hours per day
- 1 Generator Sets (49 hp) operating at a 0.74 load factor for 8 hours per day
- 3 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day
- 1 Welders (45 hp) operating at a 0.45 load factor for 8 hours per day

Phase: Architectural Coating 8/8/2015 - 12/31/2015 - Default Architectural Coating Description

Rule: Residential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Residential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Rule: Nonresidential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

### Construction Mitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Summer Pounds Per Day, Mitigated

|                                                  | ROG  | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | PM10 Dust | PM10 Exhaust | <u>PM10</u> | PM2.5 Dust | PM2.5 Exhaust | PM2.5 | <u>CO2</u> |
|--------------------------------------------------|------|------------|-----------|------------|-----------|--------------|-------------|------------|---------------|-------|------------|
| Time Slice 1/1/2015-4/14/2015<br>Active Days: 74 | 6.91 | 54.16      | 32.39     | 0.00       | 141.94    | 2.49         | 144.43      | 29.65      | 2.29          | 31.94 | 7,418.31   |
| Fine Grading 01/01/2015-<br>04/27/2015           | 6.91 | 54.16      | 32.39     | 0.00       | 141.94    | 2.49         | 144.43      | 29.65      | 2.29          | 31.94 | 7,418.31   |
| Fine Grading Dust                                | 0.00 | 0.00       | 0.00      | 0.00       | 141.93    | 0.00         | 141.93      | 29.64      | 0.00          | 29.64 | 0.00       |
| Fine Grading Off Road Diesel                     | 6.85 | 53.84      | 30.71     | 0.00       | 0.00      | 2.48         | 2.48        | 0.00       | 2.28          | 2.28  | 7,093.74   |
| Fine Grading On Road Diesel                      | 0.02 | 0.25       | 0.10      | 0.00       | 0.00      | 0.01         | 0.01        | 0.00       | 0.01          | 0.01  | 72.76      |
| Fine Grading Worker Trips                        | 0.04 | 0.06       | 1.59      | 0.00       | 0.01      | 0.01         | 0.02        | 0.00       | 0.00          | 0.01  | 251.81     |

Page: 6
3/10/2011 4:04:06 PM

| Paving Off-Gas         2.85         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.01         0.00         0.01         0.00         0.01         0.00         0.01         0.00         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 | 2,700.77<br>0.00<br>1,272.41<br>1,288.47 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Paving Off Road Diesel         2.12         13.07         8.93         0.00         0.00         1.11         1.11         0.00         1.02         1.02           Paving On Road Diesel         0.36         4.42         1.70         0.01         0.05         0.17         0.22         0.01         0.16         0.17           Paving Worker Trips         0.02         0.04         0.88         0.00         0.01         0.00         0.01         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,272.41                                 |
| Paving On Road Diesel         0.36         4.42         1.70         0.01         0.05         0.17         0.22         0.01         0.16         0.17           Paving Worker Trips         0.02         0.04         0.88         0.00         0.01         0.00         0.01         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |
| Paving Worker Trips 0.02 0.04 0.88 0.00 0.01 0.00 0.01 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,288.47                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 139.90                                   |
| Fine Grading 01/01/2015- 6.91 54.16 32.39 0.00 141.94 2.49 144.43 29.65 2.29 31.94 04/27/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,418.31                                 |
| Fine Grading Dust 0.00 0.00 0.00 0.00 141.93 0.00 141.93 29.64 0.00 29.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                     |
| Fine Grading Off Road Diesel 6.85 53.84 30.71 0.00 0.00 2.48 2.48 0.00 2.28 2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,093.74                                 |
| Fine Grading On Road Diesel 0.02 0.25 0.10 0.00 0.00 0.01 0.01 0.00 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72.76                                    |
| Fine Grading Worker Trips 0.04 0.06 1.59 0.00 0.01 0.01 0.02 0.00 0.00 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 251.81                                   |
| Time Slice 4/28/2015-5/15/2015 9.11 37.78 <u>58.18</u> <u>0.07</u> 0.31 2.53 2.83 0.11 2.31 2.42 <u>1</u> Active Days: 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,928.94                                 |
| Asphalt 04/15/2015-05/15/2015 5.35 17.53 11.52 0.01 0.05 1.28 1.33 0.02 1.18 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,700.77                                 |
| Paving Off-Gas 2.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                     |
| Paving Off Road Diesel 2.12 13.07 8.93 0.00 0.00 1.11 1.11 0.00 1.02 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,272.41                                 |
| Paving On Road Diesel 0.36 4.42 1.70 0.01 0.05 0.17 0.22 0.01 0.16 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,288.47                                 |
| Paving Worker Trips 0.02 0.04 0.88 0.00 0.01 0.00 0.01 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 139.90                                   |
| Building 04/28/2015-12/14/2015 3.76 20.25 46.67 0.06 0.26 1.24 1.50 0.09 1.13 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8,228.17                                 |
| Building Off Road Diesel 2.69 16.17 12.80 0.00 0.00 1.03 1.03 0.00 0.94 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,259.28                                 |
| Building Vendor Trips 0.28 2.84 3.41 0.01 0.04 0.12 0.16 0.01 0.11 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,134.11                                 |
| Building Worker Trips 0.78 1.24 30.45 0.05 0.22 0.10 0.32 0.08 0.08 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |

Page: 7

### 3/10/2011 4:04:06 PM

| Time Slice 5/18/2015-8/7/2015<br>Active Days: 60    | 3.76          | 20.25 | 46.67 | 0.06 | 0.26 | 1.24 | 1.50 | 0.09 | 1.13 | 1.22 | 8,228.17 |
|-----------------------------------------------------|---------------|-------|-------|------|------|------|------|------|------|------|----------|
| Building 04/28/2015-12/14/2015                      | 3.76          | 20.25 | 46.67 | 0.06 | 0.26 | 1.24 | 1.50 | 0.09 | 1.13 | 1.22 | 8,228.17 |
| Building Off Road Diesel                            | 2.69          | 16.17 | 12.80 | 0.00 | 0.00 | 1.03 | 1.03 | 0.00 | 0.94 | 0.94 | 2,259.28 |
| Building Vendor Trips                               | 0.28          | 2.84  | 3.41  | 0.01 | 0.04 | 0.12 | 0.16 | 0.01 | 0.11 | 0.12 | 1,134.11 |
| Building Worker Trips                               | 0.78          | 1.24  | 30.45 | 0.05 | 0.22 | 0.10 | 0.32 | 0.08 | 0.08 | 0.16 | 4,834.77 |
| Time Slice 8/10/2015-12/14/2015<br>Active Days: 91  | <u>152.52</u> | 20.30 | 47.89 | 0.06 | 0.27 | 1.25 | 1.51 | 0.09 | 1.13 | 1.23 | 8,422.42 |
| Building 04/28/2015-12/14/2015                      | 3.76          | 20.25 | 46.67 | 0.06 | 0.26 | 1.24 | 1.50 | 0.09 | 1.13 | 1.22 | 8,228.17 |
| Building Off Road Diesel                            | 2.69          | 16.17 | 12.80 | 0.00 | 0.00 | 1.03 | 1.03 | 0.00 | 0.94 | 0.94 | 2,259.28 |
| Building Vendor Trips                               | 0.28          | 2.84  | 3.41  | 0.01 | 0.04 | 0.12 | 0.16 | 0.01 | 0.11 | 0.12 | 1,134.11 |
| Building Worker Trips                               | 0.78          | 1.24  | 30.45 | 0.05 | 0.22 | 0.10 | 0.32 | 0.08 | 0.08 | 0.16 | 4,834.77 |
| Coating 08/08/2015-12/31/2015                       | 148.76        | 0.05  | 1.22  | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 194.25   |
| Architectural Coating                               | 148.73        | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00     |
| Coating Worker Trips                                | 0.03          | 0.05  | 1.22  | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 194.25   |
| Time Slice 12/15/2015-12/31/2015<br>Active Days: 13 | 148.76        | 0.05  | 1.22  | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 194.25   |
| Coating 08/08/2015-12/31/2015                       | 148.76        | 0.05  | 1.22  | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 194.25   |
| Architectural Coating                               | 148.73        | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00     |
| Coating Worker Trips                                | 0.03          | 0.05  | 1.22  | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 194.25   |

### Construction Related Mitigation Measures

The following mitigation measures apply to Phase: Fine Grading 1/1/2015 - 4/27/2015 - Default Fine Site Grading Description

For Soil Stablizing Measures, the Water exposed surfaces 2x daily watering mitigation reduces emissions by:

PM10: 55% PM25: 55%

For Unpaved Roads Measures, the Reduce speed on unpaved roads to less than 15 mph mitigation reduces emissions by:

PM10: 44% PM25: 44%

# URBEMIS2007 MODEL RESULTS FOR OPERATIONS (ANNUAL, SUMMER, WINTER EMISSIONS) - ALTERNATIVE D

Page: 1

3/6/2011 6:27:20 PM

### Urbemis 2007 Version 9.2.4

### Combined Annual Emissions Reports (Tons/Year)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Operations - No Federal Action Alt Revised.urb924

Project Name: Elverta Operations - No Federal Action Alt

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

### Summary Report:

### AREA SOURCE EMISSION ESTIMATES

|                                             | <u>ROG</u>  | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | <u>PM2.5</u> | <u>CO2</u> |
|---------------------------------------------|-------------|------------|-----------|------------|-------------|--------------|------------|
| TOTALS (tons/year, unmitigated)             | 12.82       | 2.99       | 32.25     | 0.09       | 4.56        | 4.39         | 3,840.28   |
| OPERATIONAL (VEHICLE) EMISSION ESTIMATES    |             |            |           |            |             |              |            |
|                                             | ROG         | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | PM2.5        | <u>CO2</u> |
| TOTALS (tons/year, unmitigated)             | 9.23        | 10.02      | 100.44    | 0.15       | 25.30       | 4.83         | 14,939.78  |
| SUM OF AREA SOURCE AND OPERATIONAL EMISSION | N ESTIMATES |            |           |            |             |              |            |
|                                             | ROG         | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | PM2.5        | <u>CO2</u> |
| TOTALS (tons/year, unmitigated)             | 22.05       | 13.01      | 132.69    | 0.24       | 29.86       | 9.22         | 18,780.06  |

Page: 2

### 3/6/2011 6:27:20 PM

### Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

| <u>Source</u>                   | ROG   | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | <u>PM2.5</u> | <u>CO2</u> |
|---------------------------------|-------|------------|-----------|------------|-------------|--------------|------------|
| Natural Gas                     | 0.19  | 2.40       | 1.02      | 0.00       | 0.00        | 0.00         | 3,058.03   |
| Hearth                          | 3.07  | 0.55       | 27.91     | 0.09       | 4.55        | 4.38         | 776.92     |
| Landscape                       | 0.60  | 0.04       | 3.32      | 0.00       | 0.01        | 0.01         | 5.33       |
| Consumer Products               | 6.81  |            |           |            |             |              |            |
| Architectural Coatings          | 2.15  |            |           |            |             |              |            |
| TOTALS (tons/year, unmitigated) | 12.82 | 2.99       | 32.25     | 0.09       | 4.56        | 4.39         | 3,840.28   |

### Area Source Changes to Defaults

### Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Annual Tons Per Year, Unmitigated

| <u>Source</u>                   | ROG  | NOX   | CO     | SO2  | PM10  | PM25 | CO2       |
|---------------------------------|------|-------|--------|------|-------|------|-----------|
| Single family housing           | 9.23 | 10.02 | 100.44 | 0.15 | 25.30 | 4.83 | 14,939.78 |
| TOTALS (tons/year, unmitigated) | 9.23 | 10.02 | 100.44 | 0.15 | 25.30 | 4.83 | 14,939.78 |

Operational Settings:

Includes correction for passby trips

Includes the following double counting adjustment for internal trips:

Residential Trip % Reduction: 0.00 Nonresidential Trip % Reduction: 0.00

Analysis Year: 2017 Season: Annual

Page: 3 3/6/2011 6:27:20 PM

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

| Summary of Land L | <u> </u> |
|-------------------|----------|
|-------------------|----------|

|                                     | <u> </u> | iary or Laria | <u>0000</u>    |           |             |           |
|-------------------------------------|----------|---------------|----------------|-----------|-------------|-----------|
| Land Use Type                       | Acreage  | Trip Rate     | Unit Type      | No. Units | Total Trips | Total VMT |
| Single family housing               | 275.67   | 9.57          | dwelling units | 827.00    | 7,914.39    | 80,688.77 |
|                                     |          |               |                |           | 7,914.39    | 80,688.77 |
|                                     |          | Vehicle Fleet | Mix            |           |             |           |
| Vehicle Type                        | Percent  | Туре          | Non-Catal      | yst       | Catalyst    | Diesel    |
| Light Auto                          |          | 47.5          | (              | 0.0       | 99.8        | 0.2       |
| Light Truck < 3750 lbs              |          | 10.0          | (              | 0.0       | 96.0        | 4.0       |
| Light Truck 3751-5750 lbs           |          | 22.7          | (              | 0.0       | 100.0       | 0.0       |
| Med Truck 5751-8500 lbs             |          | 10.2          | (              | 0.0       | 100.0       | 0.0       |
| Lite-Heavy Truck 8501-10,000 lbs    |          | 2.1           | (              | 0.0       | 76.2        | 23.8      |
| Lite-Heavy Truck 10,001-14,000 lbs  |          | 0.9           | (              | 0.0       | 55.6        | 44.4      |
| Med-Heavy Truck 14,001-33,000 lbs   |          | 1.6           | (              | 0.0       | 18.8        | 81.2      |
| Heavy-Heavy Truck 33,001-60,000 lbs |          | 0.5           | (              | 0.0       | 0.0         | 100.0     |
| Other Bus                           |          | 0.1           | (              | 0.0       | 0.0         | 100.0     |
| Urban Bus                           |          | 0.0           | (              | 0.0       | 0.0         | 0.0       |
| Motorcycle                          |          | 3.5           | 4:             | 5.7       | 54.3        | 0.0       |
| School Bus                          |          | 0.1           | (              | 0.0       | 0.0         | 100.0     |
| Motor Home                          |          | 8.0           | (              | 0.0       | 87.5        | 12.5      |

Page: 4
3/6/2011 6:27:20 PM

### **Travel Conditions**

|                           |           | Residential |            |         | Commercial |          |  |  |  |  |
|---------------------------|-----------|-------------|------------|---------|------------|----------|--|--|--|--|
|                           | Home-Work | Home-Shop   | Home-Other | Commute | Non-Work   | Customer |  |  |  |  |
| Urban Trip Length (miles) | 10.8      | 7.3         | 7.5        | 10.8    | 7.3        | 7.3      |  |  |  |  |
| Rural Trip Length (miles) | 15.0      | 10.0        | 10.0       | 15.0    | 10.0       | 10.0     |  |  |  |  |
| Trip speeds (mph)         | 35.0      | 35.0        | 35.0       | 35.0    | 35.0       | 35.0     |  |  |  |  |
| % of Trips - Residential  | 32.9      | 18.0        | 49.1       |         |            |          |  |  |  |  |

% of Trips - Commercial (by land use)

Page: 1

3/6/2011 6:26:01 PM

### Urbemis 2007 Version 9.2.4

### Combined Summer Emissions Reports (Pounds/Day)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Operations - No Federal Action Alt Revised.urb924

Project Name: Elverta Operations - No Federal Action Alt

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

### Summary Report:

### AREA SOURCE EMISSION ESTIMATES

|                                            | <u>ROG</u>  | <u>NOx</u> | <u>co</u> | <u>SO2</u> | <u>PM10</u> | <u>PM2.5</u> | <u>CO2</u> |
|--------------------------------------------|-------------|------------|-----------|------------|-------------|--------------|------------|
| TOTALS (lbs/day, unmitigated)              | 56.77       | 13.55      | 42.51     | 0.00       | 0.13        | 0.12         | 16,815.62  |
| OPERATIONAL (VEHICLE) EMISSION ESTIMATES   |             |            |           |            |             |              |            |
|                                            | ROG         | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | PM2.5        | <u>CO2</u> |
| TOTALS (lbs/day, unmitigated)              | 52.31       | 47.19      | 583.80    | 0.88       | 138.66      | 26.45        | 87,649.06  |
| SUM OF AREA SOURCE AND OPERATIONAL EMISSIC | N ESTIMATES |            |           |            |             |              |            |
|                                            | ROG         | <u>NOx</u> | CO        | <u>SO2</u> | <u>PM10</u> | PM2.5        | <u>CO2</u> |
| TOTALS (lbs/day, unmitigated)              | 109.08      | 60.74      | 626.31    | 0.88       | 138.79      | 26.57        | 104,464.68 |

Page: 2

### 3/6/2011 6:26:01 PM

### Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

| <u>Source</u>                 | ROG   | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | PM2.5 | <u>CO2</u> |
|-------------------------------|-------|------------|-----------|------------|-------------|-------|------------|
| Natural Gas                   | 1.01  | 13.13      | 5.59      | 0.00       | 0.03        | 0.02  | 16,756.34  |
| Hearth - No Summer Emissions  |       |            |           |            |             |       |            |
| Landscape                     | 6.67  | 0.42       | 36.92     | 0.00       | 0.10        | 0.10  | 59.28      |
| Consumer Products             | 37.33 |            |           |            |             |       |            |
| Architectural Coatings        | 11.76 |            |           |            |             |       |            |
| TOTALS (lbs/day, unmitigated) | 56.77 | 13.55      | 42.51     | 0.00       | 0.13        | 0.12  | 16,815.62  |

### Area Source Changes to Defaults

### Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

| <u>Source</u>                 | ROG   | NOX   | CO     | SO2  | PM10   | PM25  | CO2       |
|-------------------------------|-------|-------|--------|------|--------|-------|-----------|
| Single family housing         | 52.31 | 47.19 | 583.80 | 0.88 | 138.66 | 26.45 | 87,649.06 |
| TOTALS (lbs/day, unmitigated) | 52.31 | 47.19 | 583.80 | 0.88 | 138.66 | 26.45 | 87,649.06 |

Operational Settings:

Includes correction for passby trips

Includes the following double counting adjustment for internal trips:

Residential Trip % Reduction: 0.00 Nonresidential Trip % Reduction: 0.00

Analysis Year: 2017 Temperature (F): 95 Season: Summer

Page: 3 3/6/2011 6:26:01 PM

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

| Summary of Land L | <u> </u> |
|-------------------|----------|
|-------------------|----------|

|                                     | <u>Canno</u> | iary or Laria | <u> </u>       |           |             |           |  |  |  |  |  |
|-------------------------------------|--------------|---------------|----------------|-----------|-------------|-----------|--|--|--|--|--|
| Land Use Type                       | Acreage      | Trip Rate     | Unit Type      | No. Units | Total Trips | Total VMT |  |  |  |  |  |
| Single family housing               | 275.67       | 9.57          | dwelling units | 827.00    | 7,914.39    | 80,688.77 |  |  |  |  |  |
|                                     |              |               |                |           | 7,914.39    | 80,688.77 |  |  |  |  |  |
| Vehicle Fleet Mix                   |              |               |                |           |             |           |  |  |  |  |  |
| Vehicle Type                        | Percent      | Туре          | Non-Catal      | yst       | Catalyst    | Diesel    |  |  |  |  |  |
| Light Auto                          |              | 47.5          | (              | 0.0       | 99.8        | 0.2       |  |  |  |  |  |
| Light Truck < 3750 lbs              |              | 10.0          | (              | 0.0       | 96.0        | 4.0       |  |  |  |  |  |
| Light Truck 3751-5750 lbs           |              | 22.7          | (              | 0.0       | 100.0       | 0.0       |  |  |  |  |  |
| Med Truck 5751-8500 lbs             |              | 10.2          | (              | 0.0       | 100.0       | 0.0       |  |  |  |  |  |
| Lite-Heavy Truck 8501-10,000 lbs    |              | 2.1           | (              | 0.0       | 76.2        | 23.8      |  |  |  |  |  |
| Lite-Heavy Truck 10,001-14,000 lbs  |              | 0.9           | (              | 0.0       | 55.6        | 44.4      |  |  |  |  |  |
| Med-Heavy Truck 14,001-33,000 lbs   |              | 1.6           | (              | 0.0       | 18.8        | 81.2      |  |  |  |  |  |
| Heavy-Heavy Truck 33,001-60,000 lbs |              | 0.5           | (              | 0.0       | 0.0         | 100.0     |  |  |  |  |  |
| Other Bus                           |              | 0.1           | (              | 0.0       | 0.0         | 100.0     |  |  |  |  |  |
| Urban Bus                           |              | 0.0           | (              | 0.0       | 0.0         | 0.0       |  |  |  |  |  |
| Motorcycle                          |              | 3.5           | 45             | 5.7       | 54.3        | 0.0       |  |  |  |  |  |
| School Bus                          |              | 0.1           | (              | 0.0       | 0.0         | 100.0     |  |  |  |  |  |
| Motor Home                          |              | 0.8           | (              | 0.0       | 87.5        | 12.5      |  |  |  |  |  |

Page: 4
3/6/2011 6:26:01 PM

### **Travel Conditions**

|                           |           | Residential |            |         | Commercial |          |  |
|---------------------------|-----------|-------------|------------|---------|------------|----------|--|
|                           | Home-Work | Home-Shop   | Home-Other | Commute | Non-Work   | Customer |  |
| Urban Trip Length (miles) | 10.8      | 7.3         | 7.5        | 10.8    | 7.3        | 7.3      |  |
| Rural Trip Length (miles) | 15.0      | 10.0        | 10.0       | 15.0    | 10.0       | 10.0     |  |
| Trip speeds (mph)         | 35.0      | 35.0        | 35.0       | 35.0    | 35.0       | 35.0     |  |
| % of Trips - Residential  | 32.9      | 18.0        | 49.1       |         |            |          |  |

% of Trips - Commercial (by land use)

Page: 1

3/6/2011 6:26:55 PM

### Urbemis 2007 Version 9.2.4

### Combined Winter Emissions Reports (Pounds/Day)

File Name: C:\Documents and Settings\mxm\Application Data\Urbemis\Version9a\Projects\Elverta Operations - No Federal Action Alt Revised.urb924

Project Name: Elverta Operations - No Federal Action Alt

Project Location: Sacramento County AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

### Summary Report:

| A D E A | 00110 | ·       | 001011 | EOTIM 4 | A TEO |
|---------|-------|---------|--------|---------|-------|
| ARFA    | SOUR  | ; E EMI | SSION  | ESTIM.  | AIES  |

|                                                       | ROG    | <u>NOx</u> | <u>CO</u> | <u>SO2</u> | <u>PM10</u> | PM2.5  | <u>CO2</u> |
|-------------------------------------------------------|--------|------------|-----------|------------|-------------|--------|------------|
| TOTALS (lbs/day, unmitigated)                         | 125.33 | 30.92      | 688.28    | 2.25       | 111.45      | 107.27 | 41,327.98  |
| OPERATIONAL (VEHICLE) EMISSION ESTIMATES              |        |            |           |            |             |        |            |
|                                                       | ROG    | <u>NOx</u> | CO        | <u>SO2</u> | <u>PM10</u> | PM2.5  | <u>CO2</u> |
| TOTALS (lbs/day, unmitigated)                         | 47.11  | 70.31      | 483.43    | 0.70       | 138.66      | 26.45  | 70,287.37  |
| SUM OF AREA SOURCE AND OPERATIONAL EMISSION ESTIMATES |        |            |           |            |             |        |            |
|                                                       | ROG    | <u>NOx</u> | CO        | <u>SO2</u> | <u>PM10</u> | PM2.5  | <u>CO2</u> |
| TOTALS (lbs/day, unmitigated)                         | 172.44 | 101.23     | 1,171.71  | 2.95       | 250.11      | 133.72 | 111,615.35 |

Page: 2

### 3/6/2011 6:26:55 PM

### Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

| <u>Source</u>                     | ROG    | <u>NOx</u> | CO     | <u>SO2</u> | <u>PM10</u> | PM2.5  | <u>CO2</u> |
|-----------------------------------|--------|------------|--------|------------|-------------|--------|------------|
| Natural Gas                       | 1.01   | 13.13      | 5.59   | 0.00       | 0.03        | 0.02   | 16,756.34  |
| Hearth                            | 75.23  | 17.79      | 682.69 | 2.25       | 111.42      | 107.25 | 24,571.64  |
| Landscaping - No Winter Emissions |        |            |        |            |             |        |            |
| Consumer Products                 | 37.33  |            |        |            |             |        |            |
| Architectural Coatings            | 11.76  |            |        |            |             |        |            |
| TOTALS (lbs/day, unmitigated)     | 125.33 | 30.92      | 688.28 | 2.25       | 111.45      | 107.27 | 41,327.98  |

### Area Source Changes to Defaults

### Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Winter Pounds Per Day, Unmitigated

| <u>Source</u>                 | ROG   | NOX   | CO     | SO2  | PM10   | PM25  | CO2       |
|-------------------------------|-------|-------|--------|------|--------|-------|-----------|
| Single family housing         | 47.11 | 70.31 | 483.43 | 0.70 | 138.66 | 26.45 | 70,287.37 |
| TOTALS (lbs/day, unmitigated) | 47.11 | 70.31 | 483.43 | 0.70 | 138.66 | 26.45 | 70,287.37 |

Operational Settings:

Includes correction for passby trips

Includes the following double counting adjustment for internal trips:

Residential Trip % Reduction: 0.00 Nonresidential Trip % Reduction: 0.00

Analysis Year: 2017 Temperature (F): 50 Season: Winter

Page: 3 3/6/2011 6:26:56 PM

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

| Summary of Land Uses | Summar | y of | Land | <u>Uses</u> |
|----------------------|--------|------|------|-------------|
|----------------------|--------|------|------|-------------|

|                                     | Summ    | iary or Land | 0363           |           |             |           |  |  |  |  |
|-------------------------------------|---------|--------------|----------------|-----------|-------------|-----------|--|--|--|--|
| Land Use Type                       | Acreage | Trip Rate    | Unit Type      | No. Units | Total Trips | Total VMT |  |  |  |  |
| Single family housing               | 275.67  | 9.57         | dwelling units | 827.00    | 7,914.39    | 80,688.77 |  |  |  |  |
|                                     |         |              |                |           | 7,914.39    | 80,688.77 |  |  |  |  |
| <u>Vehicle Fleet Mix</u>            |         |              |                |           |             |           |  |  |  |  |
| Vehicle Type                        | Percent | Туре         | Non-Catal      | yst       | Catalyst    | Diesel    |  |  |  |  |
| Light Auto                          |         | 47.5         |                | 0.0       | 99.8        | 0.2       |  |  |  |  |
| Light Truck < 3750 lbs              |         | 10.0         |                | 0.0       | 96.0        | 4.0       |  |  |  |  |
| Light Truck 3751-5750 lbs           |         | 22.7         |                | 0.0       | 100.0       | 0.0       |  |  |  |  |
| Med Truck 5751-8500 lbs             |         | 10.2         |                | 0.0       | 100.0       | 0.0       |  |  |  |  |
| Lite-Heavy Truck 8501-10,000 lbs    |         | 2.1          |                | 0.0       | 76.2        | 23.8      |  |  |  |  |
| Lite-Heavy Truck 10,001-14,000 lbs  |         | 0.9          |                | 0.0       | 55.6        | 44.4      |  |  |  |  |
| Med-Heavy Truck 14,001-33,000 lbs   |         | 1.6          |                | 0.0       | 18.8        | 81.2      |  |  |  |  |
| Heavy-Heavy Truck 33,001-60,000 lbs |         | 0.5          |                | 0.0       | 0.0         | 100.0     |  |  |  |  |
| Other Bus                           |         | 0.1          |                | 0.0       | 0.0         | 100.0     |  |  |  |  |
| Urban Bus                           |         | 0.0          |                | 0.0       | 0.0         | 0.0       |  |  |  |  |
| Motorcycle                          |         | 3.5          | 4              | 5.7       | 54.3        | 0.0       |  |  |  |  |
| School Bus                          |         | 0.1          |                | 0.0       | 0.0         | 100.0     |  |  |  |  |
| Motor Home                          |         | 0.8          | (              | 0.0       | 87.5        | 12.5      |  |  |  |  |

Page: 4
3/6/2011 6:26:56 PM

### **Travel Conditions**

|                           |           | Residential |            |         | Commercial |          |  |  |
|---------------------------|-----------|-------------|------------|---------|------------|----------|--|--|
|                           | Home-Work | Home-Shop   | Home-Other | Commute | Non-Work   | Customer |  |  |
| Urban Trip Length (miles) | 10.8      | 7.3         | 7.5        | 10.8    | 7.3        | 7.3      |  |  |
| Rural Trip Length (miles) | 15.0      | 10.0        | 10.0       | 15.0    | 10.0       | 10.0     |  |  |
| Trip speeds (mph)         | 35.0      | 35.0        | 35.0       | 35.0    | 35.0       | 35.0     |  |  |
| % of Trips - Residential  | 32.9      | 18.0        | 49.1       |         |            |          |  |  |

% of Trips - Commercial (by land use)

### **GHG ANALYSIS FOR ALTERNATIVE A**

### **Alternative A**

# Indirect Greenhouse Gas (GHG) Emissions from Project use of Electricity (Power Plant Emissions)

Typical SMUD Residential Customer Annual Household Energy Use: 9250 kWh/yr per household per SMAQMD, 2009
Typical SMUD Commercial Customer Annual Energy Use (per square foot): 17 kWh/yr per square foot per SMAQMD, 2009

School Annual Energy Use (per student):941 kWh/yrper studentDGS, 2007Water Conveyance Electricity:2275775 kWh/yearCEC, 2005Wastewater Conveyance Electricity:2920000 kWh/yearCEC, 2005

Residential Units: 6190 Commercial Square Feet: 281000

Students: 1200 At all schools proposed

Estimated Project Annual Electrical Use:

68,359,475 kWh (kilowatt hours)/yr 68,359 mWh (megawatt hours)/yr

|                      |                 | Annual          |             | CO2        | Annual      |              |
|----------------------|-----------------|-----------------|-------------|------------|-------------|--------------|
|                      | Emission Factor | Project         | GHGs        | Equivalent | CO2 Equiva  | alent        |
| Indirect GHG gases   | lb/mWh          | Electricity mWh | metric tons | Factor     | Emissions ( | metric tons) |
| Carbon Dioxide (CO2) | 555.26          | 68,359          | 17,217      | 1          | 17217.2     |              |
| Nitrous Oxide (N2O)  | 0.011           | 68,359          | 0.3         | 296        | 101.0       |              |
| Methane (CH4)        | 0.029           | 68,359          | 0.9         | 23         | 20.7        |              |

Total Indirect GHG Emissions from Project Electricity Use= 17339 annual average

Summary (Metric Tons CO2e) 93,857 On-road vehicles 26,949 Area Sources

17,339 Indirect Electricity

**138,145** Total CO2e

### **Notes and References:**

Total Emissions from Indirect Electricity Use

CO2, CH4, and N2O Emission Factor Source: Local Government Operations Protocol (CARB et al., 2008) Specifically Tables G.5 and G.6 (Appendix G)

lbs/metric ton = 2204.62

### **CALCULATION OF METHANE AND N2O EMISSIONS**

Vehicles:

From URBEMIS 2007: 97,053.96 tons per year of CO2

total

Vehicle Emissions = 88045.87 metric tons per year of CO2

93857

From Table 6 California Greenouse Gas Emisssions and Sink Summary:

in 2004 transportation fossil fuel combustion was 188 MMT CO2

Mobile source combustion0.6 MMT CH4as eCO2Mobile Source Combustion11.8 MMT N2Oas eCO2

So for Mobile sources... CH4 emission = 0.32 percent of CO2 Emissions as eCO2

N2O emissions = 6.28 percent of CO2 Emissions as eCO2

CH4 emissions = 281.75 metric tons/year as eCO2 N2O emissions = 5529.28 metric tons/year as eCO2

**Area Sources** 

From URBEMIS 2007: 28,189.59 tons per year of CO2

total

26949

Natural Gas = 25573.16 metric tons per year of CO2

From Table 6 California Greenouse Gas Emisssions and Sink Summary:

in 2004 residential fossil fuel combustion was 27.9 MMT CO2

Stationary source combustion 1.3 MMT CH4 as eCO2 Stationary Source Combustion 0.2 MMT N2O as eCO2

So for Stationary sources... CH4 emission = 4.66 percent of CO2 Emissions as eCO2

N2O emissions = 0.72 percent of CO2 Emissions as eCO2

 $\begin{array}{lll} \text{CH4 emissions} = & 1191.71 \text{ metric tons/year} & \text{as eCO2} \\ \text{N2O emissions} = & 184.13 \text{ metric tons/year} & \text{as eCO2} \\ \end{array}$ 

### **GHG ANALYSIS FOR ALTERNATIVE B**

### **Alternative B**

# Indirect Greenhouse Gas (GHG) Emissions from Project use of Electricity (Power Plant Emissions)

Typical SMUD Residential Customer Annual Household Energy Use: 9250 kWh/yr per household per SMAQMD, 2009
Typical SMUD Commercial Customer Annual Energy Use (per square foot): 17 kWh/yr per square foot per SMAQMD, 2009

School Annual Energy Use (per student):941 kWh/yrper studentDGS, 2007Water Conveyance Electricity:1905300 kWh/yearCEC, 2005Wastewater Conveyance Electricity:2920000 kWh/yearCEC, 2005

Residential Units: 6190 Commercial Square Feet: 241710

Students: 600 At all schools proposed

Estimated Project Annual Electrical Use:

66,756,470 kWh (kilowatt hours)/yr 66,756 mWh (megawatt hours)/yr

|                      |                 | Annual          |             | CO2        | Annual       |              |
|----------------------|-----------------|-----------------|-------------|------------|--------------|--------------|
|                      | Emission Factor | Project         | GHGs        | Equivalent | CO2 Equiva   | lent         |
| Indirect GHG gases   | lb/mWh          | Electricity mWh | metric tons | Factor     | Emissions (r | netric tons) |
| Carbon Dioxide (CO2) | 555.26          | 66,756          | 16,813      | 1          | 16813.4      |              |
| Nitrous Oxide (N2O)  | 0.011           | 66,756          | 0.3         | 296        | 98.6         |              |
| Methane (CH4)        | 0.029           | 66,756          | 0.9         | 23         | 20.2         |              |

Total Indirect GHG Emissions from Project Electricity Use= 16932 annual average

Summary (Metric Tons CO2e) 90,246 On-road vehicles 25,233 Area Sources 16,932 Indirect Electricity

**132,411** Total CO2e

### **Notes and References:**

Total Emissions from Indirect Electricity Use

CO2, CH4, and N2O Emission Factor Source: Local Government Operations Protocol (CARB et al., 2008) Specifically Tables G.5 and G.6 (Appendix G)

lbs/metric ton = 2204.62

### **CALCULATION OF METHANE AND N2O EMISSIONS**

Vehicles:

From URBEMIS 2007: 93,319.96 tons per year of CO2

total

Vehicle Emissions = 84658.44 metric tons per year of CO2

90246

From Table 6 California Greenouse Gas Emisssions and Sink Summary:

in 2004 transportation fossil fuel combustion was 188 MMT CO2

Mobile source combustion 0.6 MMT CH4 as eCO2
Mobile Source Combustion 11.8 MMT N2O as eCO2

So for Mobile sources... CH4 emission = 0.32 percent of CO2 Emissions as eCO2

N2O emissions = 6.28 percent of CO2 Emissions as eCO2

CH4 emissions = 270.91 metric tons/year as eCO2 N2O emissions = 5316.55 metric tons/year as eCO2

**Area Sources** 

From URBEMIS 2007: 26,394.45 tons per year of CO2

total

Natural Gas = 23944.64 metric tons per year of CO2

25233

From Table 6 California Greenouse Gas Emisssions and Sink Summary:

in 2004 residential fossil fuel combustion was 27.9 MMT CO2

Stationary source combustion 1.3 MMT CH4 as eCO2 Stationary Source Combustion 0.2 MMT N2O as eCO2

So for Stationary sources... CH4 emission = 4.66 percent of CO2 Emissions as eCO2

N2O emissions = 0.72 percent of CO2 Emissions as eCO2

 $\begin{array}{lll} \text{CH4 emissions} = & 1115.82 \text{ metric tons/year} & \text{as eCO2} \\ \text{N2O emissions} = & 172.40 \text{ metric tons/year} & \text{as eCO2} \\ \end{array}$ 

### **GHG ANALYSIS FOR ALTERNATIVE C**

### **Alternative C**

# Indirect Greenhouse Gas (GHG) Emissions from Project use of Electricity (Power Plant Emissions)

Typical SMUD Residential Customer Annual Household Energy Use: 9250 kWh/yr per household per SMAQMD, 2009
Typical SMUD Commercial Customer Annual Energy Use (per square foot): 17 kWh/yr per square foot per SMAQMD, 2009

School Annual Energy Use (per student):941 kWh/yrper studentDGS, 2007Water Conveyance Electricity:2275775 kWh/yearCEC, 2005Wastewater Conveyance Electricity:2920000 kWh/yearCEC, 2005

Residential Units: 6190 Commercial Square Feet: 253430

Students: 1200 At all schools proposed

Estimated Project Annual Electrical Use:

67,890,785 kWh (kilowatt hours)/yr 67,891 mWh (megawatt hours)/yr

|                      |                 | Annual          |             | CO2        | Annual      |              |
|----------------------|-----------------|-----------------|-------------|------------|-------------|--------------|
|                      | Emission Factor | Project         | GHGs        | Equivalent | CO2 Equiva  | alent        |
| Indirect GHG gases   | lb/mWh          | Electricity mWh | metric tons | Factor     | Emissions ( | metric tons) |
| Carbon Dioxide (CO2) | 555.26          | 67,891          | 17,099      | 1          | 17099.1     |              |
| Nitrous Oxide (N2O)  | 0.011           | 67,891          | 0.3         | 296        | 100.3       |              |
| Methane (CH4)        | 0.029           | 67,891          | 0.9         | 23         | 20.5        |              |

Total Indirect GHG Emissions from Project Electricity Use= 17220 annual average

Summary (Metric Tons CO2e) 94,851 On-road vehicles

26,888 Area Sources17,220 Indirect Electricity

**138,959** Total CO2e

### **Notes and References:**

Total Emissions from Indirect Electricity Use

CO2, CH4, and N2O Emission Factor Source: Local Government Operations Protocol (CARB et al., 2008) Specifically Tables G.5 and G.6 (Appendix G)

lbs/metric ton = 2204.62

### **CALCULATION OF METHANE AND N2O EMISSIONS**

Vehicles:

From URBEMIS 2007: 98,081.93 tons per year of CO2

total

Vehicle Emissions = 88978.43 metric tons per year of CO2

94851

From Table 6 California Greenouse Gas Emisssions and Sink Summary:

in 2004 transportation fossil fuel combustion was 188 MMT CO2

Mobile source combustion0.6 MMT CH4as eCO2Mobile Source Combustion11.8 MMT N2Oas eCO2

So for Mobile sources... CH4 emission = 0.32 percent of CO2 Emissions as eCO2

N2O emissions = 6.28 percent of CO2 Emissions as eCO2

CH4 emissions = 284.73 metric tons/year as eCO2 N2O emissions = 5587.85 metric tons/year as eCO2

**Area Sources** 

From URBEMIS 2007: 28,125.90 tons per year of CO2

total

26888

Natural Gas = 25515.39 metric tons per year of CO2

From Table 6 California Greenouse Gas Emisssions and Sink Summary:

in 2004 residential fossil fuel combustion was 27.9 MMT CO2

Stationary source combustion 1.3 MMT CH4 as eCO2 Stationary Source Combustion 0.2 MMT N2O as eCO2

So for Stationary sources... CH4 emission = 4.66 percent of CO2 Emissions as eCO2

N2O emissions = 0.72 percent of CO2 Emissions as eCO2

CH4 emissions = 1189.02 metric tons/year as eCO2 N2O emissions = 183.71 metric tons/year as eCO2

### **GHG ANALYSIS FOR ALTERNATIVE D**

### **Alternative D**

# Indirect Greenhouse Gas (GHG) Emissions from Project use of Electricity (Power Plant Emissions)

Typical SMUD Residential Customer Annual Household Energy Use: 9250 kWh/yr per household per SMAQMD, 2009
Typical SMUD Commercial Customer Annual Energy Use (per square foot): 17 kWh/yr per square foot per SMAQMD, 2009

School Annual Energy Use (per student):941 kWh/yrper studentDGS, 2007Water Conveyance Electricity:2011150 kWh/yearCEC, 2005Wastewater Conveyance Electricity:2920000 kWh/yearCEC, 2005

Residential Units: 827 Commercial Square Feet: 0

Students: 0 At all schools proposed

Estimated Project Annual Electrical Use:

12,580,900 kWh (kilowatt hours)/yr 12,581 mWh (megawatt hours)/yr

|                      |                 | Annual          |             | CO2        | Annual      |              |
|----------------------|-----------------|-----------------|-------------|------------|-------------|--------------|
|                      | Emission Factor | Project         | GHGs        | Equivalent | CO2 Equiva  | alent        |
| Indirect GHG gases   | lb/mWh          | Electricity mWh | metric tons | Factor     | Emissions ( | metric tons) |
| Carbon Dioxide (CO2) | 555.26          | 12,581          | 3,169       | 1          | 3168.7      |              |
| Nitrous Oxide (N2O)  | 0.011           | 12,581          | 0.1         | 296        | 18.6        |              |
| Methane (CH4)        | 0.029           | 12,581          | 0.2         | 23         | 3.8         |              |

Total Indirect GHG Emissions from Project Electricity Use= 3191 annual average

Summary (Metric Tons CO2e) 14,448 On-road vehicles 3,671 Area Sources 3,191 Indirect Electricity

**21,310** Total CO2e

### **Notes and References:**

Total Emissions from Indirect Electricity Use

CO2, CH4, and N2O Emission Factor Source: Local Government Operations Protocol (CARB et al., 2008) Specifically Tables G.5 and G.6 (Appendix G)

lbs/metric ton = 2204.62

### **CALCULATION OF METHANE AND N2O EMISSIONS**

Vehicles:

From URBEMIS 2007: 14,939.78 tons per year of CO2

total

Vehicle Emissions = 13553.14 metric tons per year of CO2

14448

From Table 6 California Greenouse Gas Emisssions and Sink Summary:

in 2004 transportation fossil fuel combustion was 188 MMT CO2

Mobile source combustion 0.6 MMT CH4 as eCO2
Mobile Source Combustion 11.8 MMT N2O as eCO2

So for Mobile sources... CH4 emission = 0.32 percent of CO2 Emissions as eCO2

N2O emissions = 6.28 percent of CO2 Emissions as eCO2

CH4 emissions = 43.37 metric tons/year as eCO2 N2O emissions = 851.14 metric tons/year as eCO2

**Area Sources** 

From URBEMIS 2007: 3,840.28 tons per year of CO2

total

3671

Natural Gas = 3483.843 metric tons per year of CO2

From Table 6 California Greenouse Gas Emisssions and Sink Summary:

in 2004 residential fossil fuel combustion was 27.9 MMT CO2

Stationary source combustion 1.3 MMT CH4 as eCO2 Stationary Source Combustion 0.2 MMT N2O as eCO2

So for Stationary sources... CH4 emission = 4.66 percent of CO2 Emissions as eCO2

N2O emissions = 0.72 percent of CO2 Emissions as eCO2

 $\begin{array}{lll} \text{CH4 emissions} = & 162.35 \text{ metric tons/year} & \text{as eCO2} \\ \text{N2O emissions} = & 25.08 \text{ metric tons/year} & \text{as eCO2} \\ \end{array}$ 

### REFERENCES

- California Air Resources Board (CARB), California Climate Action Registry, ICLEI, and the Climate Registry, *Local Government Operations Protocol*, September 25, 2008.
- Department of General Services (DGS), 2007. *Green California Schools* "*Grid Neutral By Design*", prepared by David Thorman, A.I.A., Roy McBrayer, and Rob Cook.
- Sacramento Metropolitan Air Quality Management District (SMAQMD), 2009. *Guide to Air Quality Assessment*. December 2009.

# Appendix D Biological Database Reports

### CNPS Inventory of Rare and Endangered Plants

Status: Plant Press Manager window with 9 items - Tue, Nov. 9, 2010, 12:13 b

Standard List - with Plant Press controls

### **ECOLOGICAL REPORT**

| scientific                                    | family           | life form                                 | blooming    | communities                                                                                                                                       | elevation           | CNPS         |
|-----------------------------------------------|------------------|-------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|
| Balsamorhiza<br>macrolepis var.<br>macrolepis | Asteraceae       | perennial herb                            | Mar-Jun     | Chaparral (Chprl) Cismontane woodland (CmWld) Valley and foothill grassland (VFGrs)/sometimes serpentinite                                        | 90 - 1555<br>meters | List<br>1B.2 |
| Cordylanthus<br>mollis ssp.<br>hispidus       | Scrophulariaceae | annual herb<br>hemiparasitic              | Jun-<br>Sep | •Meadows and seeps<br>(Medws)<br>•Playas (Plyas)<br>•Valley and foothill<br>grassland<br>(VFGrs)/alkaline                                         | 1 - 155<br>meters   | List<br>1B.1 |
| Downingia pusilla                             | Campanulaceae    | annual herb                               | Mar-<br>May | Valley and foothill grassland     (VFGrs)(mesic)     Vernal pools (VnPls)                                                                         | 1 - 445<br>meters   | List<br>2.2  |
| Gratiola<br>heterosepala                      | Scrophulariaceae | annual herb                               | Apr-<br>Aug | •Marshes and swamps<br>(MshSw)(lake<br>margins)<br>•Vernal pools<br>(VnPls)/clay                                                                  | 10 - 2375<br>meters | List<br>1B.2 |
| Hibiscus<br>lasiocarpos var.<br>occidentalis  | Malvaceae        | perennial<br>rhizomatous<br>herb emergent | Jun-<br>Sep | •Marshes and swamps<br>(MshSw)(freshwater)                                                                                                        | 0 - 120<br>meters   | List<br>1B.2 |
| Juncus<br>leiospermus var.<br>ahartii         | Juncaceae        | annual herb                               | Mar-<br>May | Valley and foothill grassland (VFGrs)(mesic)                                                                                                      | 30 - 229<br>meters  | List<br>1B.2 |
| Juncus<br>leiospermus var.<br>leiospermus     | Juncaceae        | annual herb                               | Mar-<br>May | Chaparral (Chprl) Cismontane woodland (CmWld) Meadows and seeps (Medws) Valley and foothill grassland (VFGrs) Vernal pools (VnPls)/vernally mesic | 35 - 1020<br>meters | List<br>1B.1 |
| Legenere limosa                               | Campanulaceae    | annual herb                               | Apr-Jun     | •Vernal pools (VnPls)                                                                                                                             | 1 - 880<br>meters   | List<br>1B.1 |
| Sagittaria<br>sanfordii                       | Alismataceae     | perennial<br>rhizomatous<br>herb emergent | May-<br>Oct | •Marshes and swamps<br>(MshSw)(assorted<br>shallow freshwater)                                                                                    | 0 - 650<br>meters   | List<br>1B.2 |

# U.S. Fish & Wildlife Service Sacramento Fish & Wildlife Office

Federal Endangered and Threatened Species that Occur in or may be Affected by Projects in the RIO LINDA (512B)
U.S.G.S. 7 1/2 Minute Quad

Database last updated: September 18, 2011 Report Date: October 16, 2011

### **Listed Species**

Invertebrates
Branchinecta lynchi
vernal pool fairy shrimp (T)

Desmocerus californicus dimorphus valley elderberry longhorn beetle (T)

Lepidurus packardi vernal pool tadpole shrimp (E)

### Fish

Hypomesus transpacificus delta smelt (T)

Oncorhynchus mykiss
Central Valley steelhead (T) (NMFS)
Critical habitat, Central Valley steelhead (X) (NMFS)

Oncorhynchus tshawytscha
Central Valley spring-run chinook salmon (T) (NMFS)
winter-run chinook salmon, Sacramento River (E) (NMFS)

### Amphibians

Ambystoma californiense
California tiger salamander, central population (T)

Rana draytonii
California red-legged frog (T)

### Reptiles

Thamnophis gigas giant garter snake (T)

### Key:

- (E) Endangered Listed as being in danger of extinction.
- (T) Threatened Listed as likely to become endangered within the foreseeable future.
- (P) Proposed Officially proposed in the Federal Register for listing as endangered or threatened.
- (NMFS) Species under the Jurisdiction of the <u>National Oceanic & Atmospheric Administration Fisheries Service</u>. Consult with them directly about these species.

Critical Habitat - Area essential to the conservation of a species.

- (PX) Proposed Critical Habitat The species is already listed. Critical habitat is being proposed for it.
- (C) Candidate Candidate to become a proposed species.
- (V) Vacated by a court order. Not currently in effect. Being reviewed by the Service.
- (X) Critical Habitat designated for this species



# United States Department of the Interior FISH AND WILDLIFE SERVICE

Sacramento Fish and Wildlife Office 2800 Cottage Way, Room W-2605 Sacramento, California 95825



October 16, 2011

Document Number: 111016021306

Erich L Fischer ESA 2600 Capitol Avenue Suite 200 Sacramento, CA 95816

Subject: Species List for Mather Specific Plan

Dear: Mr. Fischer

We are sending this official species list in response to your October 16, 2011 request for information about endangered and threatened species. The list covers the California counties and/or U.S. Geological Survey 7½ minute quad or quads you requested.

Our database was developed primarily to assist Federal agencies that are consulting with us. Therefore, our lists include all of the sensitive species that have been found in a certain area and also ones that may be affected by projects in the area. For example, a fish may be on the list for a quad if it lives somewhere downstream from that quad. Birds are included even if they only migrate through an area. In other words, we include all of the species we want people to consider when they do something that affects the environment.

Please read Important Information About Your Species List (below). It explains how we made the list and describes your responsibilities under the Endangered Species Act.

Our database is constantly updated as species are proposed, listed and delisted. If you address proposed and candidate species in your planning, this should not be a problem. However, we recommend that you get an updated list every 90 days. That would be January 14, 2012.

Please contact us if your project may affect endangered or threatened species or if you have any questions about the attached list or your responsibilities under the Endangered Species Act. A list of Endangered Species Program contacts can be found at <a href="https://www.fws.gov/sacramento/es/branches.htm">www.fws.gov/sacramento/es/branches.htm</a>.

**Endangered Species Division** 



|                                                              | T              | T           | T                            |               | _Elemen | it Occ I | Ranks- |   |   |    | -Populatio         | n Status-      | -Presen         | се |         |
|--------------------------------------------------------------|----------------|-------------|------------------------------|---------------|---------|----------|--------|---|---|----|--------------------|----------------|-----------------|----|---------|
| Name (Scientific/Common)                                     | CNDDB<br>Ranks | Other Lists | Listing Status               | Total<br>EO's | Α       | В        | С      | D | X | U  | Historic<br>>20 yr | Recent <=20 yr | Pres.<br>Extant |    | Extirp. |
| Accipiter cooperii<br>Cooper's hawk                          | G5<br>S3       | CDFG:       | Fed: None<br>Cal: None       | 101<br>S:3    | 1       | 0        | 1      | 0 | 0 | 1  | 1                  | 2              | 3               | 0  | 0       |
| Agelaius tricolor tricolored blackbird                       | G2G3<br>S2     | CDFG: SC    | Fed: None<br>Cal: None       | 427<br>S:17   | 2       | 0        | 1      | 0 | 7 | 7  | 7                  | 10             | 10              | 4  | 3       |
| Alkali Meadow                                                | G3<br>S2.1     |             | Fed: None<br>Cal: None       | 8<br>S:1      | 0       | 0        | 0      | 0 | 0 | 1  | 1                  | 0              | 1               | 0  | 0       |
| Alkali Seep                                                  | G3<br>S2.1     |             | Fed: None<br>Cal: None       | 10<br>S:1     | 0       | 0        | 0      | 0 | 0 | 1  | 1                  | 0              | 1               | 0  | 0       |
| Ammodramus savannarum grasshopper sparrow                    | G5<br>S2       | CDFG: SC    | Fed: None<br>Cal: None       | 16<br>S:1     | 0       | 1        | 0      | 0 | 0 | 0  | 0                  | 1              | 1               | 0  | 0       |
| Andrena subapasta<br>A vernal pool andrenid bee              | G1G3<br>S1S3   | CDFG:       | Fed: None<br>Cal: None       | 5<br>S:2      | 0       | 0        | 0      | 0 | 0 | 2  | 2                  | 0              | 2               | 0  | 0       |
| Aquila chrysaetos<br>golden eagle                            | G5<br>S3       | CDFG:       | Fed: None<br>Cal: None       | 141<br>S:1    | 0       | 1        | 0      | 0 | 0 | 0  | 0                  | 1              | 1               | 0  | 0       |
| Archoplites interruptus Sacramento perch                     | G3<br>S1       | CDFG: SC    | Fed: None<br>Cal: None       | 5<br>S:1      | 0       | 0        | 0      | 0 | 0 | 1  | 1                  | 0              | 1               | 0  | 0       |
| Ardea alba great egret                                       | G5<br>S4       | CDFG:       | Fed: None<br>Cal: None       | 35<br>S:5     | 3       | 2        | 0      | 0 | 0 | 0  | 1                  | 4              | 5               | 0  | 0       |
| Ardea herodias great blue heron                              | G5<br>S4       | CDFG:       | Fed: None<br>Cal: None       | 132<br>S:7    | 2       | 4        | 1      | 0 | 0 | 0  | 0                  | 7              | 7               | 0  | 0       |
| Athene cunicularia burrowing owl                             | G4<br>S2       | CDFG: SC    | Fed: None<br>Cal: None       | 1231<br>S:39  | 2       | 5        | 15     | 1 | 5 | 11 | 11                 | 28             | 34              | 3  | 2       |
| Balsamorhiza macrolepis var. macrolepis big-scale balsamroot | G3G4T2<br>S2.2 | CNPS: 1B.2  | Fed: None<br>Cal: None       | 25<br>S:1     | 0       | 0        | 0      | 0 | 0 | 1  | 1                  | 0              | 1               | 0  | 0       |
| Branchinecta lynchi<br>vernal pool fairy shrimp              | G3<br>S2S3     | CDFG:       | Fed: Threatened<br>Cal: None | 601<br>S:60   | 8       | 12       | 6      | 3 | 0 | 31 | 0                  | 60             | 60              | 0  | 0       |
| Branchinecta mesovallensis midvalley fairy shrimp            | G2<br>S2       | CDFG:       | Fed: None<br>Cal: None       | 99<br>S:6     | 0       | 1        | 0      | 0 | 0 | 5  | 1                  | 5              | 6               | 0  | 0       |
| Buteo regalis<br>ferruginous hawk                            | G4<br>S3S4     | CDFG:       | Fed: None<br>Cal: None       | 76<br>S:1     | 1       | 0        | 0      | 0 | 0 | 0  | 0                  | 1              | 1               | 0  | 0       |

|                                                                     |                | 1           |                              | Т             | _Elemer | nt Occ I | Ranks- |   |   |    | Populatio          | n Status-         | -Presen         | се               |         |
|---------------------------------------------------------------------|----------------|-------------|------------------------------|---------------|---------|----------|--------|---|---|----|--------------------|-------------------|-----------------|------------------|---------|
| Name (Scientific/Common)                                            | CNDDB<br>Ranks | Other Lists | Listing Status               | Total<br>EO's | Α       | В        | С      | D | x | U  | Historic<br>>20 yr | Recent<br><=20 yr | Pres.<br>Extant | Poss.<br>Extirp. | Extirp. |
| Buteo swainsoni<br>Swainson's hawk                                  | G5<br>S2       | CDFG:       | Fed: None<br>Cal: Threatened | 1680<br>S:98  | 6       | 25       | 8      | 0 | 1 | 58 | 4                  | 94                | 97              | 1                | 0       |
| Cordylanthus mollis ssp. hispidus hispid bird's-beak                | G2T2<br>S2.1   | CNPS: 1B.1  | Fed: None<br>Cal: None       | 29<br>S:1     | 0       | 1        | 0      | 0 | 0 | 0  | 0                  | 1                 | 1               | 0                | 0       |
| Desmocerus californicus dimorphus valley elderberry longhorn beetle | G3T2<br>S2     | CDFG:       | Fed: Threatened<br>Cal: None | 201<br>S:14   | 0       | 0        | 2      | 0 | 0 | 12 | 11                 | 3                 | 14              | 0                | 0       |
| Downingia pusilla<br>dwarf downingia                                | G3<br>S3.1     | CNPS: 2.2   | Fed: None<br>Cal: None       | 117<br>S:16   | 2       | 7        | 3      | 0 | 3 | 1  | 4                  | 12                | 13              | 1                | 2       |
| Dumontia oregonensis<br>hairy water flea                            | G1G3<br>S1     | CDFG:       | Fed: None<br>Cal: None       | 2<br>S:1      | 0       | 0        | 0      | 0 | 0 | 1  | 0                  | 1                 | 1               | 0                | 0       |
| Egretta thula snowy egret                                           | G5<br>S4       | CDFG:       | Fed: None<br>Cal: None       | 15<br>S:1     | 1       | 0        | 0      | 0 | 0 | 0  | 1                  | 0                 | 1               | 0                | 0       |
| Elanus leucurus<br>white-tailed kite                                | G5<br>S3       | CDFG:       | Fed: None<br>Cal: None       | 156<br>S:22   | 4       | 11       | 1      | 0 | 0 | 6  | 9                  | 13                | 22              | 0                | 0       |
| Elderberry Savanna                                                  | G2<br>S2.1     |             | Fed: None<br>Cal: None       | 4<br>S:3      | 0       | 0        | 1      | 0 | 0 | 2  | 3                  | 0                 | 3               | 0                | 0       |
| Emys marmorata western pond turtle                                  | G3G4<br>S3     | CDFG: SC    | Fed: None<br>Cal: None       | 1109<br>S:4   | 0       | 3        | 0      | 0 | 0 | 1  | 0                  | 4                 | 4               | 0                | 0       |
| Fritillaria agrestis stinkbells                                     | G3<br>S3.2     | CNPS: 4.2   | Fed: None<br>Cal: None       | 32<br>S:4     | 0       | 1        | 1      | 0 | 2 | 0  | 2                  | 2                 | 2               | 2                | 0       |
| Gratiola heterosepala<br>Boggs Lake hedge-hyssop                    | G3<br>S3.1     | CNPS: 1B.2  | Fed: None<br>Cal: Endangered | 90<br>S:4     | 1       | 2        | 0      | 0 | 1 | 0  | 2                  | 2                 | 3               | 1                | 0       |
| Great Valley Cottonwood Riparian Forest                             | G2<br>S2.1     |             | Fed: None<br>Cal: None       | 56<br>S:1     | 0       | 0        | 0      | 0 | 0 | 1  | 1                  | 0                 | 1               | 0                | 0       |
| Hibiscus lasiocarpos var. occidentalis woolly rose-mallow           | G4<br>S2.2     | CNPS: 2.2   | Fed: None<br>Cal: None       | 132<br>S:1    | 0       | 0        | 0      | 1 | 0 | 0  | 1                  | 0                 | 1               | 0                | 0       |
| Hydrochara rickseckeri<br>Ricksecker's water scavenger beetle       | G1G2<br>S1S2   | CDFG:       | Fed: None<br>Cal: None       | 13<br>S:2     | 0       | 0        | 0      | 0 | 0 | 2  | 1                  | 1                 | 2               | 0                | 0       |
| Juncus leiospermus var. ahartii<br>Ahart's dwarf rush               | G2T1<br>S1.2   | CNPS: 1B.2  | Fed: None<br>Cal: None       | 13<br>S:1     | 0       | 0        | 1      | 0 | 0 | 0  | 0                  | 1                 | 1               | 0                | 0       |

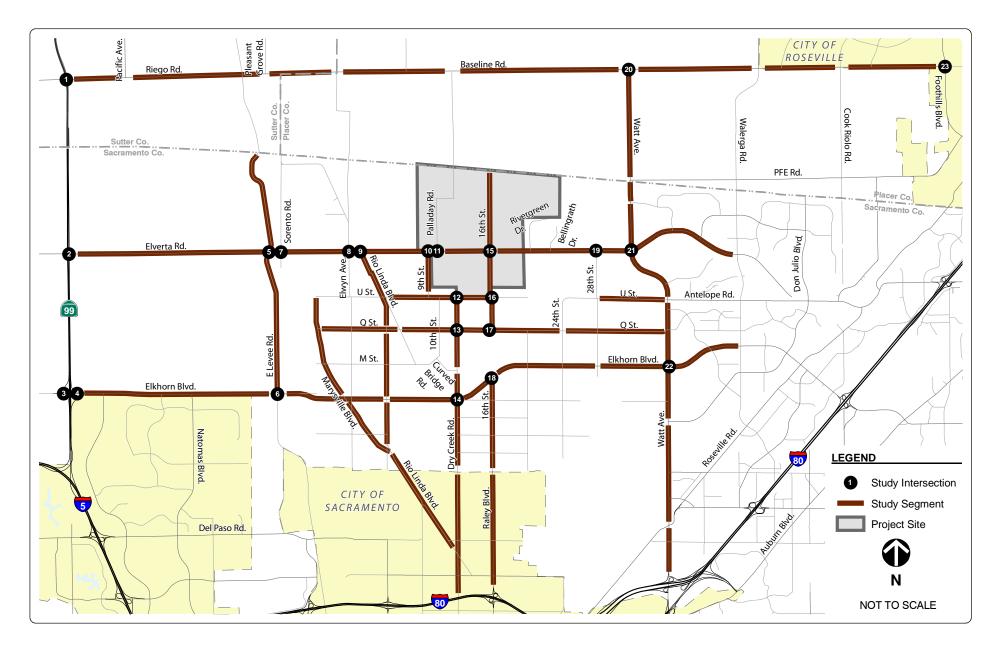
|                                                                                 |                | T           | T                                  |               | _Elemen | t Occ I | Ranks- |   |   |    | ⊤Populatio         | n Status-      | -Presen         | се               |         |
|---------------------------------------------------------------------------------|----------------|-------------|------------------------------------|---------------|---------|---------|--------|---|---|----|--------------------|----------------|-----------------|------------------|---------|
| Name (Scientific/Common)                                                        | CNDDB<br>Ranks | Other Lists | Listing Status                     | Total<br>EO's | A       | В       | С      | D | X | U  | Historic<br>>20 yr | Recent <=20 yr | Pres.<br>Extant | Poss.<br>Extirp. | Extirp. |
| Juncus leiospermus var. leiospermus<br>Red Bluff dwarf rush                     | G2T2<br>S2.2   | CNPS: 1B.1  | Fed: None<br>Cal: None             | 56<br>S:1     | 0       | 0       | 0      | 0 | 0 | 1  | 1                  | 0              | 1               | 0                | 0       |
| Lasiurus cinereus<br>hoary bat                                                  | G5<br>S4?      | CDFG:       | Fed: None<br>Cal: None             | 235<br>S:1    | 0       | 0       | 0      | 0 | 0 | 1  | 0                  | 1              | 1               | 0                | 0       |
| Legenere limosa<br>legenere                                                     | G2<br>S2.2     | CNPS: 1B.1  | Fed: None<br>Cal: None             | 72<br>S:10    | 0       | 6       | 1      | 0 | 2 | 1  | 2                  | 8              | 8               | 0                | 2       |
| Lepidurus packardi<br>vernal pool tadpole shrimp                                | G3<br>S2S3     | CDFG:       | Fed: Endangered<br>Cal: None       | 249<br>S:28   | 4       | 5       | 2      | 0 | 0 | 17 | 0                  | 28             | 28              | 0                | 0       |
| Linderiella occidentalis<br>California linderiella                              | G3<br>S2S3     | CDFG:       | Fed: None<br>Cal: None             | 369<br>S:71   | 6       | 5       | 6      | 1 | 0 | 53 | 0                  | 71             | 71              | 0                | 0       |
| Northern Claypan Vernal Pool                                                    | G1<br>S1.1     |             | Fed: None<br>Cal: None             | 21<br>S:1     | 0       | 0       | 0      | 0 | 0 | 1  | 1                  | 0              | 1               | 0                | 0       |
| Northern Hardpan Vernal Pool                                                    | G3<br>S3.1     |             | Fed: None<br>Cal: None             | 126<br>S:12   | 0       | 0       | 0      | 0 | 0 | 12 | 12                 | 0              | 12              | 0                | 0       |
| Northern Volcanic Mud Flow Vernal Pool                                          | G1<br>S1.1     |             | Fed: None<br>Cal: None             | 7<br>S:3      | 0       | 0       | 0      | 0 | 0 | 3  | 3                  | 0              | 3               | 0                | 0       |
| Nycticorax nycticorax black-crowned night heron                                 | G5<br>S3       | CDFG:       | Fed: None<br>Cal: None             | 25<br>S:2     | 2       | 0       | 0      | 0 | 0 | 0  | 1                  | 1              | 2               | 0                | 0       |
| Oncorhynchus tshawytscha<br>chinook salmon - Central Valley spring-run<br>ESU   | G5<br>S1       | CDFG:       | Fed: Threatened<br>Cal: Threatened | 13<br>S:1     | 0       | 0       | 0      | 1 | 0 | 0  | 0                  | 1              | 1               | 0                | 0       |
| Oncorhynchus tshawytscha<br>chinook salmon - Sacramento River<br>winter-run ESU | G5<br>S1       | CDFG:       | Fed: Endangered<br>Cal: Endangered | 2<br>S:1      | 0       | 0       | 0      | 1 | 0 | 0  | 0                  | 1              | 1               | 0                | 0       |
| Orcuttia viscida<br>Sacramento Orcutt grass                                     | G1<br>S1.1     | CNPS: 1B.1  | Fed: Endangered<br>Cal: Endangered | 11<br>S:1     | 0       | 0       | 0      | 0 | 0 | 1  | 0                  | 1              | 1               | 0                | 0       |
| Pogonichthys macrolepidotus<br>Sacramento splittail                             | G2<br>S2       | CDFG: SC    | Fed: None<br>Cal: None             | 15<br>S:1     | 0       | 1       | 0      | 0 | 0 | 0  | 0                  | 1              | 1               | 0                | 0       |
| Progne subis purple martin                                                      | G5<br>S3       | CDFG: SC    | Fed: None<br>Cal: None             | 45<br>S:11    | 0       | 1       | 1      | 0 | 0 | 9  | 0                  | 11             | 11              | 0                | 0       |
| Riparia riparia<br>bank swallow                                                 | G5<br>S2S3     | CDFG:       | Fed: None<br>Cal: Threatened       | 190<br>S:5    | 0       | 3       | 0      | 0 | 0 | 2  | 4                  | 1              | 5               | 0                | 0       |
|                                                                                 |                |             | 1                                  |               |         |         |        |   |   |    |                    |                |                 |                  |         |

|                                             |                |             |                                 | 1             | _Elemer | it Occ | Ranks- |   |   |    |                    | n Status-         | l               |   |         |
|---------------------------------------------|----------------|-------------|---------------------------------|---------------|---------|--------|--------|---|---|----|--------------------|-------------------|-----------------|---|---------|
| Name (Scientific/Common)                    | CNDDB<br>Ranks | Other Lists | Listing Status                  | Total<br>EO's | Α       | В      | С      | D | X | U  | Historic<br>>20 yr | Recent<br><=20 yr | Pres.<br>Extant |   | Extirp. |
| Sagittaria sanfordii<br>Sanford's arrowhead | G3<br>S3.2     | CNPS: 1B.2  | Fed: None<br>Cal: None          | 68<br>S:16    | 2       | 4      | 6      | 1 | 3 | 0  | 0                  | 16                | 13              | 3 | 0       |
| Spea hammondii<br>western spadefoot         | G3<br>S3       | CDFG: SC    | Fed: None<br>Cal: None          | 406<br>S:7    | 0       | 1      | 1      | 2 | 0 | 3  | 1                  | 6                 | 7               | 0 | 0       |
| Taxidea taxus<br>American badger            | G5<br>S4       | CDFG: SC    | Fed: None<br>Cal: None          | 442<br>S:2    | 0       | 0      | 0      | 0 | 0 | 2  | 1                  | 1                 | 2               | 0 | 0       |
| Thamnophis gigas giant garter snake         | G2G3<br>S2S3   | CDFG:       | Fed: Threatened Cal: Threatened | 260<br>S:76   | 10      | 20     | 15     | 4 | 2 | 25 | 16                 | 60                | 74              | 2 | 0       |

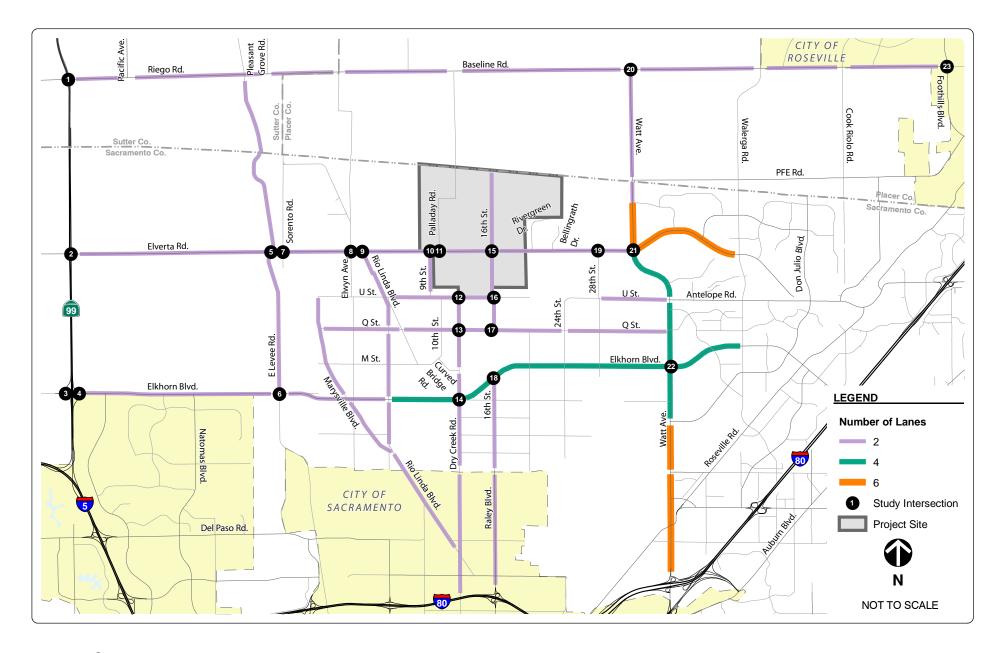
# Appendix E Confidential Cultural Appendix

## **APPENDIX E**

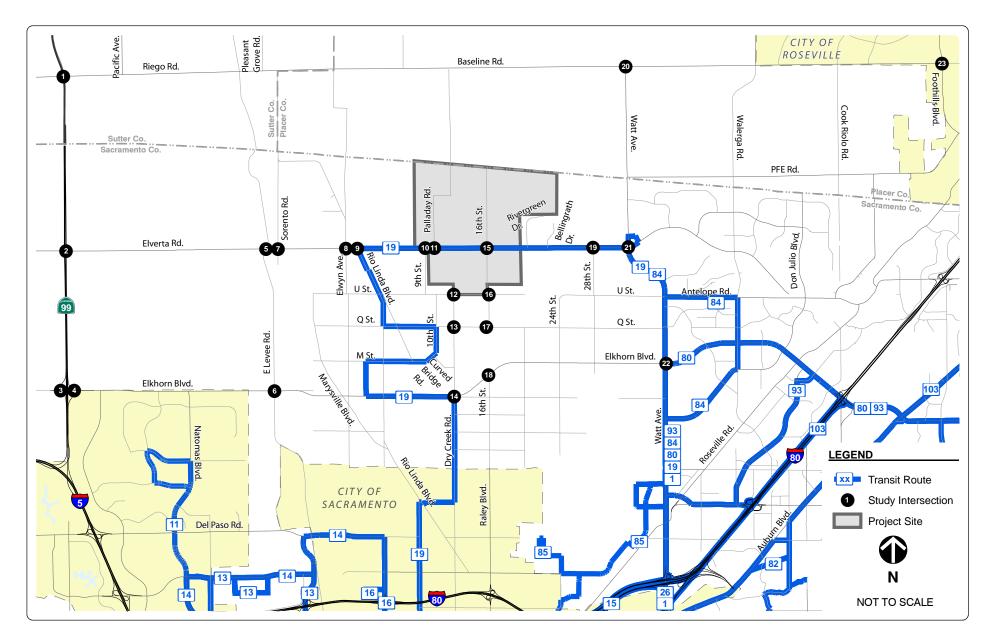
## Cultural Resources Report


The Cultural Resources Report is confidential and therefore not included in this distribution.

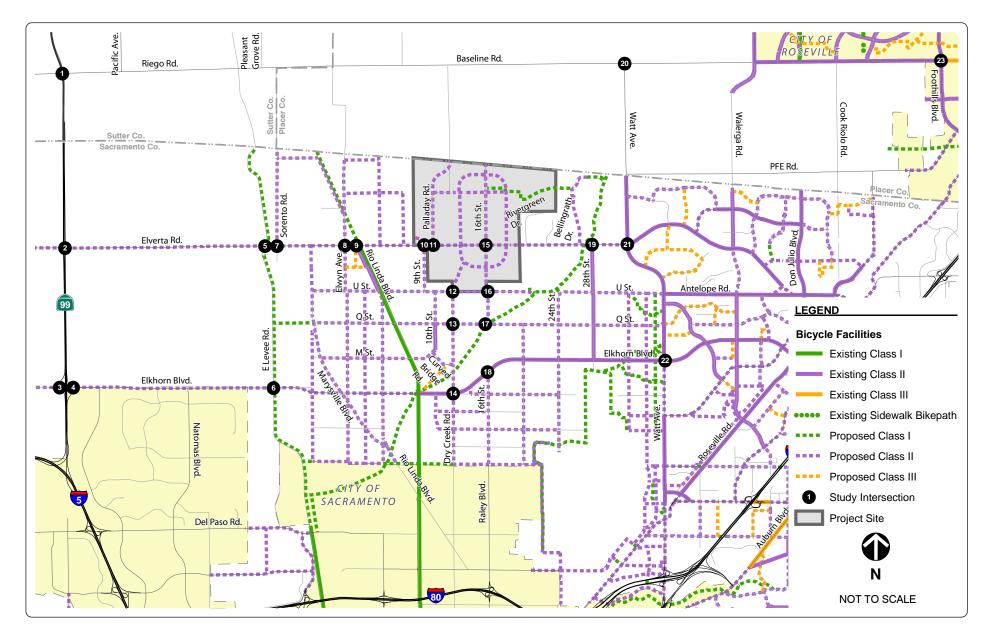
# Appendix F Transportation Analysis


## **APPENDIX F**

## Transportation and Traffic


**Note to reviewers:** The first part of this Appendix contains materials removed from the transportation and traffic review to streamline Section 3.14 and 4.14 of the EIS. The level of service (LOS) calculations sheets associated with the transportation and traffic analysis (500 pages+) are not provided in the paper version of the EIS. They are available on the CD version and online version of the EIS.







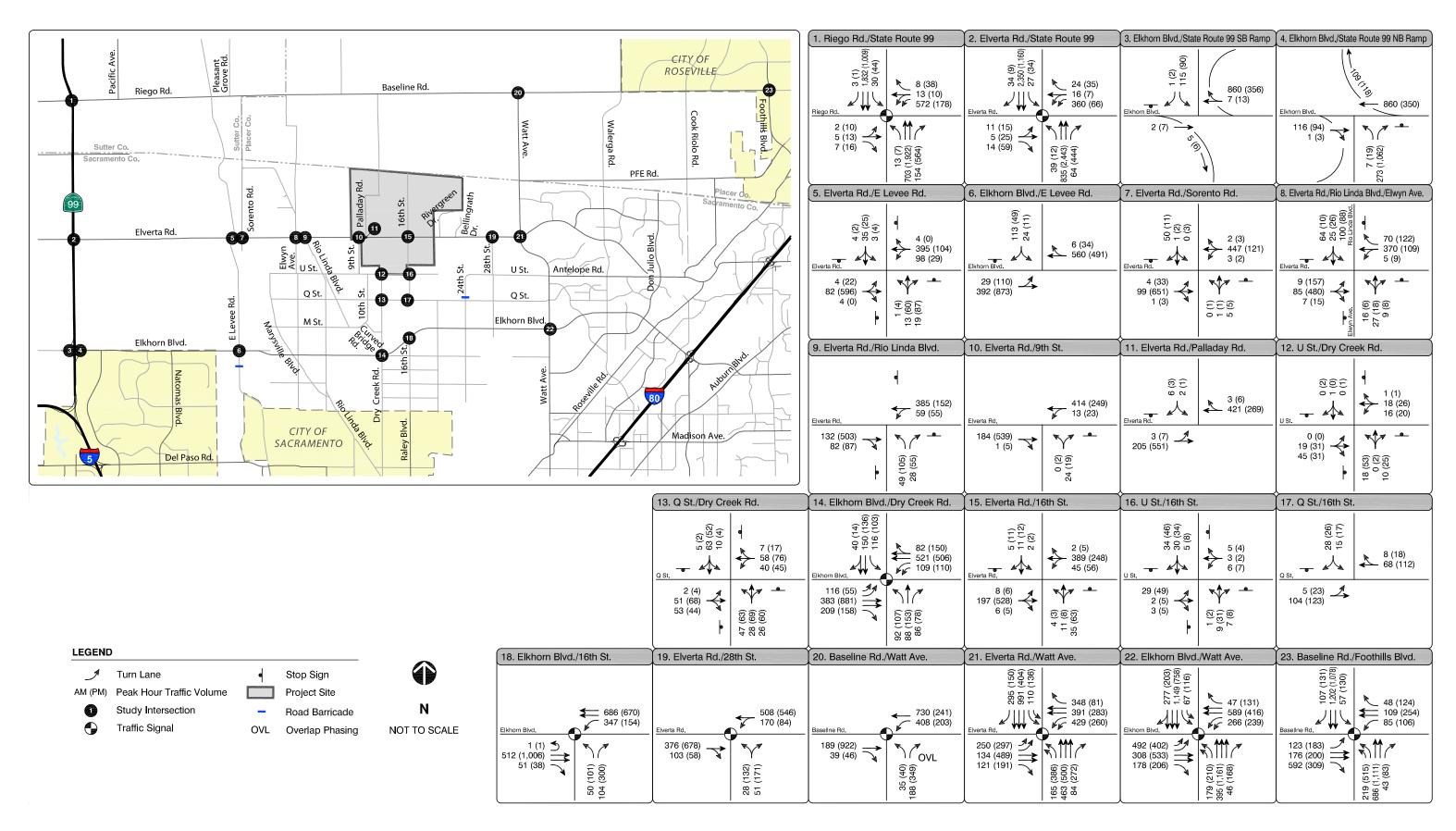










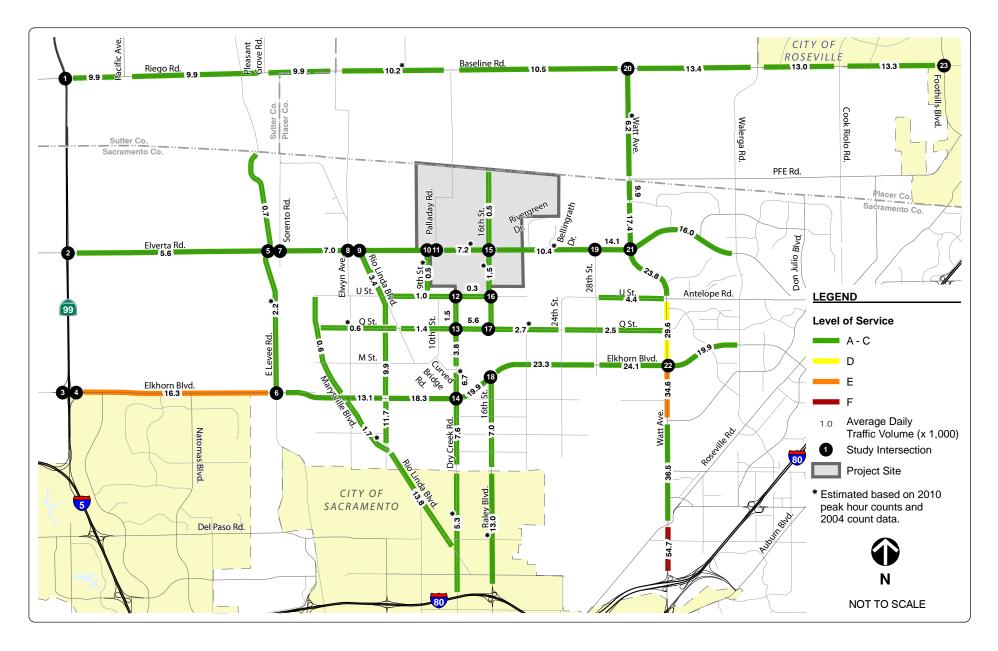




TABLE 1
PEAK HOUR INTERSECTION LOS – EXISTING CONDITIONS

|          | Jurisdiction Jurisdiction              |                                         |                  |      |           |     |  |  |  |  |  |  |
|----------|----------------------------------------|-----------------------------------------|------------------|------|-----------|-----|--|--|--|--|--|--|
|          |                                        | (Minimum                                |                  | Peak | Delay     |     |  |  |  |  |  |  |
|          | Intersection                           | Acceptable LOS)                         | Control          | Hour | (sec/veh) | LOS |  |  |  |  |  |  |
|          |                                        | , ,                                     |                  | AM   | 57        | Е   |  |  |  |  |  |  |
| 1        | SR 99 / Riego Road                     | Caltrans (E)                            | Traffic Signal   | PM   | 21        | С   |  |  |  |  |  |  |
|          |                                        |                                         |                  | AM   | 70        | Е   |  |  |  |  |  |  |
| 2        | SR 99 / Elverta Road                   | Caltrans (E)                            | Traffic Signal   | PM   | 26        | C   |  |  |  |  |  |  |
|          |                                        |                                         |                  | AM   | 15        | В   |  |  |  |  |  |  |
| 3        | SR 99 SB Off-Ramp/Elkhorn              | Caltrans (E)                            | Side Street Stop | PM   | 11        | В   |  |  |  |  |  |  |
|          |                                        |                                         |                  | AM   | 23        | С   |  |  |  |  |  |  |
| 4        | SR 99 NB Off-Ramp/Elkhorn              | Caltrans (E)                            | Side Street Stop | PM   | 141       | F   |  |  |  |  |  |  |
|          |                                        |                                         |                  | AM   | 15        | C   |  |  |  |  |  |  |
| 5        | Elverta Road / E. Levee Rd             | Sacramento Co. (E)                      | All Way Stop     | PM   | 27        | D   |  |  |  |  |  |  |
|          |                                        |                                         |                  | AM   | 21        | С   |  |  |  |  |  |  |
| 6        | Elkhorn Blvd / E. Levee Rd             | Sacramento Co. (E)                      | Side Street Stop | PM   |           | С   |  |  |  |  |  |  |
|          |                                        |                                         |                  |      | 16        | _   |  |  |  |  |  |  |
| 7        | Elverta Road / Sorento Rd              | Sacramento Co. (E)                      | Side Street Stop | AM   | 13        | В   |  |  |  |  |  |  |
|          |                                        | ` ,                                     |                  | PM   | 29        | D   |  |  |  |  |  |  |
| 8        | Elverta Road / Elwyn Road              | Sacramento Co. (E)                      | All Way Stop     | AM   | 14        | В   |  |  |  |  |  |  |
|          |                                        | (=)                                     |                  | PM   | 37        | Е   |  |  |  |  |  |  |
| 9        | Elverta Rd / Rio Linda Blvd            | Sacramento Co. (E)                      | All Way Stop     | AM   | 13        | В   |  |  |  |  |  |  |
| J        | Errena Na / No Erraa Biva              | Odoramento Co. (L)                      | 7 til VVay Otop  | PM   | 19        | С   |  |  |  |  |  |  |
| 10       | Elverta Road / 9th Street              | Sacramento Co. (E)                      | Side Street Stop | AM   | 10        | Α   |  |  |  |  |  |  |
| 10       | Liverta Road / 5 Officet               | Odciamento Oo. (L)                      | Olde Ollect Olop | PM   | 13        | В   |  |  |  |  |  |  |
| 44       | Chrosto Dood / Dolladov Dd             | Cooromonto Co. (E)                      | Cido Ctroot Cton | AM   | 12        | В   |  |  |  |  |  |  |
| 11       | Elverta Road / Palladay Rd             | Sacramento Co. (E)                      | Side Street Stop | PM   | 12        | В   |  |  |  |  |  |  |
| 40       | II Chroat / Dr. Croal, Dood            | Coordinate Co. (E)                      | All May Chan     | AM   | 7         | Α   |  |  |  |  |  |  |
| 12       | U Street / Dry Creek Road              | Sacramento Co. (E)                      | All Way Stop     | PM   | 8         | Α   |  |  |  |  |  |  |
| 40       | O Otrocal / Day One als Decad          | 0( 0 /5)                                | AH M Ot          | AM   | 9         | Α   |  |  |  |  |  |  |
| 13       | Q Street / Dry Creek Road              | Sacramento Co. (E)                      | All Way Stop     | PM   | 9         | Α   |  |  |  |  |  |  |
|          |                                        | 0 (5)                                   | T (1 0)          | AM   | 20        | В   |  |  |  |  |  |  |
| 14       | Elkhorn Blvd/Dry Creek Rd              | Sacramento Co. (E)                      | Traffic Signal   | PM   | 20        | В   |  |  |  |  |  |  |
|          |                                        |                                         |                  | AM   | 16        | С   |  |  |  |  |  |  |
| 15       | Elverta Road / 16 <sup>th</sup> Street | Sacramento Co. (E)                      | Side Street Stop | PM   | 18        | С   |  |  |  |  |  |  |
|          |                                        |                                         |                  | AM   | 7         | Α   |  |  |  |  |  |  |
| 16       | U Street / 16 <sup>th</sup> Street     | Sacramento Co. (E)                      | All Way Stop     | PM   | 8         | Α   |  |  |  |  |  |  |
|          |                                        |                                         |                  | AM   | 9         | Α   |  |  |  |  |  |  |
| 17       | Q Street / 16 <sup>th</sup> Street     | Sacramento Co. (E)                      | Side Street Stop | PM   | 10        | A   |  |  |  |  |  |  |
|          |                                        |                                         |                  | AM   | 15        | В   |  |  |  |  |  |  |
| 18       | Elkhorn Blvd / 16 <sup>th</sup> Street | Sacramento Co. (E)                      | Traffic Signal   | PM   | 64        | E   |  |  |  |  |  |  |
|          |                                        |                                         |                  | AM   | 69        | E   |  |  |  |  |  |  |
| 19       | Elverta Road / 28th Street             | Sacramento Co. (E)                      | Traffic Signal   | PM   | 137       | F   |  |  |  |  |  |  |
|          |                                        | 0 ( 7)                                  |                  | AM   | 76        | E   |  |  |  |  |  |  |
| 20       | Baseline Road / Watt Ave               | County of Placer -                      | Traffic Signal   |      |           |     |  |  |  |  |  |  |
| $\vdash$ |                                        | Placer Vineyards (D)                    | -                | PM   | 33        | С   |  |  |  |  |  |  |
| 21       | Elverta Road / Watt Avenue             | Sacramento Co. (E)                      | Traffic Signal   | AM   | 35        | С   |  |  |  |  |  |  |
|          |                                        | ` '                                     | Ŭ.               | PM   | 31        | С   |  |  |  |  |  |  |
| 22       | Elkhorn Blvd / Watt Avenue             | Sacramento Co. (E)                      | Traffic Signal   | AM   | 52        | D   |  |  |  |  |  |  |
|          |                                        |                                         | - 3              | PM   | 37        | D   |  |  |  |  |  |  |
| 23       | Baseline Rd/Foothills Blvd             | City of Roseville (C)                   | Traffic Signal   | AM   | 49        | D   |  |  |  |  |  |  |
|          |                                        | , a a a a a a a a a a a a a a a a a a a |                  | PM   | 40        | D   |  |  |  |  |  |  |

Note: Bolded cells represent unacceptable operations.

SOURCE: Fehr & Peers, 2010





AVERAGE DAILY TRAFFIC VOLUMES
AND LEVEL OF SERVICE EXISTING CONDITIONS

Table 2
Daily Roadway Segment LOS – Existing Conditions

| Roadway                   | Segment                                            | Jurisdiction (Minimum Acceptable LOS)            | Number of<br>Lanes | ADT    | V/C<br>Ratio | LOS |
|---------------------------|----------------------------------------------------|--------------------------------------------------|--------------------|--------|--------------|-----|
|                           | SR 99 to Pacific Avenue                            | County of Sutter (D)                             | 2                  | 9,900  | 0.60         | С   |
|                           | Pacific Avenue to Pleasant Grove Road (South)      | County of Sutter (D)                             | 2                  | 9,900  | 0.60         | С   |
| Road                      | Pleasant Grove Road (South) to Locust Road         | County of Placer - Placer Vineyards Frontage (D) | 2                  | 9,900  | 0.60         | С   |
| saseline                  | Locust Road to Palladay Road                       | County of Placer - Placer Vineyards Frontage (D) | 2                  | 10,200 | 0.57         | А   |
| Riego Road /Baseline Road | Palladay Road to Watt Avenue                       | County of Placer - Placer Vineyards Frontage (D) | 2                  | 10,500 | 0.58         | А   |
| Riego F                   | Watt Avenue to Walerga Road                        | County of Placer - Placer Vineyards Frontage (D) | 2                  | 13,400 | 0.74         | С   |
|                           | Walerga Road to Cook-Riolo Road                    | County of Placer (C)                             | 2                  | 13,000 | 0.72         | С   |
|                           | Cook-Riolo Road to Foothills Boulevard             | County of Placer (C)                             | 2                  | 13,300 | 0.74         | С   |
|                           | SR 99 to E. Levee Road                             | County of Sacramento - Rural (D)                 | 2                  | 5,600  | 0.31         | А   |
|                           | E. Levee Road to Palladay Road                     | County of Sacramento - Urban (E)                 | 2                  | 7,000  | 0.39         | А   |
| Elverta Road              | Palladay Road to 16 <sup>th</sup> Street           | County of Sacramento - Urban (E)                 | 2                  | 7,200  | 0.40         | А   |
| Elvert                    | 16 <sup>th</sup> Street to 28 <sup>th</sup> Street | County of Sacramento - Urban (E)                 | 2                  | 10,400 | 0.58         | А   |
|                           | 28 <sup>th</sup> Street to Watt Avenue             | County of Sacramento - Urban (E)                 | 2                  | 14,100 | 0.78         | С   |
|                           | Watt Avenue to Walerga Road                        | County of Sacramento - Urban (E)                 | 6                  | 16,000 | 0.30         | А   |

Table 2
Daily Roadway Segment LOS – Existing Conditions

| Roadway           | Segment                                            | Jurisdiction (Minimum Acceptable LOS)            | Number of<br>Lanes | ADT    | V/C<br>Ratio | LOS |
|-------------------|----------------------------------------------------|--------------------------------------------------|--------------------|--------|--------------|-----|
|                   | SR 99 to E. Levee Road                             | County of Sacramento - Urban (E)                 | 2                  | 16,300 | 0.91         | E   |
|                   | E. Levee Road to Rio Linda Boulevard               | County of Sacramento - Urban (E)                 | 2                  | 13,100 | 0.73         | С   |
| evard             | Rio Linda Boulevard to Dry Creek Road              | County of Sacramento - Urban (E)                 | 4                  | 18,300 | 0.51         | А   |
| Elkhorn Boulevard | Dry Creek Road to 16 <sup>th</sup> Street          | County of Sacramento - Urban (E)                 | 4                  | 19,900 | 0.55         | А   |
| Elkhol            | 16 <sup>th</sup> Street to 28 <sup>th</sup> Street | County of Sacramento - Urban (E)                 | 4                  | 23,300 | 0.65         | В   |
|                   | 28 <sup>th</sup> Street to Watt Avenue             | County of Sacramento - Urban (E)                 | 4                  | 24,100 | 0.67         | В   |
|                   | Watt Avenue to Walerga Road                        | County of Sacramento - Urban (E)                 | 4                  | 19,900 | 0.55         | А   |
|                   | Baseline Road to PFE Road                          | County of Placer - Placer Vineyards Frontage (D) | 2                  | 6,200  | 0.34         | А   |
|                   | PFE Road to Black Eagle Drive                      | County of Sacramento - Urban (E)                 | 2                  | 9,900  | 0.55         | А   |
|                   | Black Eagle Drive to Elverta Road                  | County of Sacramento - Urban (E)                 | 6                  | 17,400 | 0.32         | А   |
| Watt Avenue       | Elverta Road to Antelope Road                      | County of Sacramento - Urban (E)                 | 4                  | 23,800 | 0.66         | В   |
| Vatt A            | Antelope Road to Elkhorn Boulevard                 | County of Sacramento - Urban (E)                 | 4                  | 29,600 | 0.82         | D   |
|                   | Elkhorn Boulevard to Don Julio Boulevard           | County of Sacramento - Urban (E)                 | 4                  | 34,600 | 0.96         | E   |
|                   | Don Julio Boulevard to Roseville Road              | County of Sacramento - Urban (E)                 | 6                  | 36,500 | 0.68         | В   |
|                   | Roseville Road to I-80                             | County of Sacramento - Urban (E)                 | 6                  | 54,700 | 1.01         | F   |

Table 2
Daily Roadway Segment LOS – Existing Conditions

|                      |                                                    |                                       | Number of |        | V/C   |     |
|----------------------|----------------------------------------------------|---------------------------------------|-----------|--------|-------|-----|
| Roadway              | Segment                                            | Jurisdiction (Minimum Acceptable LOS) | Lanes     | ADT    | Ratio | LOS |
| ¥                    | Rio Linda Boulevard to Dry Creek Road              | County of Sacramento - Urban (E)      | 2         | 1,000  | 0.06  | Α   |
| U Street             | Dry Creek Road to 16 <sup>th</sup> Street          | County of Sacramento - Urban (E)      | 2         | 300    | 0.02  | А   |
|                      | 28 <sup>th</sup> Street to Watt Avenue             | County of Sacramento - Urban (E)      | 2         | 4,400  | 0.24  | А   |
|                      | Marysville Boulevard to Rio Linda Boulevard        | County of Sacramento - Urban (E)      | 2         | 600    | 0.03  | А   |
| ¥                    | Rio Linda Boulevard to Dry Creek Road              | County of Sacramento - Urban (E)      | 2         | 1,400  | 0.08  | А   |
| 2 Street             | Dry Creek Road to 16th Street                      | County of Sacramento - Urban (E)      | 2         | 5,600  | 0.31  | А   |
| Ø                    | 16 <sup>th</sup> Street to 24 <sup>th</sup> Street | County of Sacramento - Urban (E)      | 2         | 2,700  | 0.15  | Α   |
|                      | 24 <sup>th</sup> Street to Watt Avenue             | County of Sacramento - Urban (E)      | 2         | 2,500  | 0.14  | А   |
| East Levee Road      | Sutter County Line to Elverta Road                 | County of Sacramento - Urban (E)      | 2         | 700    | 0.04  | А   |
| East Lev             | Elverta Road to Elkhorn Boulevard                  | County of Sacramento - Urban (E)      | 2         | 2,200  | 0.12  | А   |
| evard                | Dry Creek Road to Rio Linda Boulevard              | City of Sacramento (D)                | 2         | 13,800 | 0.77  | С   |
| Marysville Boulevard | Rio Linda Boulevard to Elkhorn Boulevard           | County of Sacramento - Urban (E)      | 2         | 1,700  | 0.09  | A   |
| Mary:                | Elkhorn Boulevard to U Street                      | County of Sacramento - Urban (E)      | 2         | 600    | 0.03  | А   |

Table 2
Daily Roadway Segment LOS – Existing Conditions

| Roadway                 | Segment                                   | Jurisdiction (Minimum Acceptable LOS) | Number of<br>Lanes | ADT    | V/C<br>Ratio | LOS |
|-------------------------|-------------------------------------------|---------------------------------------|--------------------|--------|--------------|-----|
| 3lvd                    | Marysville Boulevard to Elkhorn Boulevard | County of Sacramento - Urban (E)      | 2                  | 11,700 | 0.65         | В   |
| Rio Linda Blvd          | Elkhorn Boulevard to Q Street             | County of Sacramento - Urban (E)      | 2                  | 9,900  | 0.55         | А   |
| Rio I                   | Q Street to Elverta Road                  | County of Sacramento - Urban (E)      | 2                  | 3,400  | 0.19         | А   |
| 9 <sup>th</sup> Street  | Elverta Road to U Street                  | County of Sacramento - Urban (E)      | 2                  | 500    | 0.03         | А   |
|                         | I-80 to Ascot Avenue                      | City of Sacramento (D)                | 2                  | 5,300  | 0.29         | А   |
| Road                    | Ascot Avenue to Elkhorn Boulevard         | County of Sacramento - Urban (E)      | 2                  | 7,600  | 0.42         | А   |
| Dry Creek Road          | Elkhorn Boulevard to Curved Bridge Road   | County of Sacramento - Urban (E)      | 2                  | 6,700  | 0.37         | А   |
| Dry C                   | Curved Bridge Road to Q Street            | County of Sacramento - Urban (E)      | 2                  | 3,800  | 0.21         | А   |
|                         | Q Street to U Street                      | County of Sacramento - Urban (E)      | 2                  | 1,500  | 0.08         | А   |
| ₩                       | Ascot Avenue to Elkhorn Boulevard         | County of Sacramento - Urban (E)      | 2                  | 7,000  | 0.39         | А   |
| 16 <sup>th</sup> Street | Q Street to Elverta Road                  | County of Sacramento - Urban (E)      | 2                  | 1,500  | 0.08         | А   |
| 16                      | Elverta Road to County Line               | County of Sacramento - Urban (E)      | 2                  | 500    | 0.03         | А   |
| Raley<br>Blvd           | I-80 to Ascot Avenue                      | City of Sacramento (D)                | 2                  | 13,000 | 0.72         | С   |

Notes: Bolded cells represent unacceptable operations.

SOURCE: Fehr & Peers, 2010

Table 3 Freeway Mainline LOS – Existing Conditions

| Freeway   | Segment                           | Peak<br>Hour | Volume | Density<br>(pc/ln/mi) | LOS |
|-----------|-----------------------------------|--------------|--------|-----------------------|-----|
|           | Sankay Bood to Biogo Bood         | AM           | 1,865  | 17                    | В   |
|           | Sankey Road to Riego Road         | PM           | 1,054  | 10                    | Α   |
|           | Riego Road to Elverta Road        | AM           | 2,411  | 22                    | С   |
| SR 99 SB  | Riego Road to Liverta Road        | PM           | 1,203  | 11                    | В   |
| 3K 99 3B  | Chianta Dandta Ellikana Dandanand | AM           | 2,724  | 25                    | С   |
|           | Elverta Road to Elkhorn Boulevard | PM           | 1,285  | 12                    | В   |
|           | Elkhorn Boulevard to I-5          | AM           | 3,473  | 33                    | D   |
|           | Elknom boulevard to 1-5           | PM           | 1,555  | 14                    | В   |
|           | I -5 to Elkhorn Boulevard         | AM           | 1,108  | 11                    | В   |
|           | 1-5 to Eikhorn Boulevard          | PM           | 3,859  | 42                    | E   |
|           | Elkhorn Boulevard to Elverta Road | AM           | 938    | 9                     | А   |
| SR 99 NB  | Likilom Boulevalu to Liverta Road | PM           | 2,899  | 28                    | D   |
| SK 99 IND | Chrosto Dood to Diogo Dood        | AM           | 870    | 9                     | А   |
|           | Elverta Road to Riego Road        | PM           | 2,493  | 24                    | С   |
|           | Piego Pood to Sonkov Pood         | AM           | 713    | 7                     | A   |
|           | Riego Road to Sankey Road         | PM           | 1,970  | 19                    | С   |

SOURCE: Fehr & Peers, 2010.

Table 4
Minimum Acceptable Level of Service by Jurisdiction

| Jurisdiction                                           | LOS Criteria |
|--------------------------------------------------------|--------------|
| Sacramento County (within the Urban Service Boundary)  | E            |
| Sacramento County (outside the Urban Service Boundary) | D            |
| City of Sacramento                                     | D            |
| Sutter County                                          | D            |
| Placer County                                          | С            |
| Placer County (Adjacent to Placer Vineyards)           | D            |
| City of Roseville                                      | С            |
| Caltrans (SR 99)                                       | Е            |

SOURCE: Fehr & Peers, 2010.

Table 5
Intersection LOS Criteria

|     | Control Dela             |                               |                                      |
|-----|--------------------------|-------------------------------|--------------------------------------|
| LOS | Signalized Intersections | Unsignalized<br>Intersections | General Description                  |
| Α   | ≤ 10                     | ≤ 10                          | Little to no congestion or delays.   |
| В   | > 10 – 20                | > 10 – 15                     | Limited congestion. Short delays.    |
| С   | > 20 – 35                | > 15 – 25                     | Some congestion with average delays. |
| D   | > 35 – 55                | > 25 – 35                     | Significant congestion and delays.   |
| E   | > 55 – 80                | > 35 - 50                     | Severe congestion and delays.        |
| F   | > 80                     | > 50                          | Total breakdown with extreme delays. |

<sup>&</sup>lt;sup>a</sup> Control delay includes initial deceleration delay, queue move-up time, stopped delay, and acceleration delay and is measured for the overall intersection.

SOURCE: Highway Capacity Manual (Transportation Research Board 2000), Fehr & Peers 2010

Table 6
Roadway Segment LOS Criteria

| Rodanay Cogmon 200 Chana    |                      |                        |                |        |        |        |  |  |  |
|-----------------------------|----------------------|------------------------|----------------|--------|--------|--------|--|--|--|
|                             |                      | Daily Volume Threshold |                |        |        |        |  |  |  |
| Facility Type               | Number of Lanes      | LOS A                  | LOS B          | LOS C  | LOS D  | LOS E  |  |  |  |
|                             | Sutter County        |                        |                |        |        |        |  |  |  |
|                             | 2                    | -                      | =              | 13,170 | 14,800 | 16,460 |  |  |  |
| Urban Arterial <sup>a</sup> | 4                    | -                      | -              | 26,340 | 29,640 | 32,930 |  |  |  |
|                             | 6                    | -                      | =              | 39,510 | 44,460 | 49,395 |  |  |  |
|                             | Placer County/Sacran | nento County           | //City of Sacr | amento |        |        |  |  |  |
| Arterial – Moderate Access  | 2                    | 10,800                 | 12,600         | 14,400 | 16,200 | 18,000 |  |  |  |
| Control                     | 4                    | 21,600                 | 25,200         | 28,800 | 32,400 | 36,000 |  |  |  |
|                             | 6                    | 32,400                 | 37,800         | 43,200 | 48,600 | 54,000 |  |  |  |

Both Number of Lanes and Daily Volume Threshold are two-way totals.

SOURCES:

Sutter County General Plan, 1996

Placer County General Plan, 1994

Sacramento County Traffic Impact Analysis Guidelines, 2004

City of Sacramento General Plan, 2009

<sup>&</sup>lt;sup>a</sup> Urban Arterial thresholds extrapolated for six-lane facilities.

| Table 7                                         |
|-------------------------------------------------|
| Freeway Mainline and Ramp Junction LOS Criteria |

| LOS | Mainline Density<br>(pc/mi/ln) | Ramp Junction Density<br>(pc/mi/ln) |  |  |
|-----|--------------------------------|-------------------------------------|--|--|
| A   | ≤ 11                           | ≤ 10.0                              |  |  |
| В   | > 11 – 18                      | > 10 – 20                           |  |  |
| С   | > 18 – 26                      | > 20 – 28                           |  |  |
| D   | > 26 – 35                      | > 28 – 35                           |  |  |
| E   | > 35 – 45                      | > 35 - 43 <sup>a</sup>              |  |  |
| F   | Demand exceeds capacity        |                                     |  |  |

<sup>&</sup>lt;sup>a</sup> The HCM 2000 does not define maximum density for ramp junctions under LOS E. Fehr & Peers uses the maximum density of 43 identified for weaving sections in the HCM 2000.

Density is measured in pc/mi/ln (passenger car per mile per lane).

SOURCE: Highway Capacity Manual (Transportation Research Board 2000)

Table 8
Comparison of Land Use by Project Alternative

|                                | Alternative              |                           |                |              |  |  |  |  |
|--------------------------------|--------------------------|---------------------------|----------------|--------------|--|--|--|--|
| Land Use Type                  | Preferred<br>Alternative | Approved<br>Specific Plan | Minimal Impact | No<br>Permit |  |  |  |  |
| Single Family (dwelling units) | 5,317                    | 5,317                     | 4,221          | 827          |  |  |  |  |
| Multi-Family (dwelling units)  | 873                      | 873                       | 1,969          | 0            |  |  |  |  |
| Total                          | 6,190                    | 6,190                     | 6,190          | 827          |  |  |  |  |
| Retail (acres)                 | 17.8                     | 15.0                      | 14.6           | 0            |  |  |  |  |
| Office (acres)                 | 3.7                      | 4.4                       | 3.9            | 0            |  |  |  |  |
| School (acres)                 | 19.5                     | 20.2                      | 10.0           | 0            |  |  |  |  |

Note: Multi-family land use is assumed to have a density of 20 units per acre or more.

SOURCE: RCH Group, February 2010.

## **Project Trip Generation**

The trip generation estimates were developed for each land use type for the Preferred Alternative. The estimates were developed by applying the trip rates from *Trip Generation*, 8<sup>th</sup> Edition (Institute of Transportation Engineers, 2008), then adjusted for internal and pass-by trips, as described below.

An *internal trip* is one that begins and ends within the project site, like a trip from home to a retail center, or from home to school. Since these trips do not leave the project site, they are deducted from the total external trip generation of the project. The retail, office, and school land uses would all attract trips from within the project site. Internalization rates were developed by considering the proposed land uses, the proximity of comparable land use, and trip purpose.

A *pass-by trip* occurs when a motorist stops en route to their primary destination. These trips usually occur at retail-based land uses, like gas stations or grocery stores. These types of land uses attract traffic that is already passing on the adjacent street; therefore, these are not "new" trips added to the roadway system. The amount of pass-by trips is a function of the type and size of the land use and the traffic volume on the adjacent street.

Elverta Specific Plan F-15

For the Preferred Alternative, 23 percent of all project trips are internal to the project site. Approximately 50 percent of retail trip ends, 40 percent of office trip ends, and 80 percent of school trip ends are expected to be internalized. These rates are based on the proposed project's land uses, the proximity of comparable land use, and trip purpose. The pass-by reduction is 15 percent in the AM peak hour and 25 percent for Daily and the PM peak hour. The pass-by reduction was applied after the internalization reduction.

The net trip generation of the project is developed by subtracting the internal and pass-by trips from the gross trip generation. **Table 9** (*next page*) displays the trip generation for the Preferred Alternative. The project trip generation for the other alternatives was developed in the same manner. **Table 10** displays the trip generation of all four project scenarios.

Table 10
Comparison of Trip Generation by Project Alternative

|                |       | Trips Generated          |                           |                |              |  |  |
|----------------|-------|--------------------------|---------------------------|----------------|--------------|--|--|
| Time Period    |       | Preferred<br>Alternative | Approved<br>Specific Plan | Minimal Impact | No<br>Permit |  |  |
| AM Peak Hour   | In    | 914                      | 918                       | 910            |              |  |  |
| AW Feak Hou    | Out   | 3,198                    | 3,197                     | 3,102          |              |  |  |
| PM Peak Hour   | In    | 3,618                    | 3,624                     | 3,399          |              |  |  |
| FIVI FEAK HOUI | Out   | 2,072                    | 2,081                     | 1,937          |              |  |  |
| Daily          | Total | 54,444                   | 54,621                    | 51,890         | 7,914        |  |  |

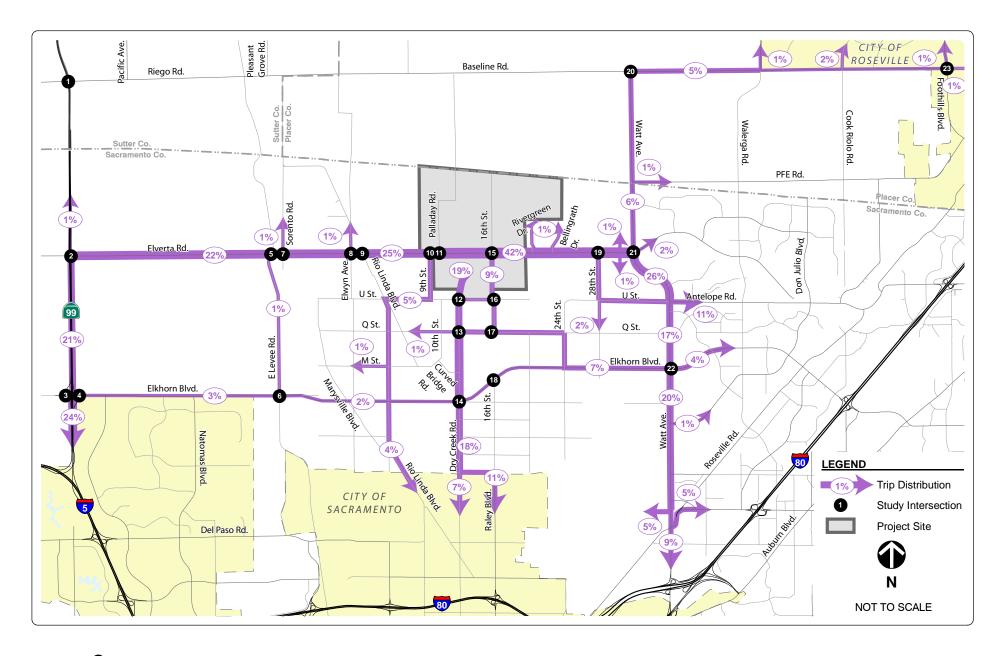
SOURCE: Fehr & Peers, 2010.

Table 11
SACMET Base Year Model Validation Results

| Statistic                                        | Target Value | Daily Base Year Model |
|--------------------------------------------------|--------------|-----------------------|
| Model / Count Ratio                              | 0.90 - 1.10  | 0.93                  |
| % of Links Within Caltrans Maximum<br>Deviations | >75%         | 75%                   |
| % Root Mean Square Error                         | <40%         | 30%                   |
| Correlation Coefficient                          | >0.88        | 0.95                  |

SOURCE: Fehr & Peers, 2010.

Table 9
Project Trip Generation – Preferred Alternative


|                     | FIGER TIP Generation - Fleiereu Alternative |                |                   |         |      |              |       |       |              |        |       |       |
|---------------------|---------------------------------------------|----------------|-------------------|---------|------|--------------|-------|-------|--------------|--------|-------|-------|
|                     |                                             |                | Dai               | ly      |      | AM Peak Hour |       |       | PM Peak Hour |        |       |       |
|                     | ITE Land Use                                |                |                   |         |      |              | Trips |       |              |        | Trips |       |
| Land Use            | Code                                        | Amount         | Rate <sup>a</sup> | Trips   | Rate | Total        | In    | Out   | Rate         | Total  | In    | Out   |
| Single-Family Homes | 210                                         | 5,317 du       | 9.57              | 50,884  | 0.75 | 3,988        | 997   | 2,991 | 1.01         | 5,370  | 3,383 | 1,987 |
| Apartments          | 220                                         | 873 du         | 6.65              | 5,805   | 0.51 | 445          | 89    | 356   | 0.62         | 541    | 352   | 189   |
| Retail              | 820                                         | 233 ksf        | 50.54             | 11,755  | 1.09 | 253          | 155   | 99    | 4.81         | 1,120  | 549   | 571   |
| Office              | 710                                         | 48 ksf         | 15.79             | 758     | 2.17 | 104          | 92    | 13    | 2.76         | 133    | 23    | 110   |
| School              | 520                                         | 1,200 st       | 1.29              | 1,548   | 0.45 | 540          | 297   | 243   | 0.15         | 180    | 88    | 92    |
|                     |                                             | Gross Trip     | Generation        | 70,751  |      | 5,331        | 1,629 | 3,701 |              | 7,344  | 4,395 | 2,949 |
|                     | Interna                                     | lized Trip End | I Reduction       | -14,838 |      | -1,202       | -704  | -496  |              | -1,514 | -708  | -806  |
|                     |                                             | Pass-by Trip   | Reduction         | -1,469  |      | -19          | -12   | -7    |              | -140   | -69   | -71   |
|                     |                                             | Net Trip       | Generation        | 54,444  |      | 4,110        | 914   | 3,198 |              | 5,690  | 3,618 | 2,072 |
|                     |                                             | Total Trip     | Reduction         | 23%     |      | 23%          | 44%   | 14%   |              | 23%    | 18%   | 30%   |

a Residential and school trips are based on average rates, while retail and office trips are based on the best-fit equation of Trip Generation (Institute of Transportation Engineers, 2008).

du = dwelling units, ksf = thousand square feet, st = students

Retail and Office land use assumes a floor-to-area ratio (FAR) of 0.30.

SOURCES: RCH Group, February 2010 and Fehr & Peers, 2010.





## **Cumulative Travel Demand Forecasts**

The cumulative no project and cumulative plus project traffic forecasts were developed for each alternative using the most recent version of the SACMET regional TDF model that is maintained by the Sacramento Area Council of Governments (SACOG). This model is based on the SACOG 2035 Metropolitan Transportation Plan (MTP).

As is the case with most regional TDF models, the SACMET model lacks sufficient traffic analysis zone (TAZ) and roadway network detail to produce reasonable peak hour forecasts for study intersections and freeway facilities for project-scale analysis. Therefore, Fehr & Peers made the following modifications to increase the detail of the model for project-level application:

- ▶ Disaggregated TAZs within the Elverta Specific Plan project site
- ► Added existing and future roadways within the study area
- ► Evaluated existing and cumulative land use

The SACMET model was used to develop cumulative no project and cumulative plus project forecasts.

Fehr & Peers used a traffic forecasting procedure known as the "difference method" to develop cumulative year (2035) traffic forecasts. For a given turning movement or roadway segment, this forecasting procedure is calculated as follows:

Forecast = Existing Counts + (Future Year Model Volume - Base Year Model Volume)

This method accounts for potential differences between the base year model and existing counts that could otherwise transfer to the future year traffic forecast.

Two key inputs of a travel demand model are the land use assumptions and the roadway network improvements. Both were evaluated for accuracy and coded into the TDF model.

#### **Cumulative Land Use Assumptions**

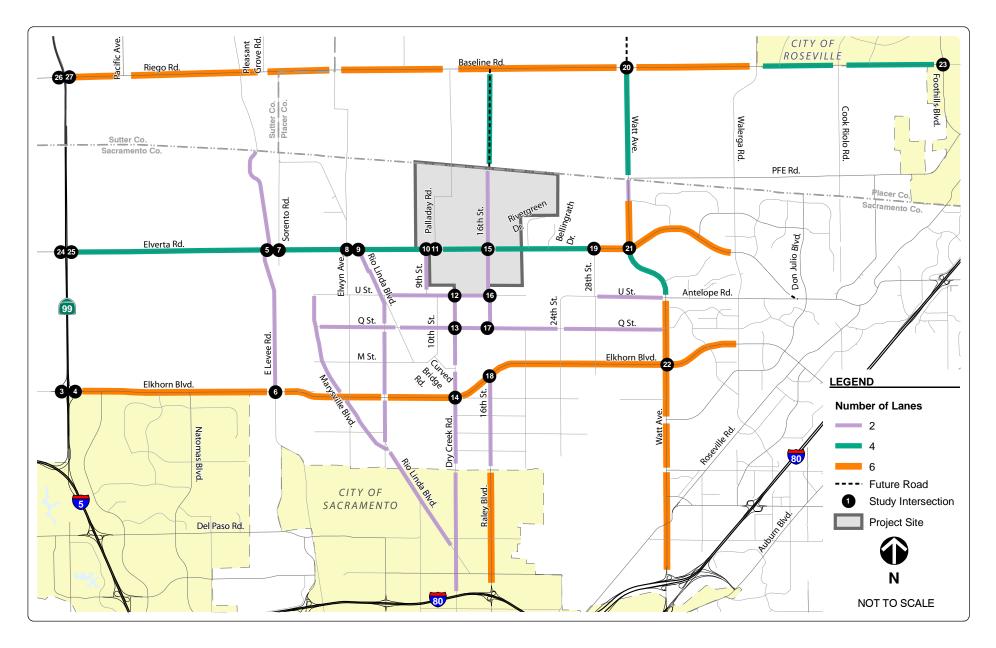
Fehr & Peers has reviewed the cumulative land use assumptions from the latest version of the SACMET TDF model. We checked land use totals for future planned developments in the area and adjusted as necessary. Land use in the area west of SR 99 was increased to account for partial buildout of the planned Metro Air Parkway and Greenbriar developments. Land use adjustments were made to TAZs surrounding the study area to return each land use category closer to SACMET control totals. Table 11 compares the official SACMET control totals and the Elverta Specific Plan Preferred Alternative model assumptions.

Employment forecasted by SACOG in the Sutter Pointe and Natomas Joint Vision Area developments was reduced to help maintain the regional jobs/housing ratio.

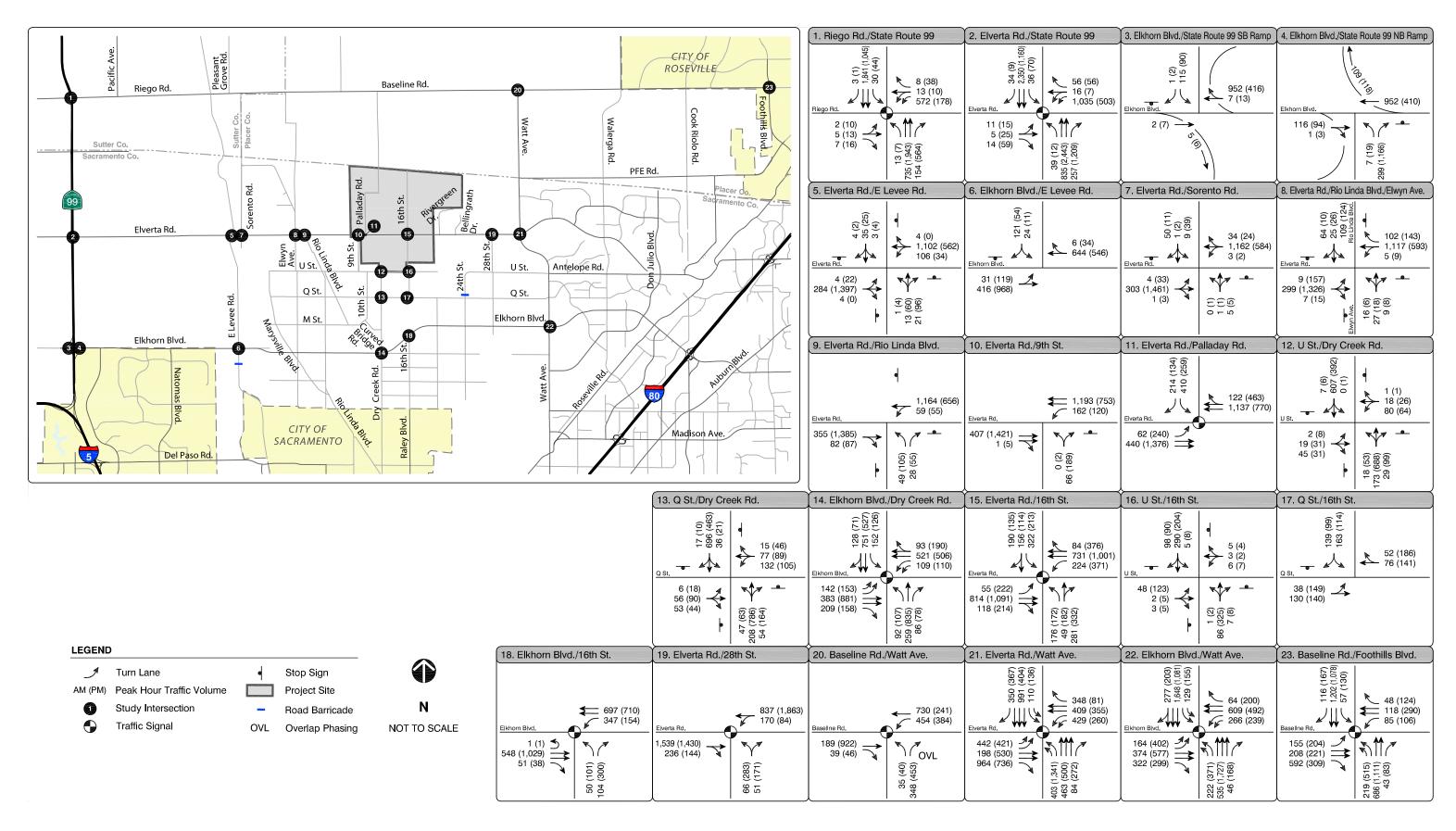
Table 12
Comparison of Cumulative Year Land Use Inputs

| ·                                 | M                                  | lodel                                          |
|-----------------------------------|------------------------------------|------------------------------------------------|
| Model Land Use Inputs             | Official SACMET<br>Land Use (2035) | Preferred Alternative<br>Model Land Use (2035) |
| Total Households                  | 177,334                            | 178,974                                        |
| Retail Employment                 | 46,119                             | 47,300                                         |
| Total Non-Retail Employment       | 160,248                            | 165,769                                        |
| College Students                  | 2,500                              | 2,500                                          |
| K-12 Students                     | 106,819                            | 104,827                                        |
| Office Employment                 | 81,043                             | 83,638                                         |
| Medical Employment                | 11,208                             | 11,708                                         |
| Educational Employment            | 10,928                             | 10,609                                         |
| Manufacturing / Other Employment  | 57,069                             | 59,814                                         |
| Single Family Households          | 115,082                            | 116,713                                        |
| Multi-Family Households < 5 Units | 15,513                             | 16,714                                         |
| Multi-Family Households > 5 Units | 46,739                             | 46,739                                         |

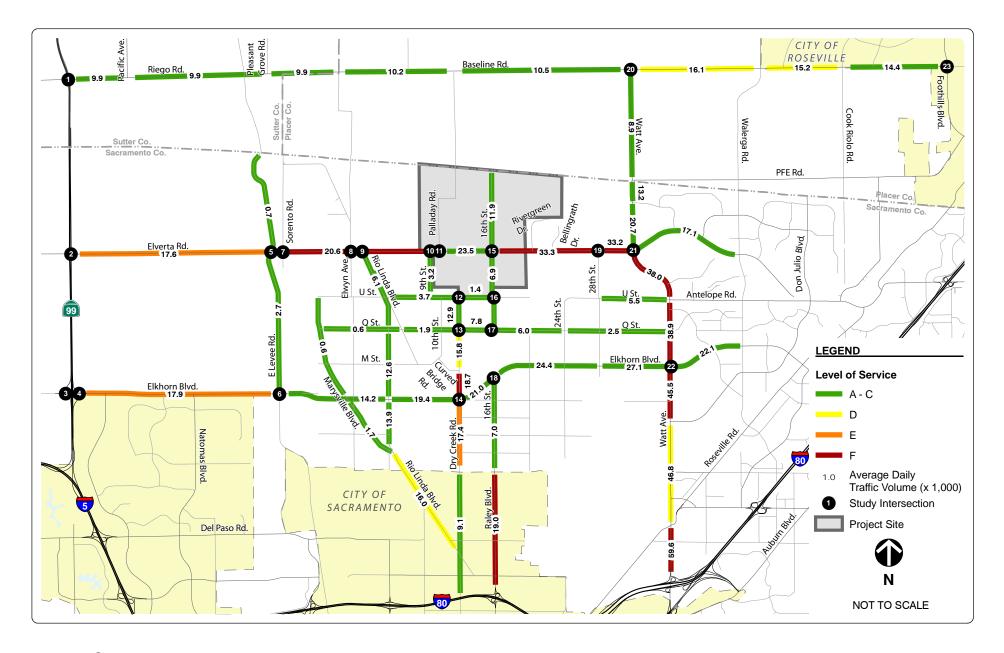
Notes: Numbers represent area bounded by the Garden Highway to the west, Sankey Road/Placer Parkway, SR 65, I-80 and I-5/SR 99.


SOURCE: Fehr & Peers, 2010.

## **Cumulative Roadway Improvement Assumptions**

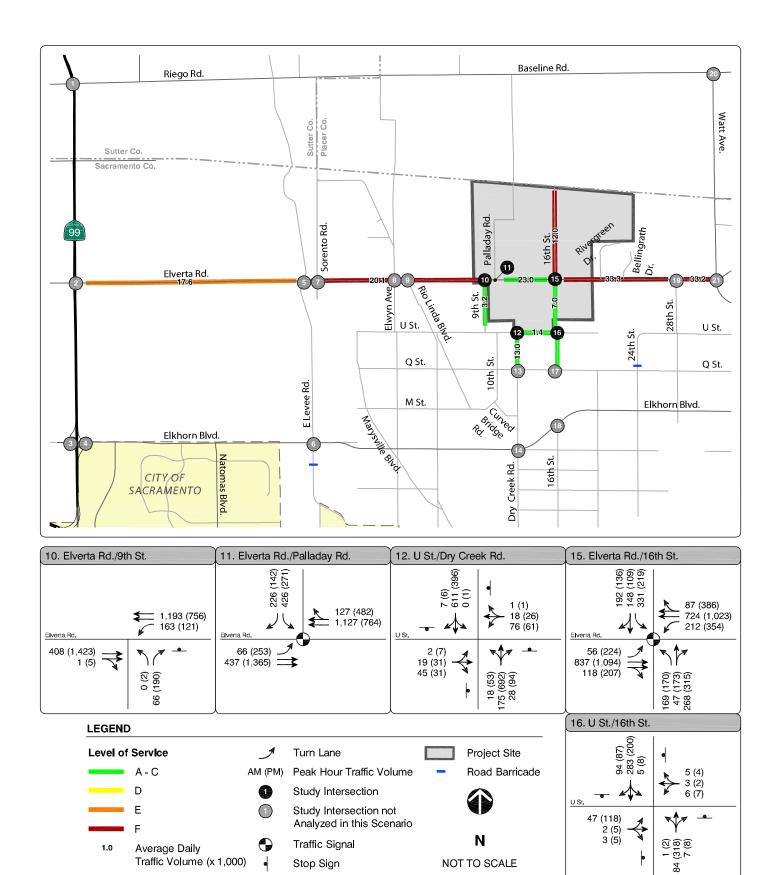

The funded "tier one" transportation improvements, as listed in the 2035 MTP, were included in the travel demand forecasting and operational analysis. Many improvements were identified within the study area. Some of the key projects include:

- ► Constructing two new interchanges along SR 99 at Elverta Road and Riego Road
- ▶ Widening Elkhorn Boulevard to six lanes from SR 99 to Don Julio Boulevard
- Widening Elverta Road to four lanes from SR 99 to Dutch Haven Boulevard and to six lanes from Dutch Haven Boulevard to Watt Avenue
- ▶ Widening Baseline Road/Riego Road to six lanes from SR 99 to Fiddyment Road
- ▶ Widening Watt Avenue to six lanes from I-80 to Antelope Road and to four lanes from PFE Road to Baseline Road, and extending Watt Avenue from Baseline Road to Blue Oaks Boulevard (four lanes)


The County of Sacramento has indicated the widening of 16<sup>th</sup> Street, including a new bridge over Dry Creek, may not be fully funded (based on email correspondence with Dean Blank at Sacramento County Department of Transportation, Sept. 2010); therefore, it will not be assumed for cumulative conditions. Fehr & Peers has verified that these projects and the others listed in the 2035 MTP Project List are included in the SACMET cumulative model roadway network and were added if necessary.

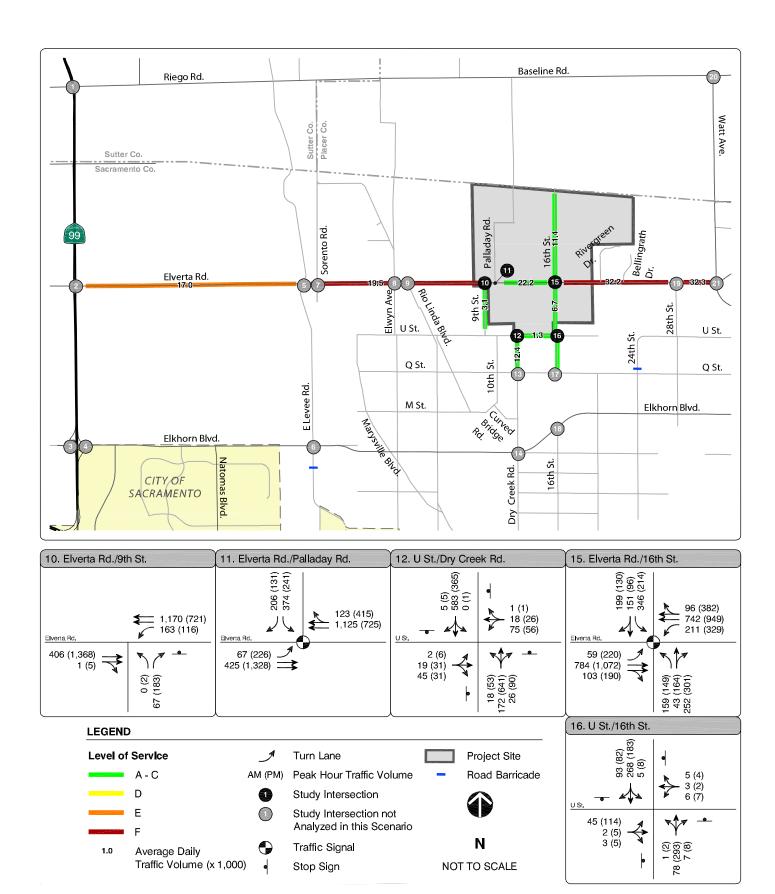






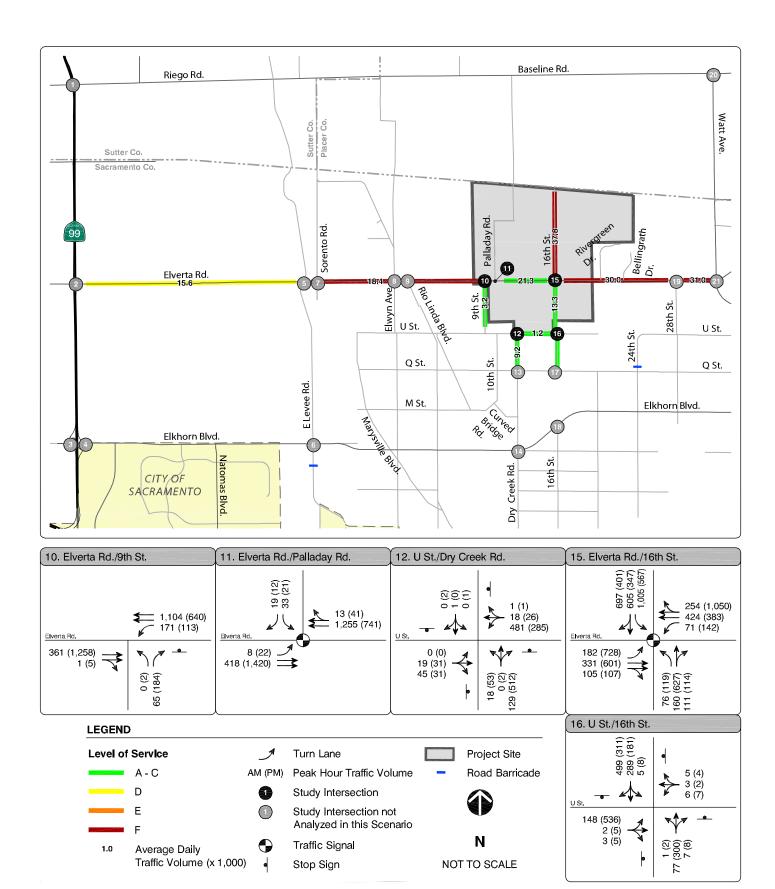





AVERAGE DAILY TRAFFIC VOLUMES
AND LEVEL OF SERVICE EXISTING PLUS PREFERRED ALTERNATIVE CONDITIONS






AVERAGE DAILY TRAFFIC VOLUMES, LEVEL OF SERVICE PEAK HOUR TRAFFIC VOLUMES AND LANE CONFIGURATIONS - EXISTING PLUS APPROVED SPECIFIC PLAN ALTERNATIVE





AVERAGE DAILY TRAFFIC VOLUMES, LEVEL OF SERVICE PEAK HOUR TRAFFIC VOLUMES AND LANE CONFIGURATIONS -EXISTING PLUS MINIMAL IMPACT ALTERNATIVE





AVERAGE DAILY TRAFFIC VOLUMES, LEVEL OF SERVICE PEAK HOUR TRAFFIC VOLUMES AND LANE CONFIGURATIONS - EXISTING PLUS NO FEDERAL ACTION ALTERNATIVE

Table 13
Peak Hour Intersection LOS – Existing Plus Preferred Alternative Conditions

|    |                                       | Jurisdiction (Minimum |             |              | Existir<br>Condition | ng  | Existing<br>Preferr<br>Alterna<br>Conditi | ed<br>tive |
|----|---------------------------------------|-----------------------|-------------|--------------|----------------------|-----|-------------------------------------------|------------|
|    | Intersection                          | Acceptable LOS)       | Control     | Peak<br>Hour | Delay<br>(sec/veh)   | LOS | Delay<br>(sec/veh)                        | LOS        |
| 1  | SR 99 /                               | Caltrans (E)          | Traffic     | AM           | 57                   | E   | 58                                        | Е          |
|    | Riego Road                            | Califaits (L)         | Signal      | PM           | 21                   | С   | 22                                        | С          |
| 2  | SR 99 /                               | Coltrono (E)          | Traffic     | AM           | 70                   | Е   | > 150                                     | F          |
| 2  | Elverta Road                          | Caltrans (E)          | Signal      | PM           | 26                   | С   | 82                                        | F          |
|    | SR 99 SB                              | 0 1 (5)               | Side Street | AM           | 15                   | В   | 16                                        | С          |
| 3  | Off-Ramp /<br>Elkhorn Blvd            | Caltrans (E)          | Stop        | PM           | 11                   | В   | 11                                        | В          |
|    | SR 99 NB                              | /=\                   | Side Street | AM           | 23                   | С   | 26                                        | D          |
| 4  | Off-Ramp /<br>Elkhorn Blvd            | Caltrans (E)          | Stop        | PM           | 141                  | F   | > 150                                     | F          |
| _  | Elverta Road /                        | County of             | All Way     | AM           | 15                   | С   | > 150                                     | F          |
| 5  | E. Levee Road                         | Sacramento (E)        | Stop        | PM           | 27                   | D   | > 150                                     | F          |
| -  | Elkhorn Blvd /                        | County of             | Side Street | AM           | 21                   | С   | 26                                        | D          |
| 6  | E. Levee Road                         | Sacramento (E)        | Stop        | PM           | 16                   | С   | 30                                        | D          |
| 7  | Elverta Road /                        | County of             | Side Street | AM           | 13                   | В   | 43                                        | Е          |
| ,  | Sorento Road                          | Sacramento (E)        | Stop        | PM           | 29                   | D   | > 150                                     | F          |
| 8  | Elverta Road /                        | County of             | All Way     | AM           | 14                   | В   | > 150                                     | F          |
| 0  | Elwyn Road                            | Sacramento (E)        | Stop        | PM           | 37                   | Е   | > 150                                     | F          |
| 9  | Elverta Road /                        | County of             | All Way     | AM           | 13                   | В   | > 150                                     | F          |
|    | Rio Linda Blvd                        | Sacramento (E)        | Stop        | PM           | 19                   | С   | > 150                                     | F          |
| 10 | Elverta Road /                        | County of             | Side Street | AM           | 10                   | Α   | 11                                        | В          |
|    | 9 <sup>th</sup> Street                | Sacramento (E)        | Stop        | PM           | 13                   | В   | 42                                        | Е          |
| 11 | Elverta Road /                        | County of             | Traffic     | AM           | 12                   | В   | 23                                        | С          |
|    | Palladay Road                         | Sacramento (E)        | Signal      | PM           | 12                   | В   | 20                                        | В          |
| 12 | U Street / Dry                        | County of             | All Way     | AM           | 7                    | Α   | 29                                        | D          |
|    | Creek Road                            | Sacramento (E)        | Stop        | PM           | 8                    | Α   | 112                                       | F          |
| 13 | Q Street / Dry                        | County of             | All Way     | AM           | 9                    | Α   | 118                                       | F          |
|    | Creek Road                            | Sacramento (E)        | Stop        | PM           | 9                    | Α   | > 150                                     | F          |
| 14 | Elkhorn Blvd /                        | County of             | Traffic     | AM           | 20                   | В   | 30                                        | С          |
|    | Dry Creek Road                        | Sacramento (E)        | Signal      | PM           | 20                   | В   | 70                                        | E          |
| 15 | Elverta Road /                        | County of             | Traffic     | AM           | 16                   | С   | 48                                        | D          |
|    | 16 <sup>th</sup> Street               | Sacramento (E)        | Signal      | PM           | 18                   | С   | 131                                       | F          |
| 16 | U Street /                            | County of             | All Way     | AM           | 7                    | Α   | 11                                        | В          |
|    | 16 <sup>th</sup> Street               | Sacramento (E)        | ) Stop      | PM           | 8                    | Α   | 12                                        | В          |
| 17 | Q Street /<br>16 <sup>th</sup> Street | County of             | Side Street | AM           | 9                    | Α   | 15                                        | В          |
|    | 10 Street                             | Sacramento (E)        | Stop        | PM           | 10                   | Α   | 24                                        | С          |

Table 13
Peak Hour Intersection LOS – Existing Plus Preferred Alternative Conditions

|    |                         | Jurisdiction<br>(Minimum         |         |              | Existir<br>Conditio | •   | Existing<br>Preferr<br>Alterna<br>Conditi | ed<br>tive |
|----|-------------------------|----------------------------------|---------|--------------|---------------------|-----|-------------------------------------------|------------|
|    | Intersection            | Acceptable<br>LOS)               | Control | Peak<br>Hour | Delay<br>(sec/veh)  | LOS | Delay<br>(sec/veh)                        | LOS        |
| 18 | Elkhorn Blvd /          | County of                        | Traffic | AM           | 15                  | В   | 15                                        | В          |
| 10 | 16 <sup>th</sup> Street | Sacramento (E)                   | Signal  | PM           | 64                  | E   | 67                                        | E          |
| 19 | Elverta Road /          | County of                        | Traffic | AM           | 69                  | E   | > 150                                     | F          |
| 19 | 28 <sup>th</sup> Street | Sacramento (E)                   | Signal  | PM           | 137                 | F   | > 150                                     | F          |
|    | Baseline Road /         | County of                        | Traffic | AM           | 76                  | E   | 95                                        | F          |
| 20 | Watt Avenue             | Placer - Placer<br>Vineyards (D) | Signal  | PM           | 33                  | С   | 45                                        | D          |
| 21 | Elverta Road /          | County of                        | Traffic | AM           | 35                  | С   | 127                                       | F          |
| 21 | Watt Avenue             | Sacramento (E)                   | Signal  | PM           | 31                  | С   | > 150                                     | F          |
| 22 | Elkhorn Blvd /          | County of                        | Traffic | AM           | 52                  | D   | 49                                        | D          |
|    | Watt Avenue             | Sacramento (E)                   | Signal  | PM           | 37                  | D   | 53                                        | D          |
| 23 | Baseline Road /         | City of                          | Traffic | AM           | 49                  | D   | 49                                        | D          |
| 23 | Foothills Blvd          | Roseville (C)                    | Signal  | PM           | 40                  | D   | 41                                        | D          |

Notes: Bolded cells represent unacceptable operations.

Shaded cells represent significant adverse effects.

<sup>&</sup>gt;150 sec/veh of delay shown because inputs exceed analysis software's ability to produce reasonable delay estimates.

Table 14

Roadway Segment LOS – Existing Plus Preferred Alternative Conditions

|                           |                                                    |                                                     |                 | Ex     | isting Condit | ions | Existing PI | us Preferred | Alternative |
|---------------------------|----------------------------------------------------|-----------------------------------------------------|-----------------|--------|---------------|------|-------------|--------------|-------------|
| Roadway                   | Segment                                            | Jurisdiction (Minimum<br>Acceptable LOS)            | No. of<br>Lanes | ADT    | V/C           | LOS  | ADT         | V/C          | LOS         |
|                           | SR 99 to Pacific Avenue                            | County of Sutter (D)                                | 2               | 9,900  | 0.60          | С    | 9,900       | 0.60         | С           |
|                           | Pacific Avenue to Pleasant<br>Grove Road (South)   | County of Sutter (D)                                | 2               | 9,900  | 0.60          | С    | 9,900       | 0.60         | С           |
| Road                      | Pleasant Grove Road (South) to Locust Road         | County of Placer - Placer<br>Vineyards Frontage (D) | 2               | 9,900  | 0.60          | С    | 9,900       | 0.60         | С           |
| saseline                  | Locust Road to Palladay Road                       | County of Placer - Placer<br>Vineyards Frontage (D) | 2               | 10,200 | 0.57          | А    | 10,200      | 0.57         | А           |
| Riego Road /Baseline Road | Palladay Road to Watt Avenue                       | County of Placer - Placer<br>Vineyards Frontage (D) | 2               | 10,500 | 0.58          | А    | 10,500      | 0.58         | А           |
| Riego                     | Watt Avenue to Walerga Road                        | County of Placer - Placer<br>Vineyards Frontage (D) | 2               | 13,400 | 0.74          | С    | 16,100      | 0.89         | D           |
|                           | Walerga Road to Cook-Riolo<br>Road                 | County of Placer (C)                                | 2               | 13,000 | 0.72          | С    | 15,200      | 0.84         | D           |
|                           | Cook-Riolo Road to Foothills<br>Boulevard          | County of Placer (C)                                | 2               | 13,300 | 0.74          | С    | 14,400      | 0.80         | С           |
|                           | SR 99 to E. Levee Road                             | County of Sacramento -<br>Rural (D)                 | 2               | 5,600  | 0.31          | А    | 17,600      | 0.98         | E           |
| aq                        | E. Levee Road to Palladay Road                     | County of Sacramento -<br>Urban (E)                 | 2               | 7,000  | 0.39          | А    | 20,600      | 1.14         | F           |
| Elverta Road              | Palladay Road to 16 <sup>th</sup> Street           | County of Sacramento -<br>Urban (E)                 | 4               | 7,200  | 0.40          | А    | 23,500      | 0.65         | В           |
| i<br>i                    | 16 <sup>th</sup> Street to 28 <sup>th</sup> Street | County of Sacramento -<br>Urban (E)                 | 2               | 10,400 | 0.58          | А    | 33,300      | 1.85         | F           |
|                           | 28 <sup>th</sup> Street to Watt Avenue             | County of Sacramento -<br>Urban (E)                 | 2               | 14,100 | 0.78          | С    | 33,200      | 1.84         | F           |

Table 14

Roadway Segment LOS – Existing Plus Preferred Alternative Conditions

|                   |                                                    |                                                     |                 | Ex     | isting Condit | ions | Existing PI | us Preferred | Alternative |
|-------------------|----------------------------------------------------|-----------------------------------------------------|-----------------|--------|---------------|------|-------------|--------------|-------------|
| Roadway           | Segment                                            | Jurisdiction (Minimum<br>Acceptable LOS)            | No. of<br>Lanes | ADT    | V/C           | LOS  | ADT         | V/C          | LOS         |
|                   | Watt Avenue to Walerga Road                        | County of Sacramento -<br>Urban (E)                 | 6               | 16,000 | 0.30          | Α    | 17,100      | 0.32         | А           |
|                   | SR 99 to E. Levee Road                             | County of Sacramento -<br>Urban (E)                 | 2               | 16,300 | 0.91          | E    | 17,900      | 0.99         | E           |
|                   | E. Levee Road to Rio Linda<br>Boulevard            | County of Sacramento -<br>Urban (E)                 | 2               | 13,100 | 0.73          | С    | 14,200      | 0.79         | С           |
| vard              | Rio Linda Boulevard to Dry<br>Creek Road           | County of Sacramento -<br>Urban (E)                 | 4               | 18,300 | 0.51          | А    | 19,400      | 0.54         | Α           |
| Elkhorn Boulevard | Dry Creek Road to 16 <sup>th</sup> Street          | County of Sacramento -<br>Urban (E)                 | 4               | 19,900 | 0.55          | А    | 21,000      | 0.58         | Α           |
| Elkho             | 16 <sup>th</sup> Street to 28 <sup>th</sup> Street | County of Sacramento -<br>Urban (E)                 | 4               | 23,300 | 0.65          | В    | 24,400      | 0.68         | В           |
|                   | 28 <sup>th</sup> Street to Watt Avenue             | County of Sacramento -<br>Urban (E)                 | 4               | 24,100 | 0.67          | В    | 27,100      | 0.75         | С           |
|                   | Watt Avenue to Walerga Road                        | County of Sacramento -<br>Urban (E)                 | 4               | 19,900 | 0.55          | А    | 22,100      | 0.61         | В           |
|                   | Baseline Road to PFE Road                          | County of Placer - Placer<br>Vineyards Frontage (D) | 2               | 6,200  | 0.34          | А    | 8,900       | 0.49         | А           |
| ər                | PFE Road to Black Eagle Drive                      | County of Sacramento -<br>Urban (E)                 | 2               | 9,900  | 0.55          | А    | 13,200      | 0.73         | С           |
| Watt Avenue       | Black Eagle Drive to Elverta<br>Road               | County of Sacramento -<br>Urban (E)                 | 6               | 17,400 | 0.32          | А    | 20,700      | 0.38         | А           |
| W                 | Elverta Road to Antelope Road                      | County of Sacramento -<br>Urban (E)                 | 4               | 23,800 | 0.66          | В    | 38,000      | 1.06         | F           |
|                   | Antelope Road to Elkhorn<br>Boulevard              | County of Sacramento -<br>Urban (E)                 | 4               | 29,600 | 0.82          | D    | 38,900      | 1.08         | F           |

Table 14

Roadway Segment LOS – Existing Plus Preferred Alternative Conditions

|                    |                                                    |                                          |              | Ex     | isting Condit | ions | Existing PI | us Preferred | Alternative |
|--------------------|----------------------------------------------------|------------------------------------------|--------------|--------|---------------|------|-------------|--------------|-------------|
| Roadway            | Segment                                            | Jurisdiction (Minimum<br>Acceptable LOS) | No. of Lanes | ADT    | V/C           | LOS  | ADT         | V/C          | LOS         |
|                    | Elkhorn Boulevard to Don Julio<br>Boulevard        | County of Sacramento -<br>Urban (E)      | 4            | 34,600 | 0.96          | E    | 45,500      | 1.26         | F           |
|                    | Don Julio Boulevard to<br>Roseville Road           | County of Sacramento -<br>Urban (E)      | 6            | 36,500 | 0.68          | В    | 46,800      | 0.87         | D           |
|                    | Roseville Road to I-80                             | County of Sacramento -<br>Urban (E)      | 6            | 54,700 | 1.01          | F    | 59,600      | 1.10         | F           |
|                    | Rio Linda Boulevard to Dry<br>Creek Road           | County of Sacramento -<br>Urban (E)      | 2            | 1,000  | 0.06          | Α    | 3,700       | 0.21         | A           |
| U Street           | Dry Creek Road to 16 <sup>th</sup> Street          | County of Sacramento -<br>Urban (E)      | 2            | 300    | 0.02          | А    | 1,400       | 0.08         | А           |
|                    | 28 <sup>th</sup> Street to Watt Avenue             | County of Sacramento -<br>Urban (E)      | 2            | 4,400  | 0.24          | А    | 5,500       | 0.31         | А           |
|                    | Marysville Boulevard to Rio<br>Linda Boulevard     | County of Sacramento -<br>Urban (E)      | 2            | 600    | 0.03          | А    | 600         | 0.03         | А           |
|                    | Rio Linda Boulevard to Dry<br>Creek Road           | County of Sacramento -<br>Urban (E)      | 2            | 1,400  | 0.08          | Α    | 1,900       | 0.11         | A           |
| Q Street           | Dry Creek Road to 16 <sup>th</sup> Street          | County of Sacramento -<br>Urban (E)      | 2            | 5,600  | 0.31          | Α    | 7,800       | 0.43         | A           |
|                    | 16 <sup>th</sup> Street to 24 <sup>th</sup> Street | County of Sacramento -<br>Urban (E)      | 2            | 2,700  | 0.15          | Α    | 6,000       | 0.33         | A           |
|                    | 24 <sup>th</sup> Street to Watt Avenue             | County of Sacramento -<br>Urban (E)      | 2            | 2,500  | 0.14          | А    | 2,500       | 0.14         | А           |
| ad                 | Sutter County Line to Elverta<br>Road              | County of Sacramento -<br>Urban (E)      | 2            | 700    | 0.04          | А    | 700         | 0.04         | А           |
| East Levee<br>Road | Elverta Road to Elkhorn<br>Boulevard               | County of Sacramento -<br>Urban (E)      | 2            | 2,200  | 0.12          | А    | 2,700       | 0.15         | А           |

Table 14

Roadway Segment LOS – Existing Plus Preferred Alternative Conditions

|                                |                                              |                                     |                 | Ex     | isting Condit | ions | Existing Plus Preferred Alternative |      |     |  |  |
|--------------------------------|----------------------------------------------|-------------------------------------|-----------------|--------|---------------|------|-------------------------------------|------|-----|--|--|
|                                |                                              | Jurisdiction (Minimum               | No. of          |        |               |      |                                     |      |     |  |  |
| Roadway                        | Segment                                      | Acceptable LOS)                     | No. of<br>Lanes | ADT    | V/C           | LOS  | ADT                                 | V/C  | LOS |  |  |
| llevard                        | Dry Creek Road to Rio Linda<br>Boulevard     | City of Sacramento (D)              | 2               | 13,800 | 0.77          | С    | 16,000                              | 0.89 | D   |  |  |
| Marysville Boulevard           | Rio Linda Boulevard to Elkhorn<br>Boulevard  | County of Sacramento -<br>Urban (E) | 2               | 1,700  | 0.09          | Α    | 1,700                               | 0.09 | А   |  |  |
| Marys                          | Elkhorn Boulevard to U Street                | County of Sacramento -<br>Urban (E) | 2               | 600    | 0.03          | А    | 600                                 | 0.03 | А   |  |  |
| evard                          | Marysville Boulevard to Elkhorn<br>Boulevard | County of Sacramento -<br>Urban (E) | 2               | 11,700 | 0.65          | В    | 13,900                              | 0.77 | С   |  |  |
| Rio Linda Boulevard            | Elkhorn Boulevard to Q Street                | County of Sacramento -<br>Urban (E) | 2               | 9,900  | 0.55          | Α    | 12,600                              | 0.70 | В   |  |  |
| Rio Lin                        | Q Street to Elverta Road                     | County of Sacramento -<br>Urban (E) | 2               | 3,400  | 0.19          | Α    | 6,100                               | 0.34 | Α   |  |  |
| 9 <sup>th</sup><br>Street      | Elverta Road to U Street                     | County of Sacramento -<br>Urban (E) | 2               | 500    | 0.03          | Α    | 3,200                               | 0.18 | А   |  |  |
|                                | I-80 to Ascot Avenue                         | City of Sacramento (D)              | 2               | 5,300  | 0.29          | Α    | 9,100                               | 0.51 | А   |  |  |
| oad                            | Ascot Avenue to Elkhorn<br>Boulevard         | County of Sacramento -<br>Urban (E) | 2               | 7,600  | 0.42          | Α    | 17,400                              | 0.97 | E   |  |  |
| Dry Creek Road                 | Elkhorn Boulevard to Curved<br>Bridge Road   | County of Sacramento -<br>Urban (E) | 2               | 6,700  | 0.37          | Α    | 18,700                              | 1.04 | F   |  |  |
| Dny                            | Curved Bridge Road to Q Street               | County of Sacramento -<br>Urban (E) | 2               | 3,800  | 0.21          | А    | 15,800                              | 0.88 | D   |  |  |
|                                | Q Street to U Street                         | County of Sacramento -<br>Urban (E) | 2               | 1,500  | 0.08          | А    | 12,900                              | 0.72 | С   |  |  |
| 16 <sup>th</sup><br>Stre<br>et | Ascot Avenue to Elkhorn<br>Boulevard         | County of Sacramento -<br>Urban (E) | 2               | 7,000  | 0.39          | А    | 7,000                               | 0.39 | А   |  |  |

Table 14

Roadway Segment LOS – Existing Plus Preferred Alternative Conditions

|               |                             |                                          |                 | Existing Conditions |      |     |        | Existing Plus Preferred Alternative |     |  |  |  |  |
|---------------|-----------------------------|------------------------------------------|-----------------|---------------------|------|-----|--------|-------------------------------------|-----|--|--|--|--|
| Roadway       | Segment                     | Jurisdiction (Minimum<br>Acceptable LOS) | No. of<br>Lanes | ADT                 | V/C  | LOS | ADT    | V/C                                 | LOS |  |  |  |  |
|               | Q Street to Elverta Road    | County of Sacramento -<br>Urban (E)      | 2               | 1,500               | 0.08 | Α   | 6,900  | 0.38                                | А   |  |  |  |  |
|               | Elverta Road to County Line | County of Sacramento -<br>Urban (E)      | 2               | 500                 | 0.03 | Α   | 11,900 | 0.66                                | В   |  |  |  |  |
| Raley<br>Blvd | I-80 to Ascot Avenue        | City of Sacramento (D)                   | 2               | 13,000              | 0.72 | С   | 19,000 | 1.06                                | F   |  |  |  |  |

Notes: Bolded cells represent unacceptable operations.

Shaded cells indicate significant adverse effects.

Table 15
Freeway Mainline LOS – Existing Conditions

|          |                                      |           | E      | xisting Condition     | ıs  | Existing | Plus Preferred Al     | ternative |
|----------|--------------------------------------|-----------|--------|-----------------------|-----|----------|-----------------------|-----------|
| Freeway  | Segment                              | Peak Hour | Volume | Density<br>(pc/ln/mi) | LOS | Volume   | Density<br>(pc/ln/mi) | LOS       |
|          | Sankey Road to Riego Road            | AM        | 1,865  | 17                    | В   | 1,874    | 17                    | В         |
|          | Salikey Road to Riego Road           | PM        | 1,054  | 10                    | Α   | 1,090    | 10                    | А         |
|          | Riego Road to Elverta Road           | AM        | 2,411  | 22                    | С   | 2,420    | 23                    | С         |
| SR 99 SB | SB                                   |           | 1,203  | 11                    | В   | 1,239    | 11                    | В         |
| SK 99 3B | Elverta Road to Elkhorn              |           | 2,724  | 25                    | С   | 3,399    | 32                    | С         |
|          | Eiverta Road to Eiknorn<br>Boulevard |           | 1,285  | 12                    | В   | 1,722    | 16                    | В         |
|          | Elkhorn Boulevard to I-5             | AM        | 3,473  | 33                    | D   | 4,240    | -                     | F         |
|          | EIKNOM Boulevard to 1-5              | PM        | 1,555  | 14                    | В   | 2,052    | 19                    | С         |
|          | I -5 to Elkhorn Boulevard            | AM        | 1,108  | 11                    | В   | 1,327    | 13                    | В         |
|          | 1-5 to Elknom Boulevard              | PM        | 3,859  | 42                    | E   | 4,728    | -                     | F         |
|          | Elkhorn Boulevard to Elverta         | AM        | 938    | 9                     | A   | 1,131    | 11                    | В         |
| SR 99 NB | Road                                 | PM        | 2,899  | 28                    | D   | 3,664    | 38                    | E         |
| SK 99 ND | Elverte Dand to Diana Dand           | AM        | 870    | 9                     | А   | 902      | 9                     | Α         |
|          | Elverta Road to Riego Road           | PM        | 2,493  | 24                    | С   | 2,514    | 24                    | С         |
|          | Diago Dood to Conkey Dood            | AM        | 713    | 7                     | A   | 745      | 8                     | А         |
|          | Riego Road to Sankey Road            | PM        | 1,970  | 19                    | С   | 1,991    | 19                    | С         |

Notes: Bolded cells represent unacceptable operations.

Shaded cells represent significant adverse effects.

<sup>&</sup>quot;-" indicates the mainline segment failed one of the HCM capacity checks, resulting in LOS F.

Table 16
Peak Hour Intersection LOS – Existing Plus Project Conditions

|    |                         | Jurisdiction             |                |              | Existing Co        | nditions | Existing<br>Preferi<br>Alterna | red | Existing<br>Approved S<br>Plan Alter | pecific | Existing<br>Minimal Ir<br>Alternat | npact |  |
|----|-------------------------|--------------------------|----------------|--------------|--------------------|----------|--------------------------------|-----|--------------------------------------|---------|------------------------------------|-------|--|
|    | Intersection            | (Minimum Acceptable LOS) | Control        | Peak<br>Hour | Delay<br>(sec/veh) | LOS      | Delay<br>(sec/veh)             | LOS | Delay<br>(sec/veh)                   | LOS     | Delay<br>(sec/veh)                 | LOS   |  |
| 10 | Elverta Road /          | County of                | Side<br>Street | AM           | 10                 | Α        | 11                             | В   | 11                                   | В       | 11                                 | В     |  |
| 10 | 9 <sup>th</sup> Street  | Sacramento (E)           | Stop           | PM           | 13                 | В        | 42                             | E   | 43                                   | Е       | 35                                 | E     |  |
| 11 | Elverta Road /          | County of                | Traffic        | AM           | 12                 | В        | 23                             | С   | 23                                   | С       | 21                                 | С     |  |
| 11 | Palladay Road           | Sacramento (E)           | Signal         | PM           | 12                 | В        | 20                             | В   | 21                                   | С       | 17                                 | В     |  |
| 12 | U Street /              | County of                | All Way        | AM           | 7                  | Α        | 29                             | D   | 29                                   | D       | 24                                 | С     |  |
| 12 | Dry Creek Road          | Sacramento (E)           | Stop           | PM           | 8                  | Α        | 112                            | F   | 111                                  | F       | 83                                 | F     |  |
| 45 | Elverta Road /          | County of                | Traffic        | AM           | 16                 | С        | 48                             | D   | 48                                   | D       | 46                                 | D     |  |
| 15 | 16 <sup>th</sup> Street | Sacramento (E)           | Signal         | PM           | 18                 | С        | 131                            | F   | 130                                  | F       | 114                                | F     |  |
| 16 | U Street /              | County of                | All Way        | AM           | 7                  | Α        | 11                             | В   | 11                                   | В       | 10                                 | В     |  |
| 16 | 16 <sup>th</sup> Street | Sacramento (E)           | Stop           | PM           | 8                  | Α        | 12                             | В   | 12                                   | В       | 11                                 | В     |  |

Notes: Bolded cells represent unacceptable operations.

Shaded cells indicate significant adverse effects.

>150 sec/veh of delay shown because inputs exceed analysis software's ability to produce reasonable delay estimates.

Table 17: Roadway Segment LOS – Existing Plus Project Conditions

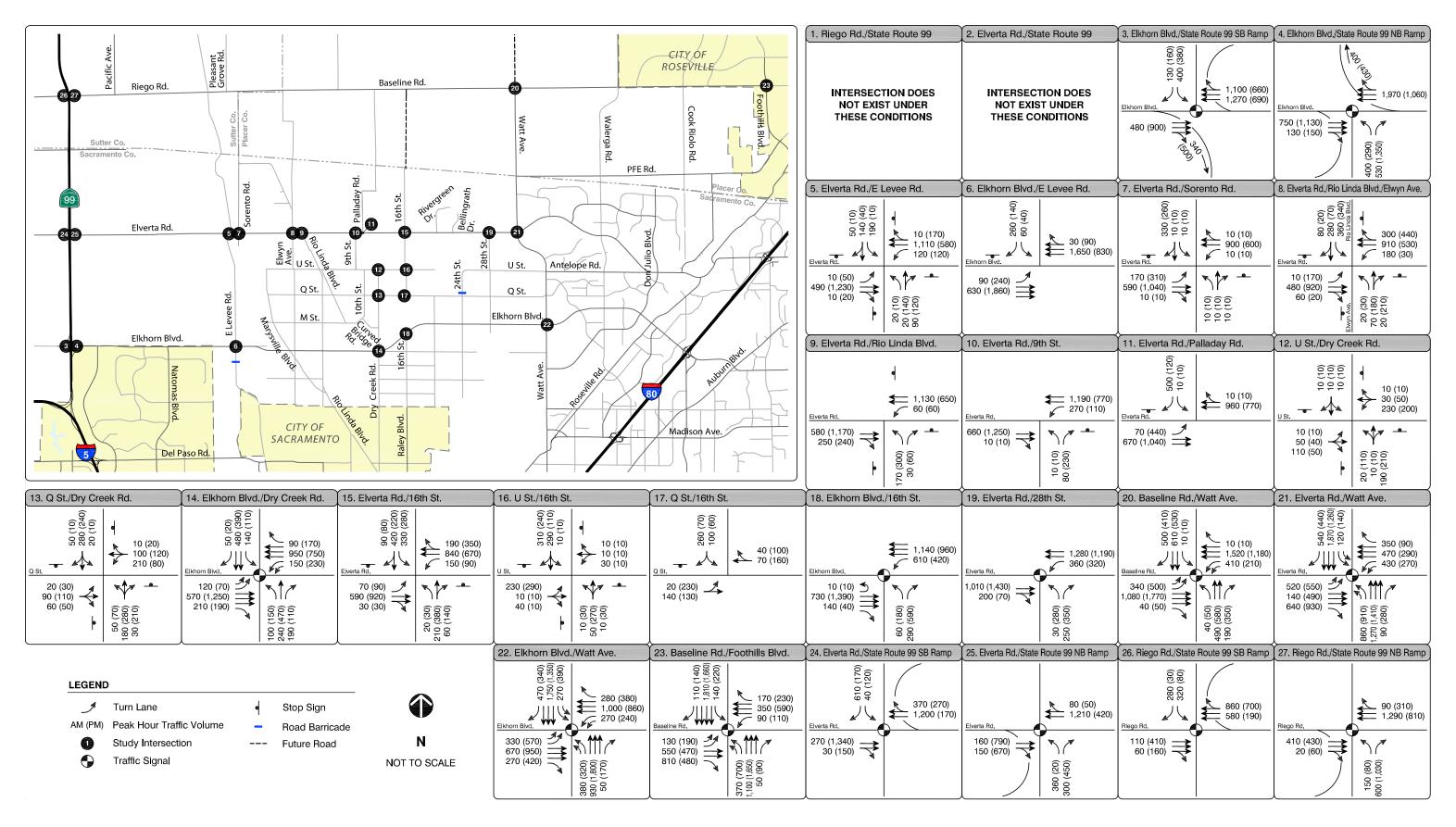
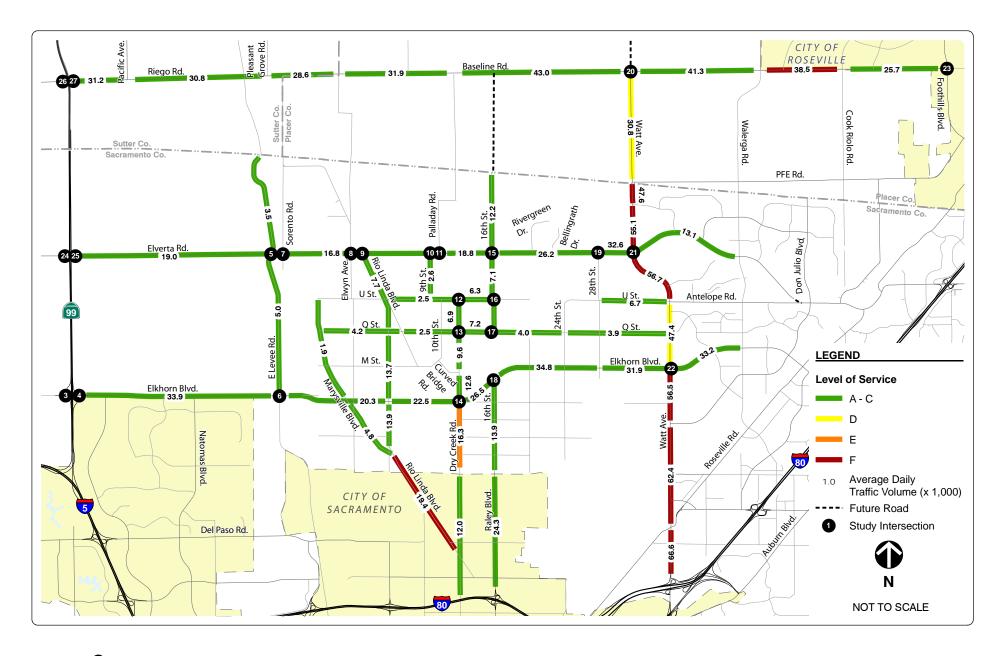
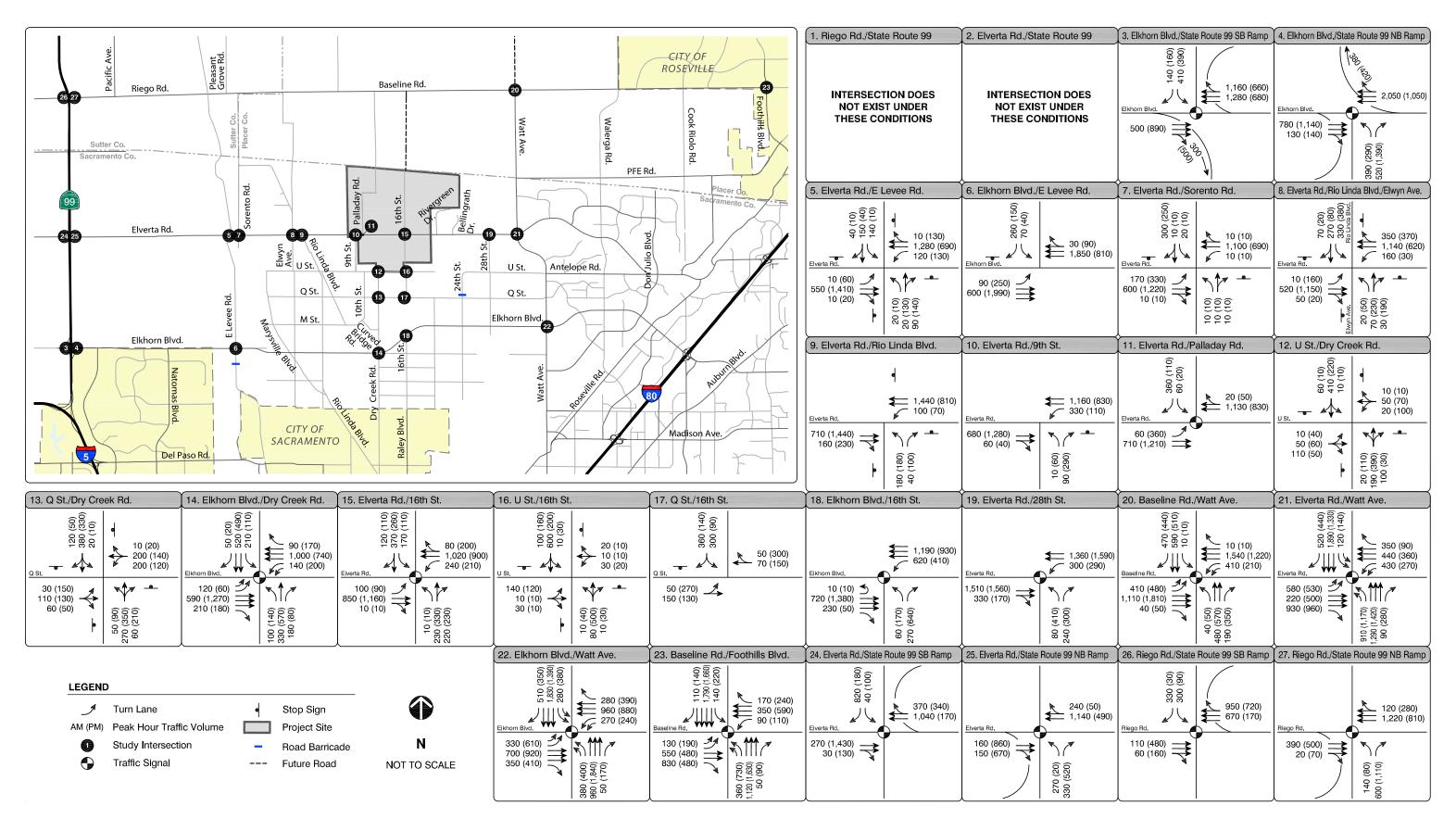

|                           |                                                             |                                        |                 |           |       |       |        |            |     |        | sting Plu |          |        |           |       |        |            |       |
|---------------------------|-------------------------------------------------------------|----------------------------------------|-----------------|-----------|-------|-------|--------|------------|-----|--------|-----------|----------|--------|-----------|-------|--------|------------|-------|
|                           |                                                             | Jurisdiction                           |                 | Foliation |       |       |        | Plus Pre   |     |        | ved Spe   |          |        | Plus Mi   |       |        | ing Plus   |       |
|                           |                                                             | (Minimum                               |                 | Existing  | Conai | tions | А      | Iternative |     | Pian   | Alternat  | ive<br>I | Impac  | t Alterna | itive | Perm   | it Alterna | itive |
| Roadway                   | Segment                                                     | Acceptable LOS)                        | No. of<br>Lanes | ADT       | V/C   | LOS   | ADT    | V/C        | LOS | ADT    | V/C       | LOS      | ADT    | V/C       | LOS   | ADT    | V/C        | LOS   |
| Roddway                   | SR 99 to                                                    | County of                              | Lanes           | ADI       | 1/0   | 200   | ADI    | 1/0        | 200 | ADI    | 1/0       | 200      | ADI    | 1/0       |       | ADI    | 1/0        | 200   |
|                           | E. Levee<br>Road                                            | Sacramento -<br>Rural (D)              | 2               | 5,600     | 0.31  | Α     | 17,600 | 0.98       | E   | 17,600 | 0.98      | E        | 17,000 | 0.94      | Е     | 7,300  | 0.41       | Α     |
| _                         | E. Levee<br>Road to<br>Palladay<br>Road                     | County of<br>Sacramento -<br>Urban (E) | 2               | 7,000     | 0.39  | Α     | 20,600 | 1.14       | F   | 20,100 | 1.12      | F        | 19,500 | 1.08      | F     | 9,000  | 0.50       | Α     |
| Elverta Road              | Palladay<br>Road to<br>16 <sup>th</sup><br>Street           | County of<br>Sacramento -<br>Urban (E) | 4               | 7,200     | 0.40  | А     | 23,500 | 0.65       | В   | 23,000 | 0.64      | В        | 22,200 | 0.62      | В     | 9,700  | 0.27       | А     |
|                           | 16 <sup>th</sup><br>Street to<br>28 <sup>th</sup><br>Street | County of<br>Sacramento -<br>Urban (E) | 2               | 10,400    | 0.58  | А     | 33,300 | 1.85       | F   | 33,300 | 1.84      | F        | 32,200 | 1.79      | F     | 13,800 | 0.77       | С     |
|                           | 28 <sup>th</sup><br>Street to<br>Watt<br>Avenue             | County of<br>Sacramento -<br>Urban (E) | 2               | 14,100    | 0.78  | С     | 33,200 | 1.84       | F   | 33,200 | 1.84      | F        | 32,300 | 1.79      | F     | 17,000 | 0.94       | E     |
| U Street                  | Dry<br>Creek<br>Road to<br>16 <sup>th</sup><br>Street       | County of<br>Sacramento -<br>Urban (E) | 2               | 300       | 0.02  | Α     | 1,400  | 0.08       | А   | 1,400  | 0.08      | А        | 1,300  | 0.07      | Α     | 500    | 0.03       | А     |
| 9 <sup>th</sup><br>Street | Elverta<br>Road to<br>U Street                              | County of<br>Sacramento -<br>Urban (E) | 2               | 500       | 0.03  | А     | 3,200  | 0.18       | А   | 3,200  | 0.18      | А        | 3,100  | 0.17      | А     | 1,000  | 0.06       | Α     |
| Dry<br>Creek<br>Road      | Q Street<br>to U<br>Street                                  | County of<br>Sacramento -<br>Urban (E) | 2               | 1,500     | 0.08  | А     | 12,900 | 0.72       | С   | 13,000 | 0.72      | С        | 12,400 | 0.69      | В     | 2,800  | 0.16       | А     |
| Street                    | Q Street<br>to Elverta<br>Road                              | County of<br>Sacramento -<br>Urban (E) | 2               | 1,500     | 0.08  | А     | 6,900  | 0.38       | А   | 7,000  | 0.39      | Α        | 6,700  | 0.37      | А     | 3,600  | 0.20       | А     |
| 16 <sup>th</sup> S        | Elverta<br>Road to<br>County<br>Line                        | County of<br>Sacramento -<br>Urban (E) | 2               | 500       | 0.03  | Α     | 11,900 | 0.66       | В   | 12,000 | 0.67      | В        | 11,400 | 0.63      | В     | 7,000  | 0.39       | А     |

Table 18
Traffic Signal Warrant Analysis – Existing Plus Project Conditions

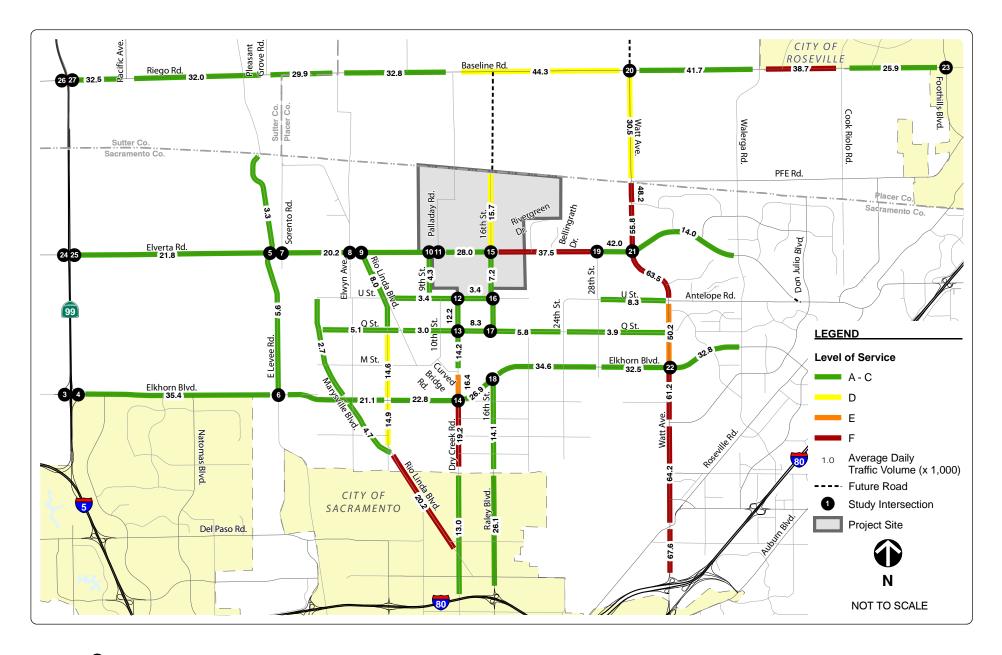

|    |                                    |             |              | Peak Hour Signa     | al Warrant Met?                                  |
|----|------------------------------------|-------------|--------------|---------------------|--------------------------------------------------|
|    | Intersection                       | Control     | Peak<br>Hour | Existing Conditions | Existing Plus<br>Project Conditions <sup>1</sup> |
| 3  | SR 99 SB Off-Ramp /                | Side Street | AM           | No                  | No                                               |
|    | Elkhorn Blvd                       | Stop        | PM           | No                  | No                                               |
| 4  | SR 99 NB Off-Ramp /                | Side Street | AM           | YES                 | YES                                              |
| _  | Elkhorn Blvd                       | Stop        | PM           | YES                 | YES                                              |
| 5  | Elverta Road / E.                  | All Way     | AM           | No                  | No                                               |
| 3  | Levee Road                         | Stop        | PM           | No                  | YES                                              |
| 6  | Elkhorn Blvd / E.                  | Side Street | AM           | No                  | No                                               |
| 0  | Levee Road                         | Stop        | PM           | No                  | No                                               |
| 7  | Elverta Road /                     | Side Street | AM           | No                  | No                                               |
| ,  | Sorento Road                       | Stop        | PM           | No                  | No                                               |
| 8  | Elverta Road / Elwyn               | All Way     | AM           | No                  | YES                                              |
| 0  | Road                               | Stop        | PM           | No                  | YES                                              |
| 9  | Elverta Road / Rio                 | All Way     | AM           | No                  | No                                               |
| 9  | Linda Blvd                         | Stop        | PM           | No                  | YES                                              |
| 40 | Elverta Road / 9 <sup>th</sup>     | Side Street | AM           | No                  | No                                               |
| 10 | Street                             | Stop        | PM           | No                  | YES                                              |
| 12 | U Street / Dry Creek               | All Way     | AM           | No                  | No                                               |
| 12 | Road                               | Stop        | PM           | No                  | No                                               |
| 13 | Q Street / Dry Creek               | All Way     | AM           | No                  | YES                                              |
| 13 | Road                               | Stop        | PM           | No                  | YES                                              |
| 16 | U Street / 16 <sup>th</sup> Street | All Way     | AM           | No                  | No                                               |
| 10 | O Street / TO Street               | Stop        | PM           | No                  | No <sup>2</sup>                                  |
| 17 | Q Street / 16 <sup>th</sup> Street | Side Street | AM           | No                  | No                                               |
| 17 | Q Silect / 10 Silect               | Stop        | PM           | No                  | No                                               |

Notes: <sup>1</sup> Applies to all project alternatives unless otherwise noted.

 $<sup>^{\</sup>rm 2}$  Traffic signal warranted under Existing Plus No Federal Action Alternative only.

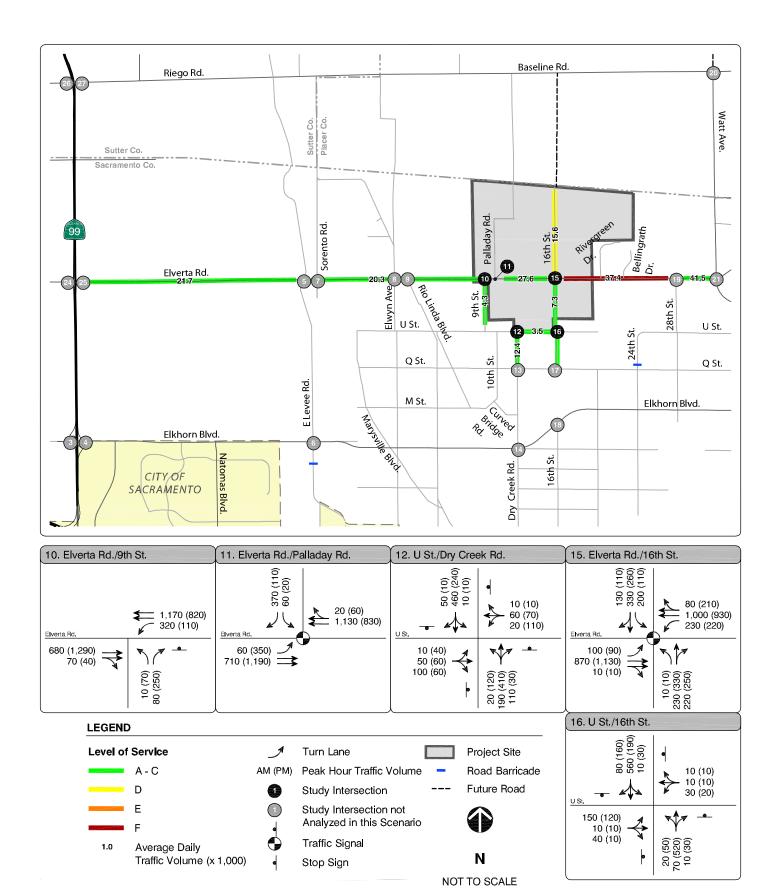




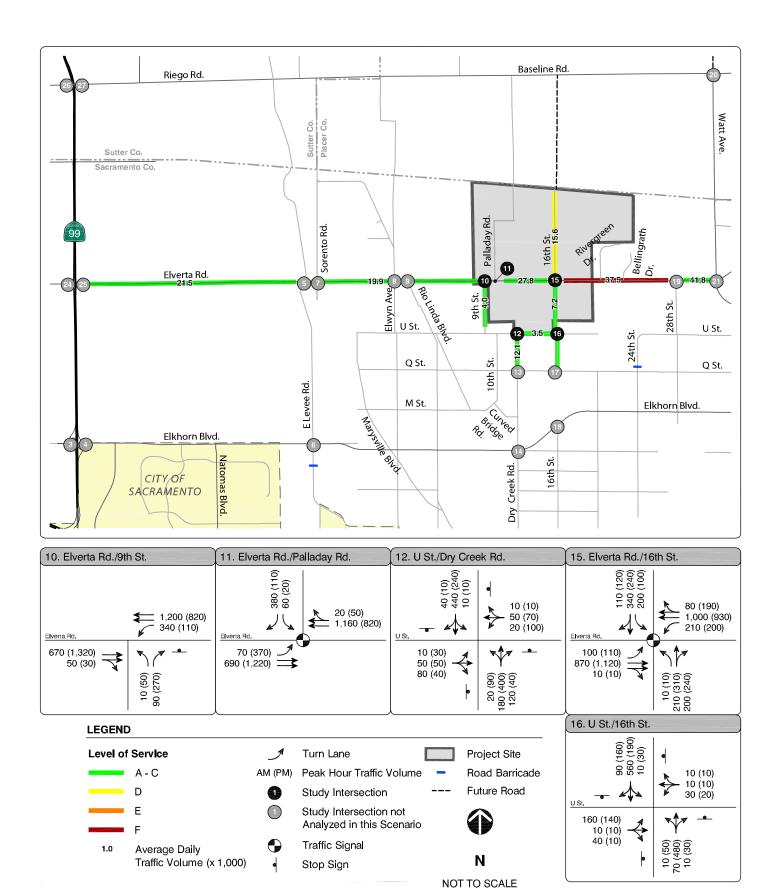



AVERAGE DAILY TRAFFIC VOLUMES
AND LEVEL OF SERVICE CUMULATIVE NO PROJECT CONDITIONS



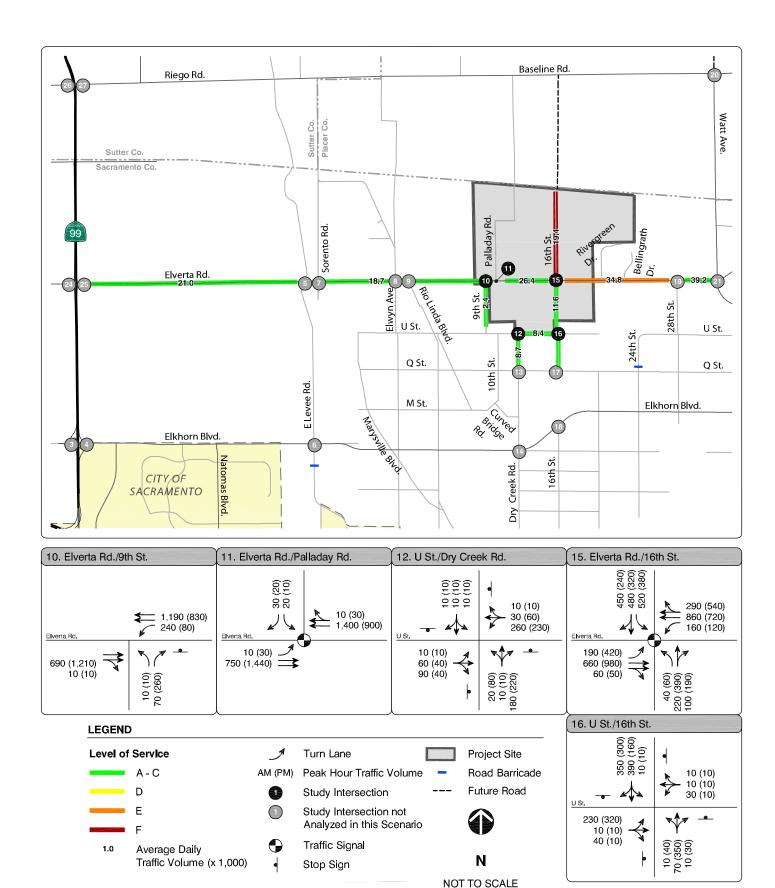





AVERAGE DAILY TRAFFIC VOLUMES
AND LEVEL OF SERVICE CUMULATIVE PLUS PREFERRED ALTERNATIVE CONDITIONS






AVERAGE DAILY TRAFFIC VOLUMES, LEVEL OF SERVICE PEAK HOUR TRAFFIC VOLUMES AND LANE CONFIGURATIONS - CUMULATIVE PLUS APPROVED SPECIFIC PLAN ALTERNATIVE





AVERAGE DAILY TRAFFIC VOLUMES, LEVEL OF SERVICE PEAK HOUR TRAFFIC VOLUMES AND LANE CONFIGURATIONS -CUMULATIVE PLUS MINIMAL IMPACT ALTERNATIVE





AVERAGE DAILY TRAFFIC VOLUMES, LEVEL OF SERVICE PEAK HOUR TRAFFIC VOLUMES AND LANE CONFIGURATIONS - CUMULATIVE PLUS NO FEDERAL ACTION ALTERNATIVE

Table 19
Peak Hour Intersection LOS – Cumulative Plus Preferred Alternative Conditions

|    |                                 | Jurisdiction                           |                |              | Cumulativ<br>Project Con | re No | Cumulative<br>Preferred Alt<br>Condition | ernative |
|----|---------------------------------|----------------------------------------|----------------|--------------|--------------------------|-------|------------------------------------------|----------|
|    | Intersection                    | (Minimum<br>Acceptable LOS)            | Control        | Peak<br>Hour | Delay<br>(sec/veh)       | LOS   | Delay<br>(sec/veh)                       | LOS      |
|    | SR 99 SB Off-                   | , ,                                    | Traffic        | AM           | 14                       | В     | 15                                       | В        |
| 3  | Ramp / Elkhorn<br>Blvd          | Caltrans (E)                           | Signal         | PM           | 14                       | В     | 15                                       | В        |
| 4  | SR 99 NB Off-<br>Ramp / Elkhorn | Caltrans (E)                           | Traffic        | AM           | 15                       | В     | 15                                       | В        |
| 4  | Blvd                            | Califalis (L)                          | Signal         | PM           | 96                       | F     | 103                                      | F        |
| 5  | Elverta Road / E.               | County of                              | All Way        | AM           | 102                      | F     | >150                                     | F        |
| 3  | Levee Road                      | Sacramento (E)                         | Stop           | PM           | 144                      | F     | >150                                     | F        |
| 6  | Elkhorn Blvd / E.               | County of                              | Side<br>Street | AM           | >150                     | F     | >150                                     | F        |
| 0  | Levee Road                      | Sacramento (E)                         | Stop           | PM           | >150                     | F     | >150                                     | F        |
| 7  | Elverta Road /                  | County of                              | Side<br>Street | AM           | >150                     | F     | >150                                     | F        |
| ′  | Sorento Road                    | Sacramento (E)                         | Stop           | PM           | >150                     | F     | >150                                     | F        |
| 8  | Elverta Road /                  | County of                              | All Way        | AM           | 139                      | F     | >150                                     | F        |
| 0  | Elwyn Road                      | Sacramento (E)                         | Stop           | PM           | >150                     | F     | >150                                     | F        |
| 9  | Elverta Road / Rio              | County of                              | All Way        | AM           | 79                       | F     | >150                                     | F        |
| 9  | Linda Blvd                      | Sacramento (E)                         | Stop           | PM           | 148                      | F     | >150                                     | F        |
| 10 | Elverta Road / 9 <sup>th</sup>  | County of                              | Side<br>Street | AM           | 107                      | F     | >150                                     | F        |
| 10 | Street                          | Sacramento (E)                         | Street         | PM           | 103                      | F     | >150                                     | F        |
| 11 | Elverta Road /                  | County of                              | Traffic        | AM           | 68                       | F     | 12                                       | В        |
|    | Palladay Road                   | Sacramento (E)                         | Signal         | PM           | >150                     | F     | 11                                       | В        |
| 12 | U Street / Dry                  | County of                              | All Way        | AM           | 10                       | Α     | 16                                       | С        |
|    | Creek Road                      | Sacramento (E)                         | Stop           | PM           | 11                       | В     | 22                                       | С        |
| 13 | Q Street / Dry                  | County of                              | All Way        | AM           | 17                       | С     | 80                                       | F        |
|    | Creek Road                      | Sacramento (E)                         | Stop           | PM           | 30                       | D     | 137                                      | F        |
| 14 | Elkhorn Blvd / Dry              | County of                              | Traffic        | AM           | 20                       | С     | 25                                       | С        |
|    | Creek Road                      | Sacramento (E)                         | Signal         | PM           | 41                       | D     | 41                                       | D        |
| 15 | Elverta Road / 16 <sup>th</sup> | County of                              | Traffic        | AM           | >150                     | F     | 46                                       | D        |
|    | Street                          | Sacramento (E)                         | Signal         | PM           | >150                     | F     | 58                                       | E        |
| 16 | U Street / 16 <sup>th</sup>     | County of                              | All Way        | AM           | 22                       | С     | 38                                       | Е        |
|    | Street                          | Sacramento (E)                         | Stop           | PM           | 15                       | В     | 21                                       | С        |
| 17 | Q Street / 16 <sup>th</sup>     | County of                              | Side<br>Street | AM           | 12                       | В     | 24                                       | В        |
|    | Street                          | Sacramento (E)                         | Stop           | PM           | 17                       | С     | 32                                       | D        |
| 18 | Elkhorn Blvd / 16 <sup>th</sup> | County of                              | Traffic        | AM           | 58                       | E     | 59                                       | E        |
|    | Street                          | Sacramento (E)                         | Signal         | PM           | 50                       | D     | 48                                       | D        |
| 19 | Elverta Road / 28 <sup>th</sup> | County of                              | Traffic        | AM           | 45                       | D     | 128                                      | F        |
|    | Street                          | Sacramento (E)                         | Signal         | PM           | 92                       | F     | >150                                     | F        |
| 20 | Baseline Road /                 | County of Placer -<br>Placer Vineyards | Traffic        | AM           | 26                       | С     | 27                                       | С        |
|    | Watt Avenue                     | (D)                                    | Signal         | PM           | 25                       | C     | 25                                       | С        |
| 21 | Elverta Road /                  | County of                              | Traffic        | AM           | 112                      | F     | >150                                     | F        |
|    | Watt Avenue                     | Sacramento (E)                         | Signal         | PM           | 93                       | F     | 123                                      | F        |

Table 19
Peak Hour Intersection LOS – Cumulative Plus Preferred Alternative Conditions

|    |                  | Jurisdiction             |         |              | Cumulativ<br>Project Con |     | Cumulative Preferred Alt Condition | ernative |
|----|------------------|--------------------------|---------|--------------|--------------------------|-----|------------------------------------|----------|
|    | Intersection     | (Minimum Acceptable LOS) | Control | Peak<br>Hour | Delay<br>(sec/veh)       | LOS | Delay<br>(sec/veh)                 | LOS      |
| 22 | Elkhorn Blvd /   | County of                | Traffic | AM           | 48                       | D   | 49                                 | D        |
|    | Watt Avenue      | Sacramento (E)           | Signal  | PM           | 57                       | Е   | 62                                 | E        |
| 23 | Baseline Road /  | City of Roseville (C)    | Traffic | AM           | 55                       | D   | 56                                 | E        |
| 23 | Foothills Blvd   | City of Roseville (C)    | Signal  | PM           | 45                       | D   | 46                                 | D        |
| 24 | SR 99 SB Ramps / | Caltrans (E)             | Traffic | AM           | 31                       | С   | 55                                 | D        |
| 24 | Elverta Road     | Califalis (E)            | Signal  | PM           | 7                        | Α   | 7                                  | Α        |
| 25 | SR 99 NB Ramps / | Coltrana (E)             | Traffic | AM           | 12                       | В   | 10                                 | В        |
| 25 | Elverta Road     | Caltrans (E)             | Signal  | PM           | 12                       | В   | 16                                 | В        |
| 26 | SR 99 SB Ramps / | Coltrono (E)             | Traffic | AM           | 9                        | Α   | 9                                  | Α        |
| 20 | Riego Road       | Caltrans (E)             | Signal  | PM           | 4                        | Α   | 4                                  | Α        |
| 27 | SR 99 NB Ramps / | Coltrono (E)             | Traffic | AM           | 12                       | В   | 13                                 | В        |
| 21 | Riego Road       | Caltrans (E)             | Signal  | PM           | 35                       | С   | 47                                 | D        |

Notes: Bolded cells represent unacceptable operations.

Shaded cells represent significant adverse effects.

>150 sec/veh of delay shown because inputs exceed analysis software's ability to produce reasonable delay estimates.

Table 20
Roadway Segment LOS – Cumulative Plus Preferred Alternative Conditions

|                     | limit di ation                                      |                                                     |              | Cumulative N | o Project Co | nditions | Cumulative Plu | s Preferred | Alternative |
|---------------------|-----------------------------------------------------|-----------------------------------------------------|--------------|--------------|--------------|----------|----------------|-------------|-------------|
| Roadway             | Segment                                             | Jurisdiction<br>(Minimum LOS)                       | No. of Lanes | ADT          | V/C          | LOS      | ADT            | V/C         | LOS         |
|                     | SR 99 to Pacific Avenue                             | County of Sutter (D)                                | 6            | 31,200       | 0.40         | С        | 32,500         | 0.42        | С           |
| ad                  | Pacific Avenue to<br>Pleasant Grove Road<br>(South) | County of Sutter (D)                                | 6            | 30,800       | 0.40         | С        | 32,000         | 0.41        | С           |
| Road /Baseline Road | Pleasant Grove Road<br>(South) to Locust Road       | County of Placer - Placer<br>Vineyards Frontage (D) | 6            | 28,600       | 0.53         | Α        | 29,900         | 0.55        | А           |
| Baseli              | Locust Road to Palladay<br>Road                     | County of Placer - Placer Vineyards Frontage (D)    | 6            | 31,900       | 0.59         | Α        | 32,800         | 0.61        | В           |
| Road /              | Palladay Road to Watt<br>Avenue                     | County of Placer - Placer<br>Vineyards Frontage (D) | 6            | 43,000       | 0.80         | С        | 44,300         | 0.82        | D           |
| Riego F             | Watt Avenue to Walerga<br>Road                      | County of Placer - Placer<br>Vineyards Frontage (D) | 6            | 41,300       | 0.76         | С        | 41,700         | 0.77        | С           |
|                     | Walerga Road to Cook-<br>Riolo Road                 | County of Placer (C)                                | 4            | 38,500       | 1.07         | F        | 38,700         | 1.08        | F           |
|                     | Cook-Riolo Road to Foothills Boulevard              | County of Placer (C)                                | 4            | 25,700       | 0.71         | С        | 25,900         | 0.72        | С           |
|                     | SR 99 to E. Levee Road                              | County of Sacramento -<br>Rural (D)                 | 4            | 19,000       | 0.53         | Α        | 21,800         | 0.61        | В           |
|                     | E. Levee Road to Palladay<br>Road                   | County of Sacramento -<br>Urban (E)                 | 4            | 16,800       | 0.47         | Α        | 20,200         | 0.56        | А           |
| Road                | Palladay Road to 16 <sup>th</sup><br>Street         | County of Sacramento -<br>Urban (E)                 | 4            | 18,800       | 0.52         | А        | 28,000         | 0.78        | С           |
| Elverta Road        | 16 <sup>th</sup> Street to 28 <sup>th</sup> Street  | County of Sacramento -<br>Urban (E)                 | 4            | 26,200       | 0.73         | С        | 37,500         | 1.04        | F           |
|                     | 28 <sup>th</sup> Street to Watt Avenue              | County of Sacramento -<br>Urban (E)                 | 6            | 32,600       | 0.60         | В        | 42,000         | 0.78        | С           |
|                     | Watt Avenue to Walerga<br>Road                      | County of Sacramento -<br>Urban (E)                 | 6            | 13,100       | 0.24         | А        | 14,000         | 0.26        | А           |

Table 20
Roadway Segment LOS – Cumulative Plus Preferred Alternative Conditions

|                   |                                                    |                                                     |              | Cumulative N | o Project Co | nditions | Cumulative Plu | s Preferred | Alternative |
|-------------------|----------------------------------------------------|-----------------------------------------------------|--------------|--------------|--------------|----------|----------------|-------------|-------------|
| Roadway           | Segment                                            | Jurisdiction<br>(Minimum LOS)                       | No. of Lanes | ADT          | V/C          | LOS      | ADT            | V/C         | LOS         |
|                   | SR 99 to E. Levee Road                             | County of Sacramento -<br>Urban (E)                 | 6            | 33,900       | 0.63         | В        | 35,400         | 0.66        | В           |
|                   | E. Levee Road to Rio<br>Linda Boulevard            | County of Sacramento -<br>Urban (E)                 | 6            | 20,300       | 0.38         | Α        | 21,100         | 0.39        | А           |
| evard             | Rio Linda Boulevard to<br>Dry Creek Road           | County of Sacramento -<br>Urban (E)                 | 6            | 22,500       | 0.42         | Α        | 22,800         | 0.42        | А           |
| Elkhorn Boulevard | Dry Creek Road to 16 <sup>th</sup><br>Street       | County of Sacramento -<br>Urban (E)                 | 6            | 26,500       | 0.49         | Α        | 26,900         | 0.50        | А           |
| Elkhor            | 16 <sup>th</sup> Street to 28 <sup>th</sup> Street | County of Sacramento -<br>Urban (E)                 | 6            | 34,800       | 0.64         | В        | 34,600         | 0.64        | В           |
|                   | 28 <sup>th</sup> Street to Watt Avenue             | County of Sacramento -<br>Urban (E)                 | 6            | 31,900       | 0.59         | А        | 32,500         | 0.60        | В           |
|                   | Watt Avenue to Walerga<br>Road                     | County of Sacramento -<br>Urban (E)                 | 6            | 33,200       | 0.61         | В        | 32,800         | 0.61        | В           |
|                   | Baseline Road to PFE<br>Road                       | County of Placer - Placer<br>Vineyards Frontage (D) | 4            | 30,800       | 0.86         | D        | 30,500         | 0.85        | D           |
|                   | PFE Road to Black Eagle<br>Drive                   | County of Sacramento -<br>Urban (E)                 | 2            | 47,600       | 2.64         | F        | 48,200         | 2.68        | F           |
|                   | Black Eagle Drive to<br>Elverta Road               | County of Sacramento -<br>Urban (E)                 | 6            | 55,100       | 1.02         | F        | 55,800         | 1.03        | F           |
| enne              | Elverta Road to Antelope<br>Road                   | County of Sacramento -<br>Urban (E)                 | 4            | 56,700       | 1.58         | F        | 63,500         | 1.76        | F           |
| Watt Avenue       | Antelope Road to Elkhorn<br>Boulevard              | County of Sacramento -<br>Urban (E)                 | 6            | 47,400       | 0.88         | D        | 50,200         | 0.93        | E           |
| >                 | Elkhorn Boulevard to Don<br>Julio Boulevard        | County of Sacramento -<br>Urban (E)                 | 6            | 56,500       | 1.05         | F        | 61,200         | 1.13        | F           |
|                   | Don Julio Boulevard to<br>Roseville Road           | County of Sacramento -<br>Urban (E)                 | 6            | 62,400       | 1.16         | F        | 64,200         | 1.19        | F           |
|                   | Roseville Road to I-80                             | County of Sacramento -<br>Urban (E)                 | 6            | 66,600       | 1.23         | F        | 67,600         | 1.25        | F           |

Table 20
Roadway Segment LOS – Cumulative Plus Preferred Alternative Conditions

|                      |                                                    |                                     |              | Cumulative N | lo Project Co | nditions | Cumulative Plu | s Preferred | Alternative |
|----------------------|----------------------------------------------------|-------------------------------------|--------------|--------------|---------------|----------|----------------|-------------|-------------|
| Roadway              | Segment                                            | Jurisdiction<br>(Minimum LOS)       | No. of Lanes | ADT          | V/C           | LOS      | ADT            | V/C         | LOS         |
|                      | Rio Linda Boulevard to<br>Dry Creek Road           | County of Sacramento -<br>Urban (E) | 2            | 2,500        | 0.14          | А        | 3,400          | 0.19        | А           |
| U Street             | Dry Creek Road to 16 <sup>th</sup><br>Street       | County of Sacramento -<br>Urban (E) | 2            | 6,300        | 0.35          | А        | 3,400          | 0.19        | А           |
| _                    | 28 <sup>th</sup> Street to Watt Avenue             | County of Sacramento -<br>Urban (E) | 2            | 6,700        | 0.37          | А        | 8,300          | 0.46        | А           |
|                      | Marysville Boulevard to Rio Linda Boulevard        | County of Sacramento -<br>Urban (E) | 2            | 4,200        | 0.23          | А        | 5,100          | 0.28        | Α           |
|                      | Rio Linda Boulevard to<br>Dry Creek Road           | County of Sacramento -<br>Urban (E) | 2            | 2,500        | 0.14          | Α        | 3,000          | 0.17        | Α           |
| 2 Street             | Dry Creek Road to 16 <sup>th</sup><br>Street       | County of Sacramento -<br>Urban (E) | 2            | 7,200        | 0.40          | Α        | 8,300          | 0.46        | Α           |
| 0                    | 16 <sup>th</sup> Street to 24 <sup>th</sup> Street | County of Sacramento -<br>Urban (E) | 2            | 4,000        | 0.22          | Α        | 5,800          | 0.32        | А           |
|                      | 24 <sup>th</sup> Street to Watt Avenue             | County of Sacramento -<br>Urban (E) | 2            | 3,900        | 0.22          | Α        | 3,900          | 0.22        | А           |
| East Levee<br>Road   | Sutter County Line to<br>Elverta Road              | County of Sacramento -<br>Urban (E) | 2            | 3,500        | 0.19          | А        | 3,300          | 0.18        | А           |
| East L<br>Ro         | Elverta Road to Elkhorn<br>Boulevard               | County of Sacramento -<br>Urban (E) | 2            | 5,000        | 0.28          | А        | 5,600          | 0.31        | А           |
| levard               | Dry Creek Road to Rio<br>Linda Boulevard           | City of Sacramento (D)              | 2            | 19,400       | 1.08          | F        | 20,200         | 1.12        | F           |
| Marysville Boulevard | Rio Linda Boulevard to<br>Elkhorn Boulevard        | County of Sacramento -<br>Urban (E) | 2            | 4,800        | 0.27          | А        | 4,700          | 0.26        | А           |
| Marys                | Elkhorn Boulevard to U<br>Street                   | County of Sacramento -<br>Urban (E) | 2            | 1,900        | 0.11          | А        | 2,700          | 0.15        | А           |

Table 20
Roadway Segment LOS – Cumulative Plus Preferred Alternative Conditions

|                   |                                              |                                     |              | Cumulative No Project Conditions |      | Cumulative Plu | us Preferred | Alternative |     |
|-------------------|----------------------------------------------|-------------------------------------|--------------|----------------------------------|------|----------------|--------------|-------------|-----|
| Roadway           | Segment                                      | Jurisdiction<br>(Minimum LOS)       | No. of Lanes | ADT                              | V/C  | LOS            | ADT          | V/C         | LOS |
| Slvd              | Marysville Boulevard to<br>Elkhorn Boulevard | County of Sacramento -<br>Urban (E) | 2            | 13,900                           | 0.77 | С              | 14,900       | 0.83        | D   |
| Rio Linda Blvd    | Elkhorn Boulevard to Q<br>Street             | County of Sacramento -<br>Urban (E) | 2            | 13,700                           | 0.76 | С              | 14,600       | 0.81        | D   |
| Rio I             | Q Street to Elverta Road                     | County of Sacramento -<br>Urban (E) | 2            | 7,700                            | 0.43 | Α              | 8,000        | 0.44        | А   |
| <sup>⊕</sup> 6 ₹5 | Elverta Road to U Street                     | County of Sacramento -<br>Urban (E) | 2            | 2,600                            | 0.14 | А              | 4,300        | 0.24        | А   |
|                   | I-80 to Ascot Avenue                         | City of Sacramento (D)              | 2            | 12,000                           | 0.67 | В              | 13,000       | 0.72        | О   |
| Road              | Ascot Avenue to Elkhorn<br>Boulevard         | County of Sacramento -<br>Urban (E) | 2            | 16,300                           | 0.91 | E              | 19,200       | 1.07        | F   |
| Dry Creek Road    | Elkhorn Boulevard to<br>Curved Bridge Road   | County of Sacramento -<br>Urban (E) | 2            | 12,600                           | 0.70 | В              | 16,400       | 0.91        | E   |
| Dry (             | Curved Bridge Road to Q<br>Street            | County of Sacramento -<br>Urban (E) | 2            | 9,600                            | 0.53 | А              | 14,200       | 0.79        | С   |
|                   | Q Street to U Street                         | County of Sacramento -<br>Urban (E) | 2            | 6,900                            | 0.38 | Α              | 12,200       | 0.68        | В   |
| e t               | Ascot Avenue to Elkhorn<br>Boulevard         | County of Sacramento -<br>Urban (E) | 2            | 13,900                           | 0.77 | С              | 14,100       | 0.78        | С   |
| 16th Street       | Q Street to Elverta Road                     | County of Sacramento -<br>Urban (E) | 2            | 7,100                            | 0.39 | Α              | 7,200        | 0.40        | Α   |
| 16                | Elverta Road to County<br>Line               | County of Sacramento -<br>Urban (E) | 2            | 12,200                           | 0.68 | В              | 15,700       | 0.87        | D   |
| Raley<br>Blvd     | I-80 to Ascot Avenue                         | City of Sacramento (D)              | 6            | 24,300                           | 0.45 | А              | 26,100       | 0.48        | А   |

Notes: Bolded cells represent unacceptable operations.

Shaded cells represent significant adverse effects.

Table 21
Freeway Mainline LOS – Cumulative Plus Preferred Alternative Conditions

|          |                              |           | Cumulat | ive No Project Conditi | ions | Cumulativ | e Plus Preferred Alter | native |
|----------|------------------------------|-----------|---------|------------------------|------|-----------|------------------------|--------|
| Freeway  | Segment                      | Peak Hour | Volume  | Density (pc/In/mi)     | LOS  | Volume    | Density (pc/ln/mi)     | LOS    |
|          | Cankay Bood to Biogo Bood    | AM        | 4,670   | -                      | F    | 4,630     | -                      | F      |
|          | Sankey Road to Riego Road    | PM        | 2,440   | 21                     | С    | 2,410     | 21                     | С      |
|          | Riego Road to Elverta Road   | AM        | 4,990   | -                      | F    | 5,010     | -                      | F      |
| SR 99 SB | Niego Noad to Elverta Noad   | PM        | 3,190   | 27                     | D    | 3,170     | 28                     | D      |
| 3K 99 3B | Elverta Road to Elkhorn      | AM        | 4,740   | -                      | F    | 4,550     | -                      | F      |
|          | Boulevard                    | PM        | 3,320   | 29                     | D    | 3,360     | 30                     | D      |
|          | Elkhorn Boulevard to I-5     | AM        | 5,650   | -                      | F    | 5,460     | -                      | F      |
|          | Elknom Boulevard to 1-5      | PM        | 3,940   | 29                     | D    | 3,970     | 29                     | D      |
|          | I -5 to Elkhorn Boulevard    | AM        | 3,200   | 22                     | С    | 2,930     | 20                     | С      |
|          | 1-3 to Eikiloili Boulevalu   | PM        | 5,940   | -                      | F    | 6,100     | -                      | F      |
|          | Elkhorn Boulevard to Elverta | AM        | 2,800   | 27                     | D    | 2,530     | 24                     | С      |
| SR 99 NB | Road                         | PM        | 4,880   | -                      | F    | 4,980     | -                      | F      |
| SK 99 ND | Chrosto Dood to Diogo Dood   | AM        | 2,370   | 23                     | С    | 2,320     | 22                     | С      |
|          | Elverta Road to Riego Road   | PM        | 5,130   | -                      | F    | 5,160     | -                      | F      |
|          | Piego Pood to Cankov Pood    | AM        | 1,730   | 16                     | В    | 1,720     | 16                     | В      |
|          | Riego Road to Sankey Road    | PM        | 4,390   | -                      | F    | 4,320     | -                      | F      |

Notes: Bolded cells represent unacceptable operations.

Shaded cells represent significant adverse effects.

<sup>&</sup>quot;-" indicates the mainline segment failed one of the HCM capacity checks, resulting in LOS F.

Table 22: Freeway Ramp Junction LOS – Cumulative Plus Preferred Alternative Conditions

|          |                                 |           | Cumulative No F    | Project Conditions | Cumulative Plus P  | referred Alternative |
|----------|---------------------------------|-----------|--------------------|--------------------|--------------------|----------------------|
| Freeway  | Ramp Junction                   | Peak Hour | Density (pc/ln/mi) | LOS                | Density (pc/ln/mi) | LOS                  |
|          | Chrosto Dood Loop On Domp Morgo | AM        | -                  | F                  | -                  | F                    |
|          | Elverta Road Loop On-Ramp Merge | PM        | 30                 | D                  | 30                 | D                    |
| SR 99 SB | Elverta Road Slip On-Ramp Merge | AM        | -                  | F                  | -                  | F                    |
| 3K 99 3B | Liverta Road Slip On-Ramp Merge | PM        | 31                 | D                  | 32                 | D                    |
|          | Charte Dood Off Doron Divers    | AM        | -                  | F                  | -                  | F                    |
|          | Elverta Road Off-Ramp Diverge   | PM        | 31                 | D                  | 32                 | D                    |
|          | Elverta Road Loop On-Ramp Merge | AM        | 24                 | С                  | 23                 | С                    |
|          | Elverta Road Loop On-Ramp Merge | PM        | -                  | F                  | -                  | F                    |
| CD OO ND | Elverta Road Slip On-Ramp Merge | AM        | 25                 | С                  | 25                 | С                    |
| SR 99 NB | Elverta Road Slip On-Ramp Merge | PM        | -                  | F                  | -                  | F                    |
|          | Flyoria Road Off Roma Diverse   | AM        | 31                 | D                  | 28                 | С                    |
|          | Elverta Road Off-Ramp Diverge   | PM        | -                  | F                  | -                  | F                    |

Notes: Bolded cells represent unacceptable operations.

Shaded cells represent significant adverse effects.

"-" indicates the mainline segment failed one of the HCM capacity checks, resulting in LOS F.

SOURCE: Fehr & Peers, 2010.

ESA / 207431

Table 23
Peak Hour Intersection LOS – Cumulative Plus Project Conditions

|    |                                        |                                          |                |           | Cumulative<br>Cond | No Project | Cumulative P       |     |                    | lus Approved n Alternative | Cumulative I       |     |  |
|----|----------------------------------------|------------------------------------------|----------------|-----------|--------------------|------------|--------------------|-----|--------------------|----------------------------|--------------------|-----|--|
|    | Intersection                           | Jurisdiction (Minimum<br>Acceptable LOS) | Control        | Peak Hour | Delay<br>(sec/veh) | LOS        | Delay<br>(sec/veh) | LOS | Delay<br>(sec/veh) | LOS                        | Delay<br>(sec/veh) | LOS |  |
| 40 | Elverta Road / 9 <sup>th</sup> Street  | O                                        | Side Street    | AM        | 107                | F          | >150               | F   | >150               | F                          | >150               | F   |  |
| 10 | Elverta Road / 9 Street                | County of Sacramento (E)                 | Stop           | PM        | 103                | F          | >150               | F   | >150               | F                          | >150               | F   |  |
| 11 | Elverta Road / Palladay                | County of Cooperato (E)                  | Traffic Circus | AM        | 68                 | F          | 12                 | В   | 12                 | В                          | 13                 | В   |  |
| 11 | Road                                   | County of Sacramento (E)                 | Traffic Signal | PM        | >150               | F          | 11                 | В   | 12                 | В                          | 12                 | В   |  |
| 40 | LI Chroat / Dr. Croal: Dood            | County of Consequents (E)                | All May Chan   | AM        | 10                 | Α          | 16                 | С   | 18                 | С                          | 16                 | С   |  |
| 12 | U Street / Dry Creek Road              | County of Sacramento (E)                 | All Way Stop   | PM        | 11                 | В          | 22                 | С   | 29                 | D                          | 21                 | С   |  |
| 45 | Floring Dead / 40th Olivert            | O                                        | Tue # : 0 :    | AM        | >150               | F          | 46                 | D   | 49                 | D                          | 45                 | D   |  |
| 15 | Elverta Road / 16 <sup>th</sup> Street | County of Sacramento (E)                 | Traffic Signal | PM        | >150               | F          | 58                 | E   | 58                 | E                          | 54                 | D   |  |
| 40 | LI Chroat / 40 <sup>th</sup> Chroat    | County of Consequents (F)                | All May Chan   | AM        | 22                 | С          | 38                 | E   | 27                 | D                          | 29                 | D   |  |
| 16 | U Street / 16 <sup>th</sup> Street     | County of Sacramento (E)                 | All Way Stop   | PM        | 15                 | В          | 21                 | С   | 24                 | С                          | 21                 | С   |  |

Notes: Bolded cells represent unacceptable operations.

Shaded cells represent significant adverse effects.

>150 sec/veh of delay shown because inputs exceed analysis software's ability to produce reasonable delay estimates.

Table 24
Roadway Segment LOS – Cumulative Plus Project Conditions

|                           |                                                    | Jurisdiction                           |                 |        | ative No Ponditions | -   | Cumulativ<br>A | ve Plus Pr<br>Iternative | eferred |        | /e Plus App<br>Plan Alterr |     |        | ative Plus I<br>act Alterna |     |        | ulative Pl<br>nit Altern |     |
|---------------------------|----------------------------------------------------|----------------------------------------|-----------------|--------|---------------------|-----|----------------|--------------------------|---------|--------|----------------------------|-----|--------|-----------------------------|-----|--------|--------------------------|-----|
| Roadwa<br>y               | Segment                                            | (Minimum Acceptable LOS)               | No. of<br>Lanes | ADT    | V/C                 | LOS | ADT            | V/C                      | LOS     | ADT    | V/C                        | LOS | ADT    | V/C                         | LOS | ADT    | V/C                      | LOS |
|                           | SR 99 to E.<br>Levee Road                          | County of<br>Sacramento - Rural<br>(D) | 4               | 19,000 | 0.53                | Α   | 21,800         | 0.61                     | В       | 21,700 | 0.60                       | В   | 21,500 | 0.60                        | А   | 21,700 | 0.60                     | В   |
| oad                       | E. Levee<br>Road to<br>Palladay<br>Road            | County of<br>Sacramento - Urban<br>(E) | 4               | 16,800 | 0.47                | А   | 20,200         | 0.56                     | A       | 20,300 | 0.56                       | А   | 19,900 | 0.55                        | А   | 19,600 | 0.54                     | А   |
| Elverta Road              | Palladay<br>Road to 16 <sup>th</sup><br>Street     | County of<br>Sacramento - Urban<br>(E) | 4               | 18,800 | 0.52                | Α   | 28,000         | 0.78                     | С       | 27,600 | 0.77                       | С   | 27,800 | 0.77                        | С   | 22,000 | 0.61                     | В   |
| Ш                         | 16 <sup>th</sup> Street to 28 <sup>th</sup> Street | County of<br>Sacramento - Urban<br>(E) | 4               | 26,200 | 0.73                | С   | 37,500         | 1.04                     | F       | 37,400 | 1.04                       | F   | 37,500 | 1.04                        | F   | 28,300 | 0.79                     | С   |
|                           | 28 <sup>th</sup> Street to<br>Watt Avenue          | County of<br>Sacramento - Urban<br>(E) | 6               | 32,600 | 0.60                | В   | 42,000         | 0.78                     | С       | 41,500 | 0.77                       | С   | 41,800 | 0.77                        | С   | 34,300 | 0.64                     | В   |
| U<br>Street               | Dry Creek<br>Road to 16 <sup>th</sup><br>Street    | County of<br>Sacramento - Urban<br>(E) | 2               | 6,300  | 0.35                | А   | 3,400          | 0.19                     | A       | 3,500  | 0.19                       | Α   | 3,500  | 0.19                        | А   | 6,600  | 0.37                     | А   |
| 9 <sup>th</sup><br>Street | Elverta Road<br>to U Street                        | County of<br>Sacramento - Urban<br>(E) | 2               | 2,600  | 0.14                | А   | 4,300          | 0.24                     | А       | 4,300  | 0.24                       | А   | 4,000  | 0.22                        | А   | 3,000  | 0.17                     | А   |
| Dry<br>Creek<br>Road      | Q Street to U<br>Street                            | County of<br>Sacramento - Urban<br>(E) | 2               | 6,900  | 0.38                | А   | 12,200         | 0.68                     | В       | 12,400 | 0.69                       | В   | 12,100 | 0.67                        | В   | 7,200  | 0.40                     | А   |
| Street                    | Q Street to<br>Elverta Road                        | County of<br>Sacramento - Urban<br>(E) | 2               | 7,100  | 0.39                | А   | 7,200          | 0.40                     | Α       | 7,300  | 0.41                       | А   | 7,200  | 0.40                        | А   | 8,000  | 0.44                     | А   |
| 16 <sup>th</sup>          | Elverta Road<br>to County<br>Line                  | County of<br>Sacramento - Urban<br>(E) | 2               | 12,200 | 0.68                | В   | 15,700         | 0.87                     | D       | 15,600 | 0.87                       | D   | 15,600 | 0.87                        | D   | 18,400 | 1.02                     | F   |

Notes: Bolded cells represent unacceptable operations.

Shaded cells represent significant adverse effects.

Table 25
Traffic Signal Warrant Analysis – Cumulative Plus Project Conditions

|    |                                       |                  |           | Peak Hour Sign                      | al Warrant Met?                                 |
|----|---------------------------------------|------------------|-----------|-------------------------------------|-------------------------------------------------|
|    | Intersection                          | Control          | Peak Hour | Cumulative No Project<br>Conditions | Cumulative Plus Project Conditions <sup>1</sup> |
| 5  | Elverta Road / E. Levee Road          | All Way Stop     | AM        | YES                                 | YES                                             |
| 7  | Liveria Road / L. Levee Road          | All Way Stop     | PM        | YES                                 | YES                                             |
| 6  | Elkhorn Blvd / E. Levee Road          | Side Street Stop | AM        | YES                                 | YES                                             |
| O  | Elkilotti Biva / E. Levee Road        | Side Sifeet Stop | PM        | YES                                 | YES                                             |
| 7  | Elverte Dood / Correcte Dood          | Cido Ctroot Ctor | AM        | YES                                 | YES                                             |
| /  | Elverta Road / Sorento Road           | Side Street Stop | PM        | YES                                 | YES                                             |
| •  | Eboods Dand/Eboos Dand                | All M/ Ot        | AM        | YES                                 | YES                                             |
| 8  | Elverta Road / Elwyn Road             | All Way Stop     | PM        | YES                                 | YES                                             |
| 0  | Elvanta Danad / Dia Linda Divid       | All Mary Chan    | AM        | YES                                 | YES                                             |
| 9  | Elverta Road / Rio Linda Blvd         | All Way Stop     | PM        | YES                                 | YES                                             |
| 40 | EL . B L/sth C.                       | 0:1 0:           | AM        | No                                  | YES <sup>2</sup>                                |
| 10 | Elverta Road / 9 <sup>th</sup> Street | Side Street Stop | PM        | YES                                 | YES                                             |
| 40 | II Chroat / Day Croals Dood           | All Mary Char    | AM        | No                                  | No                                              |
| 12 | U Street / Dry Creek Road             | All Way Stop     | PM        | No                                  | No                                              |
| 40 | O Olas et / Day One els De est        | A II M/ O(       | AM        | No                                  | YES                                             |
| 13 | Q Street / Dry Creek Road             | All Way Stop     | PM        | No                                  | YES                                             |
| 16 | U Street / 16 <sup>th</sup> Street    | All Way Stan     | AM        | No                                  | No <sup>3</sup>                                 |
| 10 | U Sileet / Ib Sileet                  | All Way Stop     | PM        | No                                  | No <sup>3</sup>                                 |
| 17 | Q Street / 16 <sup>th</sup> Street    | Cido Ctroot Cton | AM        | No                                  | YES                                             |
| 17 | Q Sireet / 16 Street                  | Side Street Stop | PM        | No                                  | No                                              |

Notes: <sup>1</sup> Applies to all project alternatives unless otherwise noted.

<sup>&</sup>lt;sup>2</sup> Traffic signal not warranted under Cumulative Plus No Federal Action Alternative or Cumulative Plus Approved Specific Plan.

<sup>&</sup>lt;sup>3</sup> Traffic signal warranted under Cumulative Plus No Federal Action Alternative only.

Table 26

Roadway Segment LOS – Existing Plus Preferred Alternative Conditions with Mitigation and Cumulative Plus Preferred Alternative Conditions with Mitigation

|                   |                                                    |                                       |                 | No Project Preferred Alternative (Alternative 5) (Alternative 1) |         |     |        |      |     | Preferred Alternative with Mitigation |     |  |
|-------------------|----------------------------------------------------|---------------------------------------|-----------------|------------------------------------------------------------------|---------|-----|--------|------|-----|---------------------------------------|-----|--|
| Roadway           | Segment                                            | Jurisdiction (Minimum Acceptable LOS) | No. of<br>Lanes | ADT                                                              | V/C     | LOS | ADT    | V/C  | LOS | V/C                                   | LOS |  |
|                   |                                                    |                                       | E               | xisting Cond                                                     | ditions |     |        |      |     |                                       |     |  |
| Baseline Road     | Walerga Road to Cook-<br>Riolo Road                | County of Placer (C)                  | 4               | 13,000                                                           | 0.72    | С   | 15,200 | 0.84 | D   | 0.42                                  | А   |  |
|                   | SR 99 to E. Levee<br>Road                          | County of Sacramento –<br>Rural (D)   | 4               | 5,600                                                            | 0.31    | А   | 17,600 | 0.98 | E   | 0.49                                  | А   |  |
| Elverta Road      | E. Levee Road to<br>Palladay Road                  | County of Sacramento -<br>Urban (E)   | 4               | 7,000                                                            | 0.39    | А   | 20,600 | 1.14 | F   | 0.57                                  | А   |  |
| Elveria Road      | 16 <sup>th</sup> Street to 28 <sup>th</sup> Street | County of Sacramento -<br>Urban (E)   | 4               | 10,400                                                           | 0.58    | А   | 33,300 | 1.85 | F   | 0.93                                  | Е   |  |
|                   | 28 <sup>th</sup> Street to Watt<br>Avenue          | County of Sacramento -<br>Urban (E)   | 4               | 14,100                                                           | 0.78    | С   | 33,200 | 1.84 | F   | 0.92                                  | E   |  |
|                   | Elverta Road to<br>Antelope Road                   | County of Sacramento -<br>Urban (E)   | 6               | 23,800                                                           | 0.66    | В   | 38,000 | 1.06 | F   | 0.70                                  | С   |  |
| Watt Avenue       | Antelope Road to<br>Elkhorn Boulevard              | County of Sacramento -<br>Urban (E)   | 6               | 29,600                                                           | 0.82    | D   | 38,900 | 1.08 | F   | 0.72                                  | С   |  |
| wall Avenue       | Elkhorn Boulevard to<br>Don Julio Boulevard        | County of Sacramento -<br>Urban (E)   | 6               | 34,600                                                           | 0.96    | E   | 45,500 | 1.26 | F   | 0.84                                  | D   |  |
|                   | Roseville Road to<br>I-80                          | County of Sacramento -<br>Urban (E)   | 6               | 54,700                                                           | 1.01    | F   | 59,600 | 1.10 | F   | 1.10                                  | F   |  |
| Dry Creek<br>Road | Elkhorn Blvd to Curved<br>Bridge Road              | County of Sacramento -<br>Urban (E)   | 4               | 6,700                                                            | 0.37    | А   | 18,700 | 1.04 | F   | 0.52                                  | А   |  |
| Raley Blvd        | I-80 to Ascot Avenue                               | City of Sacramento (D)                | 4               | 13,000                                                           | 0.72    | С   | 19,000 | 1.06 | F   | 0.53                                  | А   |  |

Table 26

Roadway Segment LOS – Existing Plus Preferred Alternative Conditions with Mitigation and Cumulative Plus Preferred Alternative Conditions with Mitigation

|                   |                                                    |                                       |                 | No Project<br>(Alternative 5) |          |     |        | rred Alterna<br>Alternative 1 |     | Preferred Alternative with Mitigation |     |
|-------------------|----------------------------------------------------|---------------------------------------|-----------------|-------------------------------|----------|-----|--------|-------------------------------|-----|---------------------------------------|-----|
| Roadway           | Segment                                            | Jurisdiction (Minimum Acceptable LOS) | No. of<br>Lanes | ADT                           | V/C      | LOS | ADT    | V/C                           | LOS | V/C                                   | LOS |
|                   |                                                    |                                       | Cu              | mulative Co                   | nditions |     |        |                               |     |                                       |     |
| Elverta Road      | 16 <sup>th</sup> Street to 28 <sup>th</sup> Street | County of Sacramento -<br>Urban (E)   | 6               | 26,200                        | 0.73     | С   | 37,500 | 1.04                          | F   | 0.69                                  | В   |
| Watt Avenue       | Elverta Road to<br>Antelope Road                   | County of Sacramento -<br>Urban (E)   | 6               | 56,700                        | 1.58     | F   | 63,500 | 1.76                          | F   | 1.18                                  | F   |
| wall Avenue       | Elkhorn Boulevard to<br>Don Julio Boulevard        | County of Sacramento -<br>Urban (E)   | 6               | 56,500                        | 1.05     | F   | 61,200 | 1.13                          | F   | 1.13                                  | F   |
| Dry Creek<br>Road | Ascot Avenue to<br>Elkhorn Boulevard               | County of Sacramento -<br>Urban (E)   | 4               | 16,300                        | 0.91     | E   | 19,200 | 1.07                          | F   | 0.53                                  | A   |

Notes: Bolded cells represent unacceptable operations.

Shaded cells indicate a significant adverse effect.

Table 27
Peak Hour Intersection LOS – Existing Plus Preferred Alternative Conditions with Mitigation and Cumulative Plus Preferred Alternative Conditions with Mitigation

|                       |                                           | Jurisdiction                           |                 |              | No Project<br>(Alternative 5) |     | Preferred Alternative (Alternative 1) |            | Preferred Alternative With Mitigation |                  |  |
|-----------------------|-------------------------------------------|----------------------------------------|-----------------|--------------|-------------------------------|-----|---------------------------------------|------------|---------------------------------------|------------------|--|
|                       | Intersection                              | (Minimum Acceptable LOS)               | Control         | Peak<br>Hour | Delay<br>(sec/veh)            | LOS | Delay<br>(sec/veh)                    | LOS        | Delay<br>(sec/veh)                    | LOS              |  |
|                       | Existing Conditions                       |                                        |                 |              |                               |     |                                       |            |                                       |                  |  |
| 2                     | SR 99 / Elverta Road                      | Caltrans (E)                           | Traffic Signal  | AM           | 70                            | E   | > 150                                 | F          | N/A <sup>1</sup>                      | N/A <sup>1</sup> |  |
|                       | 00.00.110.0% 0 (511.1                     |                                        |                 | PM<br>AM     | 26<br>23                      | C   | 82                                    | F          | N/A <sup>1</sup>                      | N/A <sup>1</sup> |  |
| 4                     | SR 99 NB Off-Ramp / Elkhorn<br>Boulevard  | Caltrans (E)                           | Traffic Signal  | PM           | 141                           | F   | 26<br>> <b>150</b>                    | D <b>F</b> | 13<br>50                              | B<br>D           |  |
|                       | Boulevard                                 | County of                              |                 | AM           | 15                            | C   | > 150                                 | F          | 14                                    | В                |  |
| 5                     | Elverta Road / E. Levee Road              | Sacramento (E)                         | Traffic Signal  | PM           | 27                            | D   | > 150                                 | F          | 13                                    | В                |  |
|                       |                                           | County of                              | Traffic Signal  | AM           | 13                            | В   | 43                                    | E          | 8                                     | A                |  |
| 7                     | Elverta Road / Sorento Road               | Sacramento (E)                         |                 | PM           | 29                            | D   | > 150                                 | F          | 17                                    | В                |  |
| 0                     | Elverte Deed / Elverte Deed               | County of Sacramento (E)               | Traffic Signal  | AM           | 14                            | В   | > 150                                 | F          | 15                                    | В                |  |
| 8                     | Elverta Road / Elwyn Road                 |                                        |                 | PM           | 37                            | E   | > 150                                 | F          | 19                                    | В                |  |
| 9                     | Elverta Road / Rio Linda                  | County of                              | Traffic Signal  | AM           | 13                            | В   | > 150                                 | F          | 6                                     | Α                |  |
| 3                     | Boulevard                                 | Sacramento (E)                         | Trailic Signal  | PM           | 19                            | С   | > 150                                 | F          | 11                                    | В                |  |
| 12                    | U Street / Dry Creek Road                 | County of                              | Traffic Signal  | AM           | 7                             | Α   | 29                                    | D          | 16                                    | В                |  |
| 12                    |                                           | Sacramento (E)                         | Trainic Signal  | PM           | 8                             | Α   | 112                                   | F          | 19                                    | В                |  |
| 13                    | 13 Q Street / Dry Creek Road County of    |                                        | Traffic Signal  | AM           | 9                             | Α   | 118                                   | F          | 26                                    | С                |  |
| 13                    | Q Street / Dry Creek Road                 | Sacramento (E)                         |                 | PM           | 9                             | Α   | > 150                                 | F          | 40                                    | D                |  |
| 15                    | 15 Elverta Road / 16 <sup>th</sup> Street | County of                              | Traffic Signal  | AM           | 16                            | С   | 48                                    | D          | 43                                    | D                |  |
|                       | Elveria rieda / 10 eli edi                | Sacramento (E)                         |                 | PM           | 18                            | С   | 131                                   | F          | 67                                    | E                |  |
| 19                    | Elverta Road / 28 <sup>th</sup> Street    | County of (E)                          | Traffic Signal  | AM           | 69                            | E   | > 150                                 | F          | 16                                    | В                |  |
|                       |                                           | Sacramento (E)                         | -               | PM           | 137                           | F   | > 150                                 | F          | 24                                    | С                |  |
| 20                    | Baseline Road / Watt Avenue               | County of Placer -<br>Placer Vineyards | Traffic Signal  | AM           | 76                            | Е   | 95                                    | F          | 19                                    | В                |  |
| 20                    | Baseline Road / Wall / Worlds             | (D)                                    | Traine Oignai   | PM           | 33                            | С   | 45                                    | D          | 45                                    | D                |  |
| 21                    | Elverta Road / Watt Avenue                | County of                              | Traffic Signal  | AM           | 35                            | С   | 127                                   | F          | 61                                    | E                |  |
| 21                    | Liverta Road / Watt Avenue                | Sacramento (E)                         |                 | PM           | 31                            | С   | > 150                                 | F          | 73                                    | E                |  |
| Cumulative Conditions |                                           |                                        |                 |              |                               |     |                                       |            |                                       |                  |  |
| 4                     | SR 99 NB Off-Ramp / Elkhorn               | Caltrans (E)                           | Traffic Signal  | AM           | 15                            | В   | 15                                    | В          | 15                                    | В                |  |
|                       | Boulevard                                 |                                        |                 | PM           | 96                            | F   | 103                                   | F          | 29                                    | С                |  |
| 5                     | Elverta Road / E. Levee Road              | County of                              | Traffic Signal  | AM           | 102                           | F   | >150                                  | F          | 22                                    | С                |  |
| 5                     | Liverta Noau / L. Levee Noau              | Sacramento (E)                         | Trainio Oigilai | PM           | 144                           | F   | >150                                  | F          | 22                                    | С                |  |

Table 27
Peak Hour Intersection LOS – Existing Plus Preferred Alternative Conditions with Mitigation and Cumulative Plus Preferred Alternative Conditions with Mitigation

|                               |                                        | Jurisdiction                |                |              | No Project<br>(Alternative 5) |     | Preferred Alternative (Alternative 1) |     | Preferred Alternative<br>With Mitigation |        |
|-------------------------------|----------------------------------------|-----------------------------|----------------|--------------|-------------------------------|-----|---------------------------------------|-----|------------------------------------------|--------|
| Intersection                  |                                        | (Minimum Acceptable LOS)    | Control        | Peak<br>Hour | Delay<br>(sec/veh)            | LOS | Delay<br>(sec/veh)                    | LOS | Delay<br>(sec/veh)                       | LOS    |
| 6                             | Elkhorn Blvd / E. Levee Road           | County of<br>Sacramento (E) | Traffic Signal | AM<br>PM     | >150                          | F   | >150<br>>150                          | F   | 13                                       | В      |
| 7                             | Elverta Road / Sorento Road            | County of                   | Troffic Signal | AM           | >150<br>>150                  | F   | >150                                  | F   | 9 20                                     | A<br>B |
| / Elverta Road / Sorento Road | Elverta Road / Solerito Road           | Sacramento (E)              | Traffic Signal | PM           | >150                          | F   | >150                                  | F   | 16                                       | В      |
| 8                             | Elverta Road / Elwyn Road              | County of                   | Traffic Signal | AM           | 139                           | F   | >150                                  | F   | 36                                       | D      |
| 0                             | Liverta Road / Liwyii Road             | Sacramento (E)              |                | PM           | >150                          | F   | >150                                  | F   | 61                                       | E      |
| 9                             | Elverta Road / Rio Linda               | County of                   | Traffic Signal | AM           | 79                            | F   | >150                                  | F   | 9                                        | Α      |
|                               | Boulevard                              | Sacramento (E)              |                | PM           | 148                           | F   | >150                                  | F   | 13                                       | В      |
| 10                            | Elverta Road / 9 <sup>th</sup> Street  | County of                   | Traffic Signal | AM           | 107                           | F   | >150                                  | F   | 9                                        | Α      |
|                               | Elverta ricad / 6 - Circot             | Sacramento (E)              |                | PM           | 103                           | F   | >150                                  | F   | 13                                       | В      |
| 13                            | Q Street / Dry Creek Road              | County of                   | Traffic Signal | AM           | 17                            | С   | 80                                    | F   | 27                                       | С      |
| 10                            | Q Ollock / Bly Olcok Road              | Sacramento (E)              | Tramo Oignai   | PM           | 30                            | D   | 137                                   | F   | 24                                       | С      |
| 19                            | Elverta Road / 28 <sup>th</sup> Street | County of                   | Traffic Signal | AM           | 45                            | D   | 128                                   | F   | 27                                       | С      |
| 10                            | E.volta Noda / 20 Olloct               | Sacramento (E)              |                | PM           | 92                            | F   | >150                                  | F   | 57                                       | E      |
| 21                            | 21 Elverta Road / Watt Avenue          | County of                   | Traffic Signal | AM           | 112                           | F   | >150                                  | F   | 107                                      | F      |
| '                             |                                        | Sacramento (E)              |                | PM           | 93                            | F   | 123                                   | F   | 79                                       | E      |

Notes: Bolded cells represent unacceptable operations.

Shaded cells represent significant adverse effects.

<sup>&</sup>gt;150 sec/veh of delay shown because inputs exceed analysis software's ability to produce reasonable delay estimates.

<sup>&</sup>lt;sup>1</sup> As mitigation, the project applicant shall pay its fair share towards the planned SR 99/Elverta Road interchange. The interchange is projected to operate at LOS D or better under cumulative plus project conditions, therefore it is expected to operate at least as well under this scenario.

Table 28

Roadway Segment LOS – Existing Plus Approved Specific Plan Alternative Conditions with Mitigation and Cumulative Plus Approved Specific Plan Alternative Conditions with Mitigation

|                     |                                                    |                                       |                 | No Project |      |                 |        | ved Specific | Approved Specific    |      |     |
|---------------------|----------------------------------------------------|---------------------------------------|-----------------|------------|------|-----------------|--------|--------------|----------------------|------|-----|
|                     |                                                    |                                       | (Alternative 5) |            |      | (Alternative 2) |        |              | Plan with Mitigation |      |     |
| Road-way            | Segment                                            | Jurisdiction (Minimum Acceptable LOS) | No. of<br>Lanes | ADT        | V/C  | LOS             | ADT    | V/C          | LOS                  | V/C  | LOS |
| Existing Conditions |                                                    |                                       |                 |            |      |                 |        |              |                      |      |     |
| Baseline Road       | Walerga Road to Cook-<br>Riolo Road                | County of Placer (C)                  | 4               | 13,000     | 0.72 | С               | 15,200 | 0.84         | D                    | 0.42 | А   |
|                     | SR 99 to E. Levee<br>Road                          | County of Sacramento –<br>Rural (D)   | 4               | 5,600      | 0.31 | А               | 17,600 | 0.98         | E                    | 0.49 | А   |
| Elverta Road        | E. Levee Road to<br>Palladay Road                  | County of Sacramento -<br>Urban (E)   | 4               | 7,000      | 0.39 | А               | 20,100 | 1.12         | F                    | 0.56 | А   |
| Elverta Roau        | 16 <sup>th</sup> Street to 28 <sup>th</sup> Street | County of Sacramento -<br>Urban (E)   | 4               | 10,400     | 0.58 | А               | 33,300 | 1.85         | F                    | 0.93 | Е   |
|                     | 28 <sup>th</sup> Street to Watt<br>Avenue          | County of Sacramento -<br>Urban (E)   | 4               | 14,100     | 0.78 | С               | 33,200 | 1.84         | F                    | 0.92 | E   |
|                     | Elverta Road to<br>Antelope Road                   | County of Sacramento -<br>Urban (E)   | 6               | 23,800     | 0.66 | В               | 38,000 | 1.06         | F                    | 0.70 | С   |
| Watt Avenue         | Antelope Road to<br>Elkhorn Boulevard              | County of Sacramento -<br>Urban (E)   | 6               | 29,600     | 0.82 | D               | 38,900 | 1.08         | F                    | 0.72 | С   |
|                     | Elkhorn Boulevard to<br>Don Julio Boulevard        | County of Sacramento -<br>Urban (E)   | 6               | 34,600     | 0.96 | Е               | 45,500 | 1.26         | F                    | 0.84 | D   |

Table 28

Roadway Segment LOS – Existing Plus Approved Specific Plan Alternative Conditions with Mitigation and Cumulative Plus Approved Specific Plan Alternative Conditions with Mitigation

|                    |                                                    | Cumulative Flus Apple                 |              |             | No Project<br>Alternative 5 |     | Appro  | ved Specific<br>Alternative 2 |     | Approved<br>Plan with | -   |
|--------------------|----------------------------------------------------|---------------------------------------|--------------|-------------|-----------------------------|-----|--------|-------------------------------|-----|-----------------------|-----|
| Road-way           | Segment                                            | Jurisdiction (Minimum Acceptable LOS) | No. of Lanes | ADT         | V/C                         | LOS | ADT    | V/C                           | LOS | V/C                   | LOS |
|                    | Roseville Road to<br>I-80                          | County of Sacramento -<br>Urban (E)   | 6            | 54,700      | 1.01                        | F   | 59,600 | 1.10                          | F   | 1.10                  | F   |
| Dry Creek<br>Road  | Elkhorn Boulevard to<br>Curved Bridge Road         | County of Sacramento -<br>Urban (E)   | 4            | 6,700       | 0.37                        | А   | 18,700 | 1.04                          | F   | 0.52                  | А   |
| Raley<br>Boulevard | I-80 to Ascot Avenue                               | City of Sacramento (D)                | 4            | 13,000      | 0.72                        | С   | 19,000 | 1.06                          | F   | 0.53                  | А   |
|                    |                                                    |                                       | Cu           | mulative Co | nditions                    |     |        |                               |     |                       |     |
| Elverta Road       | 16 <sup>th</sup> Street to 28 <sup>th</sup> Street | County of Sacramento -<br>Urban (E)   | 6            | 26,200      | 0.73                        | С   | 37,400 | 1.04                          | F   | 0.69                  | В   |
| 10/att 0           | Elverta Road to<br>Antelope Road                   | County of Sacramento -<br>Urban (E)   | 6            | 56,700      | 1.58                        | F   | 63,100 | 1.75                          | F   | 1.17                  | F   |
| Watt Avenue        | Elkhorn Boulevard to<br>Don Julio Boulevard        | County of Sacramento -<br>Urban (E)   | 6            | 56,500      | 1.05                        | F   | 61,000 | 1.13                          | F   | 1.13                  | F   |
| Dry Creek<br>Road  | Ascot Avenue to<br>Elkhorn Boulevard               | County of Sacramento -<br>Urban (E)   | 4            | 16,300      | 0.91                        | E   | 19,600 | 1.09                          | F   | 0.54                  | А   |

Notes: Bolded cells represent unacceptable operations.

Shaded cells indicate a significant adverse effect.

Table 29
Peak Hour Intersection LOS – Existing Plus Approved Specific Plan Alternative Conditions with Mitigation and Cumulative Plus Approved Specific Plan Alternative Conditions with Mitigation

|    |                                        | Jurisdiction                | Tus Approved op |               | No P               | roject<br>ative 5) | Approved S<br>Altern<br>(Alterna | native | Approved S<br>Altern<br>With Mit | ative            |
|----|----------------------------------------|-----------------------------|-----------------|---------------|--------------------|--------------------|----------------------------------|--------|----------------------------------|------------------|
|    | Intersection                           | (Minimum Acceptable LOS)    | Control         | Peak<br>Hour  | Delay<br>(sec/veh) | LOS                | Delay<br>(sec/veh)               | LOS    | Delay<br>(sec/veh)               | LOS              |
|    |                                        |                             |                 | Existing Cor  | nditions           |                    |                                  |        |                                  |                  |
| 2  | SR 99 / Elverta Road                   | Caltrans (E)                | Traffic Signal  | AM            | 70                 | E                  | > 150                            | F      | N/A <sup>1</sup>                 | N/A <sup>1</sup> |
| 2  | SK 99 / Elverta Koad                   | Califalis (E)               | Trailic Signal  | PM            | 26                 | С                  | 82                               | F      | N/A <sup>1</sup>                 | N/A <sup>1</sup> |
| 4  | SR 99 NB Off-Ramp / Elkhorn            | Caltrans (E)                | Traffic Signal  | AM            | 23                 | С                  | 26                               | D      | 13                               | В                |
| 4  | Boulevard                              | Califalis (E)               | Trailic Signal  | PM            | 141                | F                  | > 150                            | F      | 50                               | D                |
| 5  | Elverta Road / E. Levee Road           | County of                   | Traffic Signal  | AM            | 15                 | С                  | > 150                            | F      | 14                               | В                |
|    | Elverta Roda / E. Edved Roda           | Sacramento (E)              | Trame eignar    | PM            | 27                 | D                  | > 150                            | F      | 13                               | В                |
| 7  | Elverta Road / Sorento Road            | County of                   | Traffic Signal  | AM            | 13                 | В                  | 43                               | E      | 8                                | A                |
|    |                                        | Sacramento (E)              | 3               | PM            | 29                 | D                  | > 150                            | F      | 17                               | В                |
| 8  | Elverta Road / Elwyn Road              | County of<br>Sacramento (E) | Traffic Signal  | AM<br>PM      | 14                 | B<br>E             | > 150<br>> 150                   | F      | 15                               | В                |
|    |                                        | ` '                         |                 | AM            | 37<br>13           | B                  | > 150<br>> 150                   | F      | 19<br>6                          | B<br>A           |
| 9  | Elverta Road / Rio Linda<br>Boulevard  | County of Sacramento (E)    | Traffic Signal  | PM            | 19                 | С                  | > 150                            | F      | 11                               | В                |
|    | Boulevard                              | <u> </u>                    |                 | AM            | 7                  | A                  | 29                               | D      | 16                               | В                |
| 12 | U Street / Dry Creek Road              | County of Sacramento (E)    | Traffic Signal  | PM            | 8                  | A                  | 111                              | F      | 18                               | В                |
|    |                                        | County of                   |                 | AM            | 9                  | A                  | 118                              | F      | 26                               | С                |
| 13 | Q Street / Dry Creek Road              | Sacramento (E)              | Traffic Signal  | PM            | 9                  | A                  | > 150                            | F      | 40                               | D                |
|    | - th-                                  | County of                   |                 | AM            | 16                 | С                  | 48                               | D      | 43                               | D                |
| 15 | Elverta Road / 16 <sup>th</sup> Street | Sacramento (E)              | Traffic Signal  | PM            | 18                 | С                  | 130                              | F      | 66                               | Е                |
| 19 | Elverta Road / 28 <sup>th</sup> Street | County of                   | Troffic Cinnol  | AM            | 69                 | E                  | > 150                            | F      | 16                               | В                |
| 19 | Elverta Road / 28 Street               | Sacramento (E)              | Traffic Signal  | PM            | 137                | F                  | > 150                            | F      | 24                               | С                |
|    |                                        | County of Placer -          |                 | AM            | 76                 | E                  | 95                               | F      | 19                               | В                |
| 20 | Baseline Road / Watt Avenue            | Placer Vineyards<br>(D)     | Traffic Signal  | PM            | 33                 | С                  | 45                               | D      | 45                               | D                |
| 21 | Elverta Road / Watt Avenue             | County of Sacramento (E)    | Traffic Signal  | AM<br>PM      | 35<br>31           | C                  | 127<br>> 150                     | F      | 61<br>73                         | E<br>E           |
|    |                                        | Jacianienio (E)             | 1               |               | l .                | L                  | > 100                            | F      | 13                               | <u> </u>         |
|    |                                        | <u> </u>                    | ,               | Cumulative Co | onaitions          | T                  | 1                                | T      | ,                                |                  |
| 4  | SR 99 NB Off-Ramp / Elkhorn            | Caltrans (E)                | Traffic Signal  | AM            | 15                 | В                  | 15                               | В      | 15                               | В                |
|    | Boulevard                              |                             | 2. 2 2 3        | PM            | 96                 | F                  | 103                              | F      | 29                               | С                |
| 5  | Elverta Road / E. Levee Road           | County of                   | Traffic Signal  | AM            | 102                | F                  | >150                             | F      | 22                               | С                |
| •  |                                        | Sacramento (E)              |                 | PM            | 144                | F                  | >150                             | F      | 22                               | С                |

Table 29

Peak Hour Intersection LOS – Existing Plus Approved Specific Plan Alternative Conditions with Mitigation and Cumulative Plus Approved Specific Plan Alternative Conditions with Mitigation

|    |                                        | Jurisdiction             | Tue Approved op |              | No Pr              |     | Approved S<br>Altern<br>(Alterna | ative | Approved S<br>Altern<br>With Mit | ative |
|----|----------------------------------------|--------------------------|-----------------|--------------|--------------------|-----|----------------------------------|-------|----------------------------------|-------|
|    | Intersection                           | (Minimum Acceptable LOS) | Control         | Peak<br>Hour | Delay<br>(sec/veh) | LOS | Delay<br>(sec/veh)               | LOS   | Delay<br>(sec/veh)               | LOS   |
| 6  | Elkhorn Blvd / E. Levee Road           | County of                | Traffic Signal  | AM           | >150               | F   | >150                             | F     | 13                               | В     |
|    | Elkholli Biva / E. Ecvec Road          | Sacramento (E)           | Traine Oignai   | PM           | >150               | F   | >150                             | F     | 9                                | Α     |
| 7  | Elverta Road / Sorento Road            | County of                | Traffic Signal  | AM           | >150               | F   | >150                             | F     | 20                               | В     |
| ,  | Liverta Road / Sorento Road            | Sacramento (E)           | Tranic Signal   | PM           | >150               | F   | >150                             | F     | 16                               | В     |
| 8  | Elverta Road / Elwyn Road              | County of                | Traffic Signal  | AM           | 139                | F   | >150                             | F     | 36                               | D     |
| 0  | Liverta Road / Liwyii Road             | Sacramento (E)           | Trailic Signal  | PM           | >150               | F   | >150                             | F     | 61                               | E     |
| 9  | Elverta Road / Rio Linda               | County of                | Traffic Signal  | AM           | 79                 | F   | >150                             | F     | 9                                | Α     |
| 9  | Boulevard                              | Sacramento (E)           | Tranic Signal   | PM           | 148                | F   | >150                             | F     | 13                               | В     |
| 10 | Elverta Road / 9 <sup>th</sup> Street  | County of                | Traffic Signal  | AM           | 107                | F   | >150                             | F     | 9                                | Α     |
| 10 | Elverta Road / 9 Street                | Sacramento (E)           | Tranic Signal   | PM           | 103                | F   | >150                             | F     | 11                               | В     |
| 13 | Q Street / Dry Creek Road              | County of                | Traffic Signal  | AM           | 17                 | С   | 80                               | F     | 27                               | С     |
| 13 | Q Street / Dry Creek Road              | Sacramento (E)           | Tranic Signal   | PM           | 30                 | D   | 137                              | F     | 24                               | С     |
| 19 | Elverta Road / 28 <sup>th</sup> Street | County of                | Troffic Cianal  | AM           | 45                 | D   | 128                              | F     | 27                               | С     |
| 19 | Elverta Roau / 26 Street               | Sacramento (E)           |                 |              | 92                 | F   | >150                             | F     | 57                               | E     |
| 21 | Elverta Road / Watt Avenue             | County of                | Traffic Signal  | AM           | 112                | F   | >150                             | F     | 107                              | F     |
| 21 | Liverta Noau / Walt Avenue             | Sacramento (E)           | Trainic Signal  | PM           | 93                 | F   | 123                              | F     | 79                               | E     |

Notes: Bolded cells represent unacceptable operations.

Shaded cells represent significant adverse effects.

<sup>&</sup>gt;150 sec/veh of delay shown because inputs exceed analysis software's ability to produce reasonable delay estimates.

<sup>&</sup>lt;sup>1</sup> As mitigation, the project applicant shall pay its fair share towards the planned SR 99/Elverta Road interchange. The interchange is projected to operate at LOS D or better under cumulative plus project conditions, therefore it is expected to operate at least as well under this scenario.

Table 30

Roadway Segment LOS – Existing Plus Minimal Impact Alternative Conditions with Mitigation and Cumulative Plus Minimal Impact Alternative Conditions with Mitigation

|                   |                                                    | Cumulative Flus W                        |                 |              | No Project<br>Alternative 5 |     | Mi     | nimal Impac<br>Alternative 3 |     | Minimal Im<br>Mitig | •   |
|-------------------|----------------------------------------------------|------------------------------------------|-----------------|--------------|-----------------------------|-----|--------|------------------------------|-----|---------------------|-----|
| Road-way          | Segment                                            | Jurisdiction (Minimum<br>Acceptable LOS) | No. of<br>Lanes | ADT          | V/C                         | LOS | ADT    | V/C                          | LOS | V/C                 | LOS |
|                   |                                                    |                                          | E               | xisting Cond | ditions                     |     |        |                              |     |                     |     |
| Baseline Road     | Walerga Road to Cook-<br>Riolo Road                | County of Placer (C)                     | 4               | 13,000       | 0.72                        | С   | 15,100 | 0.84                         | D   | 0.42                | А   |
|                   | SR 99 to E. Levee<br>Road                          | County of Sacramento –<br>Rural (D)      | 4               | 5,600        | 0.31                        | А   | 17,000 | 0.94                         | E   | 0.47                | А   |
| Elverta Road      | E. Levee Road to<br>Palladay Road                  | County of Sacramento -<br>Urban (E)      | 4               | 7,000        | 0.39                        | А   | 19,500 | 1.08                         | F   | 0.54                | А   |
| Elveria Road      | 16 <sup>th</sup> Street to 28 <sup>th</sup> Street | County of Sacramento -<br>Urban (E)      | 4               | 10,400       | 0.58                        | А   | 32,200 | 1.79                         | F   | 0.89                | D   |
|                   | 28 <sup>th</sup> Street to Watt<br>Avenue          | County of Sacramento -<br>Urban (E)      | 4               | 14,100       | 0.78                        | С   | 32,300 | 1.79                         | F   | 0.90                | D   |
|                   | Elverta Road to<br>Antelope Road                   | County of Sacramento -<br>Urban (E)      | 6               | 23,800       | 0.66                        | В   | 37,300 | 1.04                         | F   | 0.69                | В   |
| Watt Avenue       | Antelope Road to Elkhorn Boulevard                 | County of Sacramento -<br>Urban (E)      | 6               | 29,600       | 0.82                        | D   | 38,400 | 1.07                         | F   | 0.71                | С   |
| watt Avenue       | Elkhorn Boulevard to<br>Don Julio Boulevard        | County of Sacramento -<br>Urban (E)      | 6               | 34,600       | 0.96                        | E   | 45,000 | 1.25                         | F   | 0.83                | D   |
|                   | Roseville Road to<br>I-80                          | County of Sacramento -<br>Urban (E)      | 6               | 54,700       | 1.01                        | F   | 59,400 | 1.10                         | F   | 1.10                | F   |
| Dry Creek<br>Road | Elkhorn Blvd to Curved<br>Bridge Road              | County of Sacramento -<br>Urban (E)      | 4               | 6,700        | 0.37                        | А   | 18,100 | 1.01                         | F   | 0.50                | А   |

Table 30

Roadway Segment LOS – Existing Plus Minimal Impact Alternative Conditions with Mitigation and Cumulative Plus Minimal Impact Alternative Conditions with Mitigation

|                    |                                                    |                                       |                 |             | No Project<br>Alternative 5 | )   |        | nimal Impac<br>Alternative 3 |     | Minimal Im<br>Mitiga |     |
|--------------------|----------------------------------------------------|---------------------------------------|-----------------|-------------|-----------------------------|-----|--------|------------------------------|-----|----------------------|-----|
| Road-way           | Segment                                            | Jurisdiction (Minimum Acceptable LOS) | No. of<br>Lanes | ADT         | V/C                         | LOS | ADT    | V/C                          | LOS | V/C                  | LOS |
| Raley<br>Boulevard | I-80 to Ascot Avenue                               | City of Sacramento (D)                | 4               | 13,000      | 0.72                        | С   | 18,700 | 1.04                         | F   | 0.52                 | Α   |
|                    |                                                    |                                       | Cui             | mulative Co | nditions                    |     |        |                              |     |                      |     |
| Elverta Road       | 16 <sup>th</sup> Street to 28 <sup>th</sup> Street | County of Sacramento -<br>Urban (E)   | 6               | 26,200      | 0.73                        | С   | 37,500 | 1.04                         | F   | 0.69                 | В   |
| Matt Avenue        | Elverta Road to<br>Antelope Road                   | County of Sacramento -<br>Urban (E)   | 6               | 56,700      | 1.58                        | F   | 63,100 | 1.75                         | F   | 1.17                 | F   |
| Watt Avenue        | Elkhorn Boulevard to<br>Don Julio Boulevard        | County of Sacramento -<br>Urban (E)   | 6               | 56,500      | 1.05                        | F   | 61,000 | 1.13                         | F   | 1.13                 | F   |
| Dry Creek<br>Road  | Ascot Avenue to<br>Elkhorn Boulevard               | County of Sacramento -<br>Urban (E)   | 4               | 16,300      | 0.91                        | E   | 19,300 | 1.07                         | F   | 0.54                 | A   |

Notes: Bolded cells represent unacceptable operations.

Shaded cells indicate a significant adverse effect.

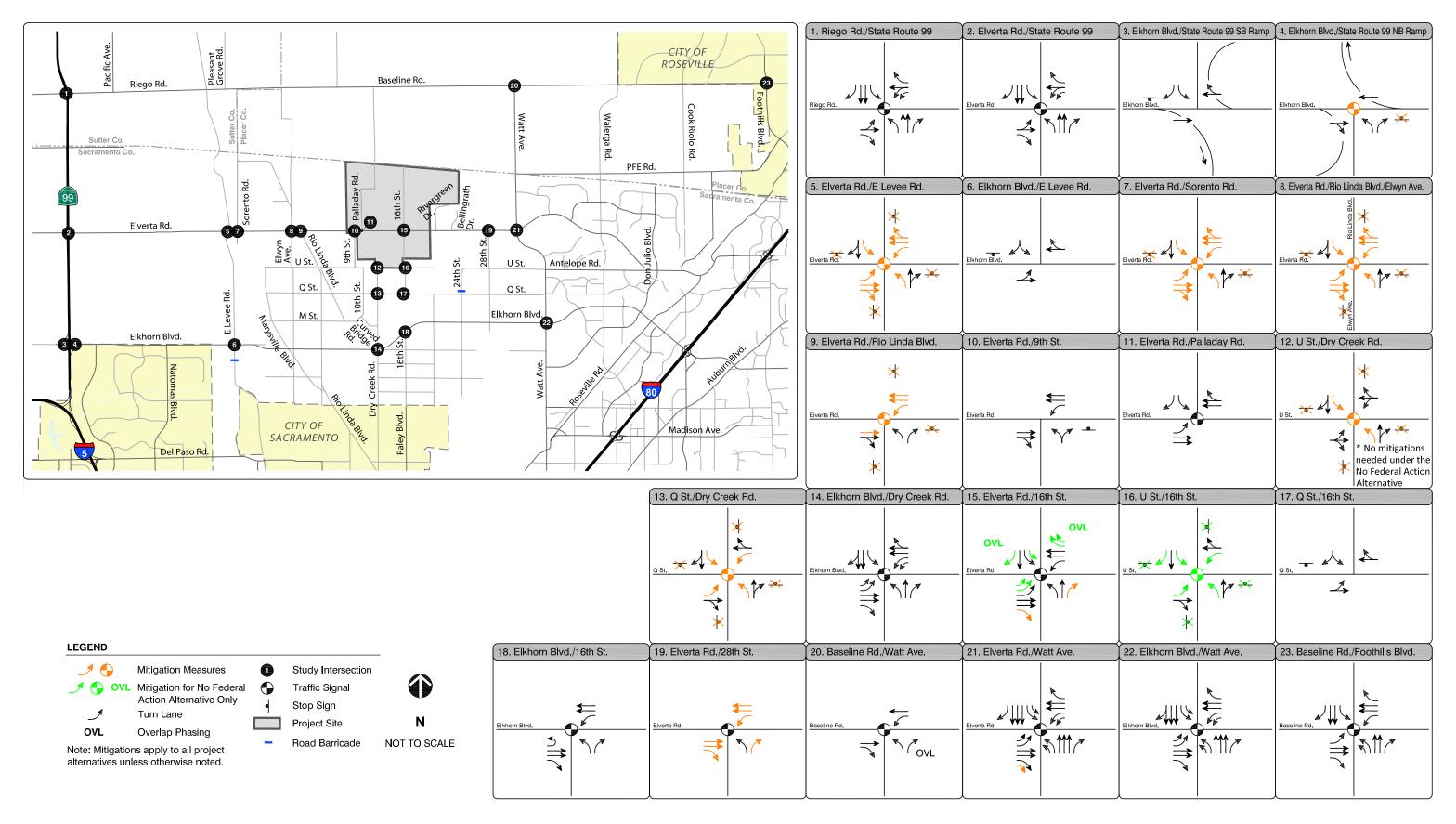
Table 31

Peak Hour Intersection LOS – Existing Plus Minimal Impact Alternative Conditions with Mitigation and Cumulative Plus Minimal Impact Alternative Conditions with Mitigation

|    |                                        | Jurisdiction                | ive i lus millillar | , , , , , , , , , , , , , , , , , , , | No P               | roject<br>ative 5) | Minimal Impa<br>(Alterna |     | Minimal Impa       |                  |
|----|----------------------------------------|-----------------------------|---------------------|---------------------------------------|--------------------|--------------------|--------------------------|-----|--------------------|------------------|
|    | Intersection                           | (Minimum Acceptable LOS)    | Control             | Peak<br>Hour                          | Delay<br>(sec/veh) | LOS                | Delay<br>(sec/veh)       | LOS | Delay<br>(sec/veh) | LOS              |
|    |                                        |                             |                     | Existing Cor                          | nditions           |                    |                          |     |                    |                  |
| 2  | SR 99 / Elverta Road                   | Caltrans (E)                | Traffic Signal      | AM                                    | 70                 | E                  | > 150                    | F   | N/A <sup>1</sup>   | N/A <sup>1</sup> |
| _  | OK 337 EWERTA KOAG                     | Oditians (L)                | Tramo Oignai        | PM                                    | 26                 | С                  | 82                       | F   | N/A <sup>1</sup>   | N/A <sup>1</sup> |
| 4  | SR 99 NB Off-Ramp / Elkhorn            | Caltrans (E)                | Traffic Signal      | AM                                    | 23                 | С                  | 26                       | D   | 13                 | В                |
| •  | Boulevard                              |                             | ae e.g a.           | PM                                    | 141                | F                  | > 150                    | F   | 50                 | D                |
| 5  | Elverta Road / E. Levee Road           | County of                   | Traffic Signal      | AM                                    | 15                 | С                  | > 150                    | F   | 14                 | B                |
|    |                                        | Sacramento (E)              |                     | PM                                    | 27                 | D                  | > 150                    | F   | 13                 | В                |
| 7  | Elverta Road / Sorento Road            | County of                   | Traffic Signal      | AM<br>PM                              | 13                 | В                  | 43                       | E   | 8                  | A                |
|    |                                        | Sacramento (E)              |                     |                                       | 29                 | D                  | > 150                    | F   | 17                 | В                |
| 8  | Elverta Road / Elwyn Road              | County of Sacramento (E)    | Traffic Signal      | AM<br>PM                              | 14                 | В                  | > 150                    | F   | 15                 | В                |
|    |                                        | ` '                         |                     | AM                                    | 37                 | E<br>B             | > 150                    | F   | 19                 | В                |
| 9  | Elverta Road / Rio Linda<br>Boulevard  | County of<br>Sacramento (E) | Traffic Signal      | PM                                    | 13<br>19           | С                  | > 150<br>> 150           | F   | 6<br>11            | <u>А</u><br>В    |
|    |                                        | County of                   |                     | AM                                    | 7                  | A                  | 24                       | С   | 16                 | В                |
| 12 | U Street / Dry Creek Road              | Sacramento (E)              | Traffic Signal      | PM                                    | 8                  | А                  | 83                       | F   | 18                 | В                |
| 40 | O Otro of / Dec Occode Dec of          | County of                   | T (() ()            | AM                                    | 9                  | Α                  | 118                      | F   | 26                 | С                |
| 13 | Q Street / Dry Creek Road              | Sacramento (E)              | Traffic Signal      | PM                                    | 9                  | Α                  | > 150                    | F   | 40                 | D                |
| 15 | Elverta Road / 16 <sup>th</sup> Street | County of                   | Traffic Signal      | AM                                    | 16                 | С                  | 46                       | D   | 42                 | D                |
| 15 | Elverta Road / 16 Street               | Sacramento (E)              | Traffic Signal      | PM                                    | 18                 | С                  | 114                      | F   | 58                 | Е                |
| 19 | Elverta Road / 28 <sup>th</sup> Street | County of                   | Traffic Signal      | AM                                    | 69                 | E                  | > 150                    | F   | 16                 | В                |
| 13 | Liverta Road / 20 Street               | Sacramento (E)              | Trame Signal        | PM                                    | 137                | F                  | > 150                    | F   | 24                 | С                |
|    | D 11 D 1/14/ 11 A                      | County of Placer -          | T " 0: 1            | AM                                    | 76                 | E                  | 95                       | F   | 19                 | В                |
| 20 | Baseline Road / Watt Avenue            | Placer Vineyards<br>(D)     | Traffic Signal      | PM                                    | 33                 | С                  | 45                       | D   | 45                 | D                |
| 04 | Electic Decil (Mett Access             | County of                   | T # 0: 1            | AM                                    | 35                 | С                  | 127                      | F   | 61                 | Е                |
| 21 | Elverta Road / Watt Avenue             | Sacramento (E)              | Traffic Signal      | PM                                    | 31                 | С                  | > 150                    | F   | 73                 | E                |
|    |                                        |                             |                     | Cumulative Co                         | onditions          |                    |                          |     |                    |                  |
|    | SR 99 NB Off-Ramp / Elkhorn            | Coltrana (E)                | Troffic Signal      | AM                                    | 15                 | В                  | 15                       | В   | 15                 | С                |
| 4  | Boulevard                              | Caltrans (E)                | Traffic Signal      | PM                                    | 96                 | F                  | 103                      | F   | 29                 | С                |
| 5  | Elverta Road / E. Levee Road           | County of                   | Traffic Signal      | AM                                    | 102                | F                  | >150                     | F   | 22                 | С                |
|    | E. C. La Roda / E. Love a Roda         | Sacramento (E)              | . rame orginal      | PM                                    | 144                | F                  | >150                     | F   | 22                 | С                |
| 6  | Elkhorn Boulevard/                     | County of                   | Traffic Signal      | AM                                    | >150               | F                  | >150                     | F   | 13                 | В                |
|    | E. Levee Road                          | Sacramento (E)              |                     | PM                                    | >150               | F                  | >150                     | F   | 9                  | Α                |

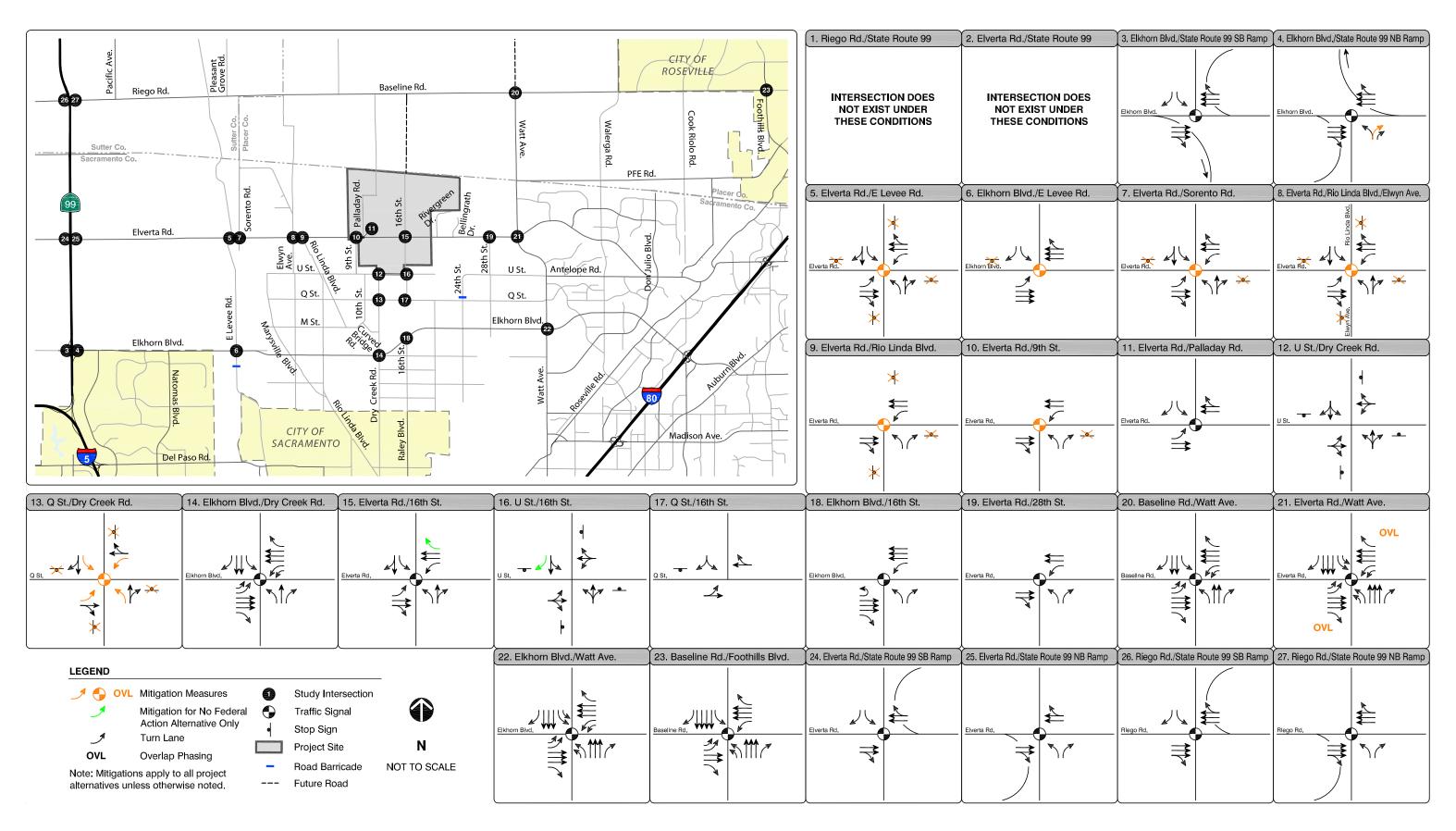
Table 31

Peak Hour Intersection LOS – Existing Plus Minimal Impact Alternative Conditions with Mitigation and Cumulative Plus Minimal Impact Alternative Conditions with Mitigation


|    |                                        | Jurisdiction             |                |              | roject<br>ative 5) | Minimal Impa<br>(Alterna |                    | Minimal Impact Alternative With Mitigation |                    |     |
|----|----------------------------------------|--------------------------|----------------|--------------|--------------------|--------------------------|--------------------|--------------------------------------------|--------------------|-----|
|    | Intersection                           | (Minimum Acceptable LOS) | Control        | Peak<br>Hour | Delay<br>(sec/veh) | LOS                      | Delay<br>(sec/veh) | LOS                                        | Delay<br>(sec/veh) | LOS |
| 7  | Elverta Road / Sorento Road            | County of                | Traffic Signal | AM           | >150               | F                        | >150               | F                                          | 20                 | В   |
| ,  | Elverta Ready Coronte Read             | Sacramento (E)           | Trainio Oignai | PM           | >150               | F                        | >150               | F                                          | 16                 | В   |
| 8  | Elverta Road / Elwyn Road              | County of                | Traffic Signal | AM           | 139                | F                        | >150               | F                                          | 36                 | D   |
| 0  | Liverta Road / Liwyii Road             | Sacramento (E)           | Trainic Signal | PM           | >150               | F                        | >150               | F                                          | 61                 | E   |
| 9  | Elverta Road / Rio Linda               | County of                | Traffic Signal | AM           | 79                 | F                        | >150               | F                                          | 9                  | Α   |
| 9  | Boulevard                              | Sacramento (E)           | Trailic Signal | PM           | 148                | F                        | >150               | F                                          | 13                 | В   |
| 10 | Elverta Road / 9 <sup>th</sup> Street  | County of                | Traffic Signal | AM           | 107                | F                        | >150               | F                                          | 9                  | Α   |
| 10 | Liverta Road / 9 Street                | Sacramento (E)           | Trainic Signal | PM           | 103                | F                        | >150               | F                                          | 12                 | В   |
| 13 | Q Street / Dry Creek Road              | County of                | Traffic Signal | AM           | 17                 | С                        | 80                 | F                                          | 27                 | С   |
| 13 | Q Street / Dry Creek Road              | Sacramento (E)           | Trailic Signal | PM           | 30                 | D                        | 137                | F                                          | 24                 | С   |
| 19 | Elverta Road / 28 <sup>th</sup> Street | County of                | Traffic Signal | AM           | 45                 | D                        | 128                | F                                          | 27                 | С   |
| 13 | Liverta Road / 20 Street               | Sacramento (E)           | Trainic Olynai | PM           | 92                 | F                        | >150               | F                                          | 57                 | E   |
| 21 | Elverta Road / Watt Avenue             | County of                | Traffic Signal | AM           | 112                | F                        | >150               | F                                          | 107                | F   |
| 21 | Liverta Road / Walt Avenue             | Sacramento (E)           | Trainic Olynai | PM           | 93                 | F                        | 123                | F                                          | 79                 | E   |

Notes: Bolded cells represent unacceptable operations.

Shaded cells represent significant adverse effects.


<sup>&</sup>gt;150 sec/veh of delay shown because inputs exceed analysis software's ability to produce reasonable delay estimates.

<sup>&</sup>lt;sup>1</sup> As mitigation, the project applicant shall pay its fair share towards the planned SR 99/Elverta Road interchange. The interchange is projected to operate at LOS D or better under cumulative plus project conditions, therefore it is expected to operate at least as well under this scenario.





PEAK HOUR TRAFFIC VOLUMES AND LANE CONFIGURATIONS -EXISTING PLUS PROJECT WITH MITIGATION





## Appendix A Existing Conditions

Appendix A-1: Intersection Operations

Existing Conditions

|                              | ۶        | <b>→</b> | •     | •     | <b>←</b> | •         | 4      | <b>†</b> | /    | -     | ţ        | 4    |
|------------------------------|----------|----------|-------|-------|----------|-----------|--------|----------|------|-------|----------|------|
| Movement                     | EBL      | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR  | SBL   | SBT      | SBR  |
| Lane Configurations          |          | ર્ન      | 7     | 7     | ર્ન      | 7         | 7      | <b>^</b> | 7    | 7     | <b>^</b> | 7    |
| Ideal Flow (vphpl)           | 1900     | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900 | 1900  | 1900     | 1900 |
| Total Lost time (s)          |          | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0  | 4.0   | 4.0      | 4.0  |
| Lane Util. Factor            |          | 1.00     | 1.00  | 0.95  | 0.95     | 1.00      | 1.00   | 0.95     | 1.00 | 1.00  | 0.95     | 1.00 |
| Frt                          |          | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85 | 1.00  | 1.00     | 0.85 |
| Flt Protected                |          | 0.99     | 1.00  | 0.95  | 0.95     | 1.00      | 0.95   | 1.00     | 1.00 | 0.95  | 1.00     | 1.00 |
| Satd. Flow (prot)            |          | 1693     | 1583  | 1633  | 1641     | 1583      | 1467   | 2935     | 1357 | 1641  | 3374     | 1583 |
| Flt Permitted                |          | 0.99     | 1.00  | 0.95  | 0.95     | 1.00      | 0.95   | 1.00     | 1.00 | 0.95  | 1.00     | 1.00 |
| Satd. Flow (perm)            |          | 1693     | 1583  | 1633  | 1641     | 1583      | 1467   | 2935     | 1357 | 1641  | 3374     | 1583 |
| Volume (vph)                 | 2        | 5        | 7     | 572   | 13       | 8         | 13     | 703      | 154  | 30    | 1832     | 3    |
| Peak-hour factor, PHF        | 0.61     | 0.61     | 0.61  | 0.87  | 0.87     | 0.87      | 0.95   | 0.95     | 0.95 | 0.86  | 0.86     | 0.86 |
| Adj. Flow (vph)              | 3        | 8        | 11    | 657   | 15       | 9         | 14     | 740      | 162  | 35    | 2130     | 3    |
| RTOR Reduction (vph)         | 0        | 0        | 10    | 0     | 0        | 7         | 0      | 0        | 64   | 0     | 0        | 0    |
| Lane Group Flow (vph)        | 0        | 11       | 1     | 329   | 343      | 2         | 14     | 740      | 98   | 35    | 2130     | 3    |
| Heavy Vehicles (%)           | 2%       | 14%      | 2%    | 5%    | 5%       | 2%        | 23%    | 23%      | 19%  | 10%   | 7%       | 2%   |
| Turn Type                    | Split    |          | Perm  | Split |          | Perm      | Prot   |          | Perm | Prot  |          | Perm |
| Protected Phases             | 7        | 7        |       | 8     | 8        |           | 5      | 2        |      | 1     | 6        |      |
| Permitted Phases             |          |          | 7     |       |          | 8         |        |          | 2    |       |          | 6    |
| Actuated Green, G (s)        |          | 4.5      | 4.5   | 20.2  | 20.2     | 20.2      | 2.6    | 71.6     | 71.6 | 4.8   | 73.8     | 73.8 |
| Effective Green, g (s)       |          | 6.5      | 6.5   | 22.2  | 22.2     | 22.2      | 2.1    | 74.7     | 74.7 | 4.3   | 76.9     | 76.9 |
| Actuated g/C Ratio           |          | 0.05     | 0.05  | 0.18  | 0.18     | 0.18      | 0.02   | 0.60     | 0.60 | 0.03  | 0.62     | 0.62 |
| Clearance Time (s)           |          | 6.0      | 6.0   | 6.0   | 6.0      | 6.0       | 3.5    | 7.1      | 7.1  | 3.5   | 7.1      | 7.1  |
| Vehicle Extension (s)        |          | 1.0      | 1.0   | 1.0   | 1.0      | 1.0       | 2.0    | 2.0      | 2.0  | 2.0   | 2.0      | 2.0  |
| Lane Grp Cap (vph)           |          | 89       | 83    | 293   | 295      | 284       | 25     | 1772     | 819  | 57    | 2097     | 984  |
| v/s Ratio Prot               |          | c0.01    |       | 0.20  | c0.21    |           | 0.01   | 0.25     |      | c0.02 | c0.63    |      |
| v/s Ratio Perm               |          |          | 0.00  |       |          | 0.00      |        |          | 0.07 |       |          | 0.00 |
| v/c Ratio                    |          | 0.12     | 0.01  | 1.12  | 1.16     | 0.01      | 0.56   | 0.42     | 0.12 | 0.61  | 1.02     | 0.00 |
| Uniform Delay, d1            |          | 55.9     | 55.5  | 50.8  | 50.8     | 41.7      | 60.3   | 13.0     | 10.5 | 58.9  | 23.4     | 8.9  |
| Progression Factor           |          | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 |
| Incremental Delay, d2        |          | 0.2      | 0.0   | 89.8  | 103.9    | 0.0       | 15.9   | 0.1      | 0.0  | 13.0  | 23.7     | 0.0  |
| Delay (s)                    |          | 56.1     | 55.6  | 140.6 | 154.7    | 41.7      | 76.3   | 13.0     | 10.5 | 71.9  | 47.1     | 8.9  |
| Level of Service             |          | Е        | Е     | F     | F        | D         | Е      | В        | В    | Е     | D        | Α    |
| Approach Delay (s)           |          | 55.8     |       |       | 146.4    |           |        | 13.6     |      |       | 47.4     |      |
| Approach LOS                 |          | Е        |       |       | F        |           |        | В        |      |       | D        |      |
| Intersection Summary         |          |          |       |       |          |           |        |          |      |       |          |      |
| <b>HCM Average Control D</b> | elay     |          | 57.1  | ŀ     | HCM Lev  | vel of Se | ervice |          | Е    |       |          |      |
| HCM Volume to Capacit        | y ratio  |          | 0.96  |       |          |           |        |          |      |       |          |      |
| Actuated Cycle Length (      | s)       |          | 123.7 | 5     | Sum of l | ost time  | (s)    |          | 12.0 |       |          |      |
| Intersection Capacity Uti    | lization |          | 80.2% | I     | CU Leve  | el of Ser | vice   |          | D    |       |          |      |
| Analysis Period (min)        |          |          | 15    |       |          |           |        |          |      |       |          |      |

|                           | ۶        | <b>→</b>  | •     | •     | <b>←</b> | •         | 4      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ        | 4     |
|---------------------------|----------|-----------|-------|-------|----------|-----------|--------|----------|-------------|-------------|----------|-------|
| Movement                  | EBL      | EBT       | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR         | SBL         | SBT      | SBR   |
| Lane Configurations       |          | ર્ન       | 7     | ሻ     | ન        | 7         | ሻ      | <b>^</b> | 7           | ሻ           | <b>^</b> | 7     |
| Ideal Flow (vphpl)        | 1900     | 1900      | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900        | 1900        | 1900     | 1900  |
| Total Lost time (s)       |          | 4.0       | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0         | 4.0         | 4.0      | 4.0   |
| Lane Util. Factor         |          | 1.00      | 1.00  | 0.95  | 0.95     | 1.00      | 1.00   | 0.95     | 1.00        | 1.00        | 0.95     | 1.00  |
| Frt                       |          | 1.00      | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85        | 1.00        | 1.00     | 0.85  |
| Flt Protected             |          | 0.97      | 1.00  | 0.95  | 0.96     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95        | 1.00     | 1.00  |
| Satd. Flow (prot)         |          | 1487      | 1335  | 1681  | 1687     | 1380      | 1492   | 2959     | 1482        | 1687        | 3406     | 1292  |
| Flt Permitted             |          | 0.97      | 1.00  | 0.95  | 0.96     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95        | 1.00     | 1.00  |
| Satd. Flow (perm)         |          | 1487      | 1335  | 1681  | 1687     | 1380      | 1492   | 2959     | 1482        | 1687        | 3406     | 1292  |
| Volume (vph)              | 11       | 5         | 14    | 360   | 16       | 24        | 39     | 835      | 64          | 27          | 2350     | 34    |
| Peak-hour factor, PHF     | 0.67     | 0.67      | 0.67  | 0.79  | 0.79     | 0.79      | 0.96   | 0.96     | 0.96        | 0.92        | 0.92     | 0.92  |
| Adj. Flow (vph)           | 16       | 7         | 21    | 456   | 20       | 30        | 41     | 870      | 67          | 29          | 2554     | 37    |
| RTOR Reduction (vph)      | 0        | 0         | 20    | 0     | 0        | 26        | 0      | 0        | 20          | 0           | 0        | 5     |
| Lane Group Flow (vph)     | 0        | 23        | 1     | 236   | 240      | 4         | 41     | 870      | 47          | 29          | 2554     | 32    |
| Heavy Vehicles (%)        | 25%      | 20%       | 21%   | 2%    | 6%       | 17%       | 21%    | 22%      | 9%          | 7%          | 6%       | 25%   |
| Turn Type                 | Split    |           | Perm  | Split |          | Perm      | Prot   |          | Perm        | Prot        |          | Perm  |
| Protected Phases          | 7        | 7         |       | 8     | 8        |           | 5      | 2        |             | 1           | 6        |       |
| Permitted Phases          |          |           | 7     |       |          | 8         |        |          | 2           |             |          | 6     |
| Actuated Green, G (s)     |          | 6.5       | 6.5   | 21.0  | 21.0     | 21.0      | 8.3    | 123.7    | 123.7       | 6.8         | 122.2    | 122.2 |
| Effective Green, g (s)    |          | 8.5       | 8.5   | 23.0  | 23.0     | 23.0      | 7.8    | 126.8    | 126.8       | 6.3         | 125.3    | 125.3 |
| Actuated g/C Ratio        |          | 0.05      | 0.05  | 0.13  | 0.13     | 0.13      | 0.04   | 0.70     | 0.70        | 0.03        | 0.69     | 0.69  |
| Clearance Time (s)        |          | 6.0       | 6.0   | 6.0   | 6.0      | 6.0       | 3.5    | 7.1      | 7.1         | 3.5         | 7.1      | 7.1   |
| Vehicle Extension (s)     |          | 1.0       | 1.0   | 1.0   | 1.0      | 1.0       | 2.2    | 2.0      | 2.0         | 2.2         | 2.0      | 2.0   |
| Lane Grp Cap (vph)        |          | 70        | 63    | 214   | 215      | 176       | 64     | 2078     | 1041        | 59          | 2363     | 896   |
| v/s Ratio Prot            |          | c0.02     |       | 0.14  | c0.14    |           | c0.03  | 0.29     |             | 0.02        | c0.75    |       |
| v/s Ratio Perm            |          |           | 0.00  |       |          | 0.00      |        |          | 0.03        |             |          | 0.02  |
| v/c Ratio                 |          | 0.33      | 0.02  | 1.10  | 1.12     | 0.02      | 0.64   | 0.42     | 0.05        | 0.49        | 1.08     | 0.04  |
| Uniform Delay, d1         |          | 83.3      | 82.1  | 78.8  | 78.8     | 69.0      | 85.0   | 11.3     | 8.3         | 85.6        | 27.6     | 8.7   |
| Progression Factor        |          | 1.00      | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00        | 1.00     | 1.00  |
| Incremental Delay, d2     |          | 1.0       | 0.0   | 91.8  | 96.1     | 0.0       | 16.2   | 0.6      | 0.1         | 3.3         | 44.7     | 0.1   |
| Delay (s)                 |          | 84.3      | 82.1  | 170.6 | 174.9    | 69.0      | 101.2  | 12.0     | 8.4         | 88.8        | 72.3     | 8.8   |
| Level of Service          |          | F         | F     | F     | F        | Е         | F      | В        | Α           | F           | E 74.0   | Α     |
| Approach Delay (s)        |          | 83.2<br>F |       |       | 166.6    |           |        | 15.5     |             |             | 71.6     |       |
| Approach LOS              |          | F         |       |       | F        |           |        | В        |             |             | Е        |       |
| Intersection Summary      |          |           |       |       |          |           |        |          |             |             |          |       |
| HCM Average Control D     |          |           | 70.1  | H     | HCM Le   | vel of Se | ervice |          | E           |             |          |       |
| HCM Volume to Capacit     |          |           | 1.03  |       |          |           |        |          |             |             |          |       |
| Actuated Cycle Length (   |          |           | 180.6 |       | Sum of I |           |        |          | 16.0        |             |          |       |
| Intersection Capacity Uti | lization |           | 88.7% | I.    | CU Leve  | el of Sei | vice   |          | Е           |             |          |       |
| Analysis Period (min)     |          |           | 15    |       |          |           |        |          |             |             |          |       |

Analysis Period (min) c Critical Lane Group

|                          | ۶         | <b>→</b> | +     | •    | <b>\</b> | 4             |  |
|--------------------------|-----------|----------|-------|------|----------|---------------|--|
| Movement                 | EBL       | EBT      | WBT   | WBR  | SBL      | SBR           |  |
| Lane Configurations      |           | <b>^</b> | ĵ»    |      | 7        | 7             |  |
| Sign Control             |           | Free     | Free  |      | Stop     |               |  |
| Grade                    |           | 0%       | 0%    |      | 0%       |               |  |
| Volume (veh/h)           | 0         | 2        | 7     | 860  | 115      | 1             |  |
| Peak Hour Factor         | 0.50      | 0.50     | 0.85  | 0.85 | 0.78     | 0.78          |  |
| Hourly flow rate (vph)   | 0         | 4        | 8     | 1012 | 147      | 1             |  |
| Pedestrians              |           |          |       |      |          |               |  |
| Lane Width (ft)          |           |          |       |      |          |               |  |
| Walking Speed (ft/s)     |           |          |       |      |          |               |  |
| Percent Blockage         |           |          |       |      |          |               |  |
| Right turn flare (veh)   |           |          |       |      |          |               |  |
| Median type              |           |          |       |      | None     |               |  |
| Median storage veh)      |           |          |       |      |          |               |  |
| Upstream signal (ft)     |           |          |       |      |          |               |  |
| pX, platoon unblocked    |           |          |       |      |          |               |  |
| vC, conflicting volume   | 8         |          |       |      | 518      | 514           |  |
| vC1, stage 1 conf vol    |           |          |       |      |          |               |  |
| vC2, stage 2 conf vol    |           |          |       |      |          |               |  |
| vCu, unblocked vol       | 8         |          |       |      | 518      | 514           |  |
| tC, single (s)           | 4.1       |          |       |      | 6.4      | 6.2           |  |
| tC, 2 stage (s)          |           |          |       |      |          |               |  |
| tF (s)                   | 2.2       |          |       |      | 3.5      | 3.3           |  |
| p0 queue free %          | 100       |          |       |      | 72       | 100           |  |
| cM capacity (veh/h)      | 1612      |          |       |      | 518      | 560           |  |
| Direction, Lane #        | EB 1      | WB 1     | SB 1  | SB 2 |          |               |  |
| Volume Total             | 4         | 1020     | 147   | 1    |          |               |  |
| Volume Left              | 0         | 0        | 147   | 0    |          |               |  |
| Volume Right             | 0         | 1012     | 0     | 1    |          |               |  |
| cSH                      | 1700      | 1700     | 518   | 560  |          |               |  |
| Volume to Capacity       | 0.00      | 0.60     | 0.28  | 0.00 |          |               |  |
| Queue Length 95th (ft)   | 0         | 0        | 29    | 0    |          |               |  |
| Control Delay (s)        | 0.0       | 0.0      | 14.7  | 11.4 |          |               |  |
| Lane LOS                 |           |          | В     | В    |          |               |  |
| Approach Delay (s)       | 0.0       | 0.0      | 14.7  |      |          |               |  |
| Approach LOS             |           |          | В     |      |          |               |  |
| Intersection Summary     |           |          |       |      |          |               |  |
| Average Delay            |           |          | 1.9   |      |          |               |  |
| Intersection Capacity Ut | ilization |          | 66.6% | 10   | CU Leve  | el of Service |  |
| Analysis Period (min)    |           |          | 15    | -    |          | . 5. 55. 7.00 |  |
| and for a constant       |           |          | .5    |      |          |               |  |

|                           | -         | •    | •     | •        | 4       | <i>&gt;</i>  |   |
|---------------------------|-----------|------|-------|----------|---------|--------------|---|
| Movement                  | EBT       | EBR  | WBL   | WBT      | NBL     | NBR          |   |
| Lane Configurations       | ħ         |      |       | <b>†</b> | ች       | 7            |   |
| Sign Control              | Free      |      |       | Free     | Stop    |              |   |
| Grade                     | 0%        |      |       | 0%       | 0%      |              |   |
| Volume (veh/h)            | 116       | 1    | 0     | 860      | 7       | 273          |   |
| Peak Hour Factor          | 0.79      | 0.79 | 0.84  | 0.84     | 0.92    | 0.92         |   |
| Hourly flow rate (vph)    | 147       | 1    | 0     | 1024     | 8       | 297          |   |
| Pedestrians               |           |      |       |          |         |              |   |
| Lane Width (ft)           |           |      |       |          |         |              |   |
| Walking Speed (ft/s)      |           |      |       |          |         |              |   |
| Percent Blockage          |           |      |       |          |         |              |   |
| Right turn flare (veh)    |           |      |       |          |         |              |   |
| Median type               |           |      |       |          | None    |              |   |
| Median storage veh)       |           |      |       |          |         |              |   |
| Upstream signal (ft)      |           |      |       |          |         |              |   |
| pX, platoon unblocked     |           |      |       |          |         |              |   |
| vC, conflicting volume    |           |      | 147   |          | 1171    | 147          |   |
| vC1, stage 1 conf vol     |           |      |       |          |         |              |   |
| vC2, stage 2 conf vol     |           |      |       |          |         |              |   |
| vCu, unblocked vol        |           |      | 147   |          | 1171    | 147          |   |
| tC, single (s)            |           |      | 4.1   |          | 6.4     | 6.2          |   |
| tC, 2 stage (s)           |           |      |       |          |         |              |   |
| tF (s)                    |           |      | 2.2   |          | 3.5     | 3.3          |   |
| p0 queue free %           |           |      | 100   |          | 96      | 67           |   |
| cM capacity (veh/h)       |           |      | 1435  |          | 213     | 899          |   |
| Direction, Lane #         | EB 1      | WB 1 | NB 1  | NB 2     |         |              |   |
| Volume Total              | 148       | 1024 | 8     | 297      |         |              |   |
| Volume Left               | 0         | 0    | 8     | 0        |         |              |   |
| Volume Right              | 1         | 0    | 0     | 297      |         |              |   |
| cSH                       | 1700      | 1700 | 213   | 899      |         |              |   |
| Volume to Capacity        | 0.09      | 0.60 | 0.04  | 0.33     |         |              |   |
| Queue Length 95th (ft)    | 0         | 0    | 3     | 36       |         |              |   |
| Control Delay (s)         | 0.0       | 0.0  | 22.5  | 11.0     |         |              |   |
| Lane LOS                  |           |      | С     | В        |         |              |   |
| Approach Delay (s)        | 0.0       | 0.0  | 11.3  |          |         |              |   |
| Approach LOS              |           |      | В     |          |         |              |   |
| Intersection Summary      |           |      |       |          |         |              |   |
| Average Delay             |           |      | 2.3   |          |         |              |   |
| Intersection Capacity Uti | ilization |      | 55.3% | 10       | CU Leve | el of Servic | е |
| Analysis Period (min)     | =         |      | 15    |          |         | 0. 00. 110   |   |
| a.joio i onoa (iiiii)     |           |      | .5    |          |         |              |   |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •          | 4    | <b>†</b> | /    | <b>\</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|-------|----------|------------|------|----------|------|----------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR        | NBL  | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |       | 4        |            |      | 4        |      |          | 4        |      |
| Sign Control              |          | Stop     |       |       | Stop     |            |      | Stop     |      |          | Stop     |      |
| Volume (vph)              | 4        | 82       | 4     | 98    | 395      | 4          | 1    | 13       | 19   | 3        | 35       | 4    |
| Peak Hour Factor          | 0.68     | 0.68     | 0.68  | 0.85  | 0.85     | 0.85       | 0.75 | 0.75     | 0.75 | 0.83     | 0.83     | 0.83 |
| Hourly flow rate (vph)    | 6        | 121      | 6     | 115   | 465      | 5          | 1    | 17       | 25   | 4        | 42       | 5    |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |            |      |          |      |          |          |      |
| Volume Total (vph)        | 132      | 585      | 44    | 51    |          |            |      |          |      |          |          |      |
| Volume Left (vph)         | 6        | 115      | 1     | 4     |          |            |      |          |      |          |          |      |
| Volume Right (vph)        | 6        | 5        | 25    | 5     |          |            |      |          |      |          |          |      |
| Hadj (s)                  | 0.08     | 0.08     | -0.31 | -0.01 |          |            |      |          |      |          |          |      |
| Departure Headway (s)     | 4.9      | 4.4      | 5.3   | 5.6   |          |            |      |          |      |          |          |      |
| Degree Utilization, x     | 0.18     | 0.72     | 0.07  | 0.08  |          |            |      |          |      |          |          |      |
| Capacity (veh/h)          | 703      | 801      | 598   | 568   |          |            |      |          |      |          |          |      |
| Control Delay (s)         | 9.0      | 17.8     | 8.7   | 9.1   |          |            |      |          |      |          |          |      |
| Approach Delay (s)        | 9.0      | 17.8     | 8.7   | 9.1   |          |            |      |          |      |          |          |      |
| Approach LOS              | Α        | С        | Α     | Α     |          |            |      |          |      |          |          |      |
| Intersection Summary      |          |          |       |       |          |            |      |          |      |          |          |      |
| Delay                     |          |          | 15.3  |       |          |            |      |          |      |          |          |      |
| HCM Level of Service      |          |          | С     |       |          |            |      |          |      |          |          |      |
| Intersection Capacity Uti | lization |          | 43.2% | - 10  | CU Leve  | el of Serv | vice |          | Α    |          |          |      |
| Analysis Period (min)     |          |          | 15    |       |          |            |      |          |      |          |          |      |
|                           |          |          |       |       |          |            |      |          |      |          |          |      |

|                          | •         | <b>→</b> | <b>←</b> | •    | -       | 4            |
|--------------------------|-----------|----------|----------|------|---------|--------------|
| Movement                 | EBL       | EBT      | WBT      | WBR  | SBL     | SBR          |
| Lane Configurations      |           | 4        | f)       |      | ¥       |              |
| Sign Control             |           | Free     | Free     |      | Stop    |              |
| Grade                    |           | 0%       | 0%       |      | 0%      |              |
| Volume (veh/h)           | 29        | 392      | 560      | 6    | 24      | 113          |
| Peak Hour Factor         | 0.96      | 0.96     | 0.89     | 0.89 | 0.80    | 0.80         |
| Hourly flow rate (vph)   | 30        | 408      | 629      | 7    | 30      | 141          |
| Pedestrians              |           |          |          |      |         |              |
| Lane Width (ft)          |           |          |          |      |         |              |
| Walking Speed (ft/s)     |           |          |          |      |         |              |
| Percent Blockage         |           |          |          |      |         |              |
| Right turn flare (veh)   |           |          |          |      |         |              |
| Median type              |           |          |          |      | None    |              |
| Median storage veh)      |           |          |          |      |         |              |
| Upstream signal (ft)     |           |          |          |      |         |              |
| pX, platoon unblocked    |           |          |          |      |         |              |
| vC, conflicting volume   | 636       |          |          |      | 1101    | 633          |
| vC1, stage 1 conf vol    |           |          |          |      |         |              |
| vC2, stage 2 conf vol    |           |          |          |      |         |              |
| vCu, unblocked vol       | 636       |          |          |      | 1101    | 633          |
| tC, single (s)           | 4.1       |          |          |      | 6.4     | 6.2          |
| tC, 2 stage (s)          |           |          |          |      |         |              |
| tF (s)                   | 2.2       |          |          |      | 3.5     | 3.3          |
| p0 queue free %          | 97        |          |          |      | 87      | 71           |
| cM capacity (veh/h)      | 943       |          |          |      | 227     | 480          |
| Direction, Lane #        | EB 1      | WB 1     | SB 1     |      |         |              |
| Volume Total             | 439       | 636      | 171      |      |         |              |
| Volume Left              | 30        | 0        | 30       |      |         |              |
| Volume Right             | 0         | 7        | 141      |      |         |              |
| cSH                      | 943       | 1700     | 402      |      |         |              |
| Volume to Capacity       | 0.03      | 0.37     | 0.43     |      |         |              |
| Queue Length 95th (ft)   | 2         | 0        | 52       |      |         |              |
| Control Delay (s)        | 1.0       | 0.0      | 20.5     |      |         |              |
| Lane LOS                 | Α         |          | С        |      |         |              |
| Approach Delay (s)       | 1.0       | 0.0      | 20.5     |      |         |              |
| Approach LOS             |           |          | С        |      |         |              |
| Intersection Summary     |           |          |          |      |         |              |
| Average Delay            |           |          | 3.2      |      |         |              |
| Intersection Capacity Ut | ilization |          | 59.5%    | [0   | CU Leve | el of Servic |
| Analysis Period (min)    |           |          | 15       |      |         |              |
| , ,                      |           |          |          |      |         |              |

|                                    | ۶         | <b>→</b> | •     | •    | <b>←</b> | 4         | 1    | †    | <i>&gt;</i> | <b>/</b> | <b></b> | 4    |
|------------------------------------|-----------|----------|-------|------|----------|-----------|------|------|-------------|----------|---------|------|
| Movement                           | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL  | NBT  | NBR         | SBL      | SBT     | SBR  |
| Lane Configurations                |           | 4        |       |      | 4        |           |      | 4    |             |          | 4       |      |
| Sign Control                       |           | Free     |       |      | Free     |           |      | Stop |             |          | Stop    |      |
| Grade                              |           | 0%       |       |      | 0%       |           |      | 0%   |             |          | 0%      |      |
| Volume (veh/h)                     | 4         | 99       | 1     | 3    | 447      | 2         | 0    | 1    | 5           | 0        | 1       | 50   |
| Peak Hour Factor                   | 0.91      | 0.91     | 0.91  | 0.82 | 0.82     | 0.82      | 0.63 | 0.63 | 0.63        | 0.85     | 0.85    | 0.85 |
| Hourly flow rate (vph)             | 4         | 109      | 1     | 4    | 545      | 2         | 0    | 2    | 8           | 0        | 1       | 59   |
| Pedestrians                        |           |          |       |      |          |           |      |      |             |          |         |      |
| Lane Width (ft)                    |           |          |       |      |          |           |      |      |             |          |         |      |
| Walking Speed (ft/s)               |           |          |       |      |          |           |      |      |             |          |         |      |
| Percent Blockage                   |           |          |       |      |          |           |      |      |             |          |         |      |
| Right turn flare (veh)             |           |          |       |      |          |           |      |      |             |          |         |      |
| Median type                        |           |          |       |      |          |           |      | None |             |          | None    |      |
| Median storage veh)                |           |          |       |      |          |           |      |      |             |          |         |      |
| Upstream signal (ft)               |           |          |       |      |          |           |      |      |             |          |         |      |
| pX, platoon unblocked              |           |          |       |      |          |           |      |      |             |          |         |      |
| vC, conflicting volume             | 548       |          |       | 110  |          |           | 731  | 673  | 109         | 681      | 672     | 546  |
| vC1, stage 1 conf vol              |           |          |       |      |          |           |      |      |             |          |         |      |
| vC2, stage 2 conf vol              |           |          |       |      |          |           |      |      |             |          |         |      |
| vCu, unblocked vol                 | 548       |          |       | 110  |          |           | 731  | 673  | 109         | 681      | 672     | 546  |
| tC, single (s)                     | 4.1       |          |       | 4.3  |          |           | 7.1  | 6.5  | 6.5         | 7.1      | 6.8     | 6.2  |
| tC, 2 stage (s)                    |           |          |       |      |          |           |      |      |             |          |         |      |
| tF (s)                             | 2.2       |          |       | 2.4  |          |           | 3.5  | 4.0  | 3.5         | 3.5      | 4.2     | 3.3  |
| p0 queue free %                    | 100       |          |       | 100  |          |           | 100  | 100  | 99          | 100      | 100     | 89   |
| cM capacity (veh/h)                | 1022      |          |       | 1349 |          |           | 298  | 374  | 885         | 358      | 347     | 537  |
| Direction, Lane #                  | EB 1      | WB 1     | NB 1  | SB 1 |          |           |      |      |             |          |         |      |
| Volume Total                       | 114       | 551      | 10    | 60   |          |           |      |      |             |          |         |      |
| Volume Left                        | 4         | 4        | 0     | 0    |          |           |      |      |             |          |         |      |
| Volume Right                       | 1         | 2        | 8     | 59   |          |           |      |      |             |          |         |      |
| cSH                                | 1022      | 1349     | 721   | 532  |          |           |      |      |             |          |         |      |
| Volume to Capacity                 | 0.00      | 0.00     | 0.01  | 0.11 |          |           |      |      |             |          |         |      |
| Queue Length 95th (ft)             | 0         | 0        | 1     | 9    |          |           |      |      |             |          |         |      |
| Control Delay (s)                  | 0.4       | 0.1      | 10.1  | 12.6 |          |           |      |      |             |          |         |      |
| Lane LOS                           | Α         | Α        | В     | В    |          |           |      |      |             |          |         |      |
| Approach Delay (s)                 | 0.4       | 0.1      | 10.1  | 12.6 |          |           |      |      |             |          |         |      |
| Approach LOS                       |           |          | В     | В    |          |           |      |      |             |          |         |      |
| Intersection Summary               |           |          |       |      |          |           |      |      |             |          |         |      |
| Average Delay                      |           |          | 1.3   |      |          |           |      |      |             |          |         |      |
| Intersection Capacity Ut           | ilization |          | 34.8% | Į.   | CU Leve  | el of Ser | vice |      | Α           |          |         |      |
| Analysis Period (min)              |           |          | 15    |      |          |           |      |      |             |          |         |      |
| i in any one i critica (i i i i i) |           |          |       |      |          |           |      |      |             |          |         |      |

|                          | ۶         | <b>→</b> | •     | •    | <b>←</b> | •         | 4    | <b>†</b> | /    | <b>&gt;</b> | <b>↓</b> | 4    |
|--------------------------|-----------|----------|-------|------|----------|-----------|------|----------|------|-------------|----------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations      |           | 4        |       |      | ર્ન      | 7         |      | 4        |      |             | 4        |      |
| Sign Control             |           | Stop     |       |      | Stop     |           |      | Stop     |      |             | Stop     |      |
| Volume (vph)             | 9         | 85       | 7     | 5    | 370      | 70        | 16   | 27       | 9    | 100         | 25       | 64   |
| Peak Hour Factor         | 0.85      | 0.85     | 0.85  | 0.76 | 0.76     | 0.76      | 0.81 | 0.81     | 0.81 | 0.86        | 0.86     | 0.86 |
| Hourly flow rate (vph)   | 11        | 100      | 8     | 7    | 487      | 92        | 20   | 33       | 11   | 116         | 29       | 74   |
| Direction, Lane #        | EB 1      | WB 1     | WB 2  | NB 1 | SB 1     |           |      |          |      |             |          |      |
| Volume Total (vph)       | 119       | 493      | 92    | 64   | 220      |           |      |          |      |             |          |      |
| Volume Left (vph)        | 11        | 7        | 0     | 20   | 116      |           |      |          |      |             |          |      |
| Volume Right (vph)       | 8         | 0        | 92    | 11   | 74       |           |      |          |      |             |          |      |
| Hadj (s)                 | 0.10      | 0.04     | -0.50 | 0.07 | -0.04    |           |      |          |      |             |          |      |
| Departure Headway (s)    | 5.6       | 5.0      | 3.2   | 6.0  | 5.6      |           |      |          |      |             |          |      |
| Degree Utilization, x    | 0.18      | 0.68     | 0.08  | 0.11 | 0.34     |           |      |          |      |             |          |      |
| Capacity (veh/h)         | 591       | 703      | 1121  | 514  | 589      |           |      |          |      |             |          |      |
| Control Delay (s)        | 9.8       | 17.9     | 6.5   | 9.7  | 11.5     |           |      |          |      |             |          |      |
| Approach Delay (s)       | 9.8       | 16.1     |       | 9.7  | 11.5     |           |      |          |      |             |          |      |
| Approach LOS             | Α         | С        |       | Α    | В        |           |      |          |      |             |          |      |
| Intersection Summary     |           |          |       |      |          |           |      |          |      |             |          |      |
| Delay                    |           |          | 13.9  |      |          |           |      |          |      |             |          |      |
| HCM Level of Service     |           |          | В     |      |          |           |      |          |      |             |          |      |
| Intersection Capacity Ut | ilization |          | 44.7% | - 10 | CU Leve  | el of Ser | vice |          | Α    |             |          |      |
| Analysis Period (min)    |           |          | 15    |      |          |           |      |          |      |             |          |      |
|                          |           |          |       |      |          |           |      |          |      |             |          |      |

|                           | -        | •    | •     | •     | 1       | <b>*</b>      |   |  |
|---------------------------|----------|------|-------|-------|---------|---------------|---|--|
| Movement                  | EBT      | EBR  | WBL   | WBT   | NBL     | NBR           |   |  |
| Lane Configurations       | f)       |      |       | र्स   | ř       | 7             |   |  |
| Sign Control              | Stop     |      |       | Stop  | Stop    |               |   |  |
| Volume (vph)              | 132      | 82   | 59    | 385   | 49      | 28            |   |  |
| Peak Hour Factor          | 0.89     | 0.89 | 0.89  | 0.89  | 0.71    | 0.71          |   |  |
| Hourly flow rate (vph)    | 148      | 92   | 66    | 433   | 69      | 39            |   |  |
| Direction, Lane #         | EB 1     | WB 1 | NB 1  | NB 2  |         |               |   |  |
| Volume Total (vph)        | 240      | 499  | 69    | 39    |         |               |   |  |
| Volume Left (vph)         | 0        | 66   | 69    | 0     |         |               |   |  |
| Volume Right (vph)        | 92       | 0    | 0     | 39    |         |               |   |  |
| Hadj (s)                  | -0.14    | 0.07 | 0.57  | -0.58 |         |               |   |  |
| Departure Headway (s)     | 4.7      | 4.6  | 6.8   | 5.6   |         |               |   |  |
| Degree Utilization, x     | 0.31     | 0.64 | 0.13  | 0.06  |         |               |   |  |
| Capacity (veh/h)          | 740      | 765  | 474   | 573   |         |               |   |  |
| Control Delay (s)         | 9.8      | 15.3 | 9.6   | 7.8   |         |               |   |  |
| Approach Delay (s)        | 9.8      | 15.3 | 8.9   |       |         |               |   |  |
| Approach LOS              | Α        | С    | Α     |       |         |               |   |  |
| Intersection Summary      |          |      |       |       |         |               |   |  |
| Delay                     |          |      | 12.9  |       |         |               |   |  |
| HCM Level of Service      |          |      | В     |       |         |               |   |  |
| Intersection Capacity Uti | lization |      | 48.8% | 10    | CU Leve | el of Service | ) |  |
| Analysis Period (min)     |          |      | 15    |       |         |               |   |  |
|                           |          |      |       |       |         |               |   |  |

|                           | <b>→</b> | •        | •        | •    | •       | <b>/</b>   |   |
|---------------------------|----------|----------|----------|------|---------|------------|---|
| Movement                  | EBT      | EBR      | WBL      | WBT  | NBL     | NBR        |   |
| Lane Configurations       | ĵ.       |          |          | 4    | ¥#      |            |   |
| Sign Control              | Free     |          |          | Free | Stop    |            |   |
| Grade                     | 0%       |          |          | 0%   | 0%      |            |   |
| Volume (veh/h)            | 184      | 1        | 13       | 414  | 0       | 24         |   |
| Peak Hour Factor          | 0.86     | 0.86     | 0.94     | 0.94 | 0.60    | 0.60       |   |
| Hourly flow rate (vph)    | 214      | 1        | 14       | 440  | 0       | 40         |   |
| Pedestrians               |          |          |          |      |         |            |   |
| Lane Width (ft)           |          |          |          |      |         |            |   |
| Walking Speed (ft/s)      |          |          |          |      |         |            |   |
| Percent Blockage          |          |          |          |      |         |            |   |
| Right turn flare (veh)    |          |          |          |      |         |            |   |
| Median type               |          |          |          |      | None    |            |   |
| Median storage veh)       |          |          |          |      |         |            |   |
| Upstream signal (ft)      |          |          |          |      |         |            |   |
| pX, platoon unblocked     |          |          |          |      |         |            |   |
| vC, conflicting volume    |          |          | 215      |      | 683     | 215        |   |
| vC1, stage 1 conf vol     |          |          |          |      |         |            |   |
| vC2, stage 2 conf vol     |          |          |          |      |         |            |   |
| vCu, unblocked vol        |          |          | 215      |      | 683     | 215        |   |
| tC, single (s)            |          |          | 4.2      |      | 6.4     | 6.3        |   |
| tC, 2 stage (s)           |          |          |          |      |         |            |   |
| tF (s)                    |          |          | 2.3      |      | 3.5     | 3.4        |   |
| p0 queue free %           |          |          | 99       |      | 100     | 95         |   |
| cM capacity (veh/h)       |          |          | 1281     |      | 411     | 811        |   |
| Direction, Lane #         | EB 1     | WB 1     | NB 1     |      |         |            |   |
| Volume Total              | 215      | 454      | 40       |      |         |            |   |
| Volume Left               | 0        | 14       | 0        |      |         |            |   |
| Volume Right              | 1        | 0        | 40       |      |         |            |   |
| cSH                       | 1700     | 1281     | 811      |      |         |            |   |
| Volume to Capacity        | 0.13     | 0.01     | 0.05     |      |         |            |   |
| Queue Length 95th (ft)    | 0.13     | 1        | 4        |      |         |            |   |
| Control Delay (s)         | 0.0      | 0.3      | 9.7      |      |         |            |   |
| Lane LOS                  | 0.0      | 0.5<br>A | 9.7<br>A |      |         |            |   |
| Approach Delay (s)        | 0.0      | 0.3      | 9.7      |      |         |            |   |
| Approach LOS              | 0.0      | 0.5      | 3.7<br>A |      |         |            |   |
| • •                       |          |          |          |      |         |            |   |
| Intersection Summary      |          |          |          |      |         |            |   |
| Average Delay             |          |          | 8.0      |      |         |            |   |
| Intersection Capacity Uti | lization |          | 42.3%    | I    | CU Leve | of Service | ) |
| Analysis Period (min)     |          |          | 15       |      |         |            |   |
|                           |          |          |          |      |         |            |   |

|                           | ۶        | <b>→</b> | +     | •    | <b>\</b>                                | 4             |          |   |  |
|---------------------------|----------|----------|-------|------|-----------------------------------------|---------------|----------|---|--|
| Movement                  | EBL      | EBT      | WBT   | WBR  | SBL                                     | SBR           |          |   |  |
| Lane Configurations       |          | 4        | f)    |      | W                                       |               |          |   |  |
| Sign Control              |          | Free     | Free  |      | Stop                                    |               |          |   |  |
| Grade                     |          | 0%       | 0%    |      | 0%                                      |               |          |   |  |
| Volume (veh/h)            | 3        | 205      | 421   | 3    | 2                                       | 6             |          |   |  |
| Peak Hour Factor          | 0.85     | 0.85     | 0.93  | 0.93 | 0.65                                    | 0.65          |          |   |  |
| Hourly flow rate (vph)    | 4        | 241      | 453   | 3    | 3                                       | 9             |          |   |  |
| Pedestrians               |          |          |       |      |                                         |               |          |   |  |
| Lane Width (ft)           |          |          |       |      |                                         |               |          |   |  |
| Walking Speed (ft/s)      |          |          |       |      |                                         |               |          |   |  |
| Percent Blockage          |          |          |       |      |                                         |               |          |   |  |
| Right turn flare (veh)    |          |          |       |      |                                         |               |          |   |  |
| Median type               |          |          |       |      | None                                    |               |          |   |  |
| Median storage veh)       |          |          |       |      |                                         |               |          |   |  |
| Upstream signal (ft)      |          |          |       |      |                                         |               |          |   |  |
| oX, platoon unblocked     |          |          |       |      |                                         |               |          |   |  |
| vC, conflicting volume    | 456      |          |       |      | 703                                     | 454           |          |   |  |
| C1, stage 1 conf vol      |          |          |       |      |                                         |               |          |   |  |
| vC2, stage 2 conf vol     |          |          |       |      |                                         |               |          |   |  |
| vCu, unblocked vol        | 456      |          |       |      | 703                                     | 454           |          |   |  |
| C, single (s)             | 4.3      |          |       |      | 6.4                                     | 6.5           |          |   |  |
| tC, 2 stage (s)           |          |          |       |      | • • • • • • • • • • • • • • • • • • • • | 0.0           |          |   |  |
| :F (s)                    | 2.4      |          |       |      | 3.5                                     | 3.5           |          |   |  |
| o0 queue free %           | 100      |          |       |      | 99                                      | 98            |          |   |  |
| cM capacity (veh/h)       | 994      |          |       |      | 403                                     | 561           |          |   |  |
|                           |          |          |       |      | 100                                     | 001           |          |   |  |
| Direction, Lane #         | EB 1     | WB 1     | SB 1  |      |                                         |               |          |   |  |
| Volume Total              | 245      | 456      | 12    |      |                                         |               |          |   |  |
| Volume Left               | 4        | 0        | 3     |      |                                         |               |          |   |  |
| Volume Right              | 0        | 3        | 9     |      |                                         |               |          |   |  |
| cSH                       | 994      | 1700     | 511   |      |                                         |               |          |   |  |
| Volume to Capacity        | 0.00     | 0.27     | 0.02  |      |                                         |               |          |   |  |
| Queue Length 95th (ft)    | 0        | 0        | 2     |      |                                         |               |          |   |  |
| Control Delay (s)         | 0.2      | 0.0      | 12.2  |      |                                         |               |          |   |  |
| Lane LOS                  | Α        |          | В     |      |                                         |               |          |   |  |
| Approach Delay (s)        | 0.2      | 0.0      | 12.2  |      |                                         |               |          |   |  |
| Approach LOS              |          |          | В     |      |                                         |               |          |   |  |
| ntersection Summary       |          |          |       |      |                                         |               |          |   |  |
| Average Delay             |          |          | 0.3   |      |                                         |               |          |   |  |
| Intersection Capacity Uti | lization |          | 32.3% | 10   | CU Leve                                 | el of Service | <b>!</b> | Α |  |
|                           |          |          |       |      |                                         |               |          |   |  |

|                           | ۶        | <b>→</b> | •     | •    | <b>←</b> | •         | 4    | <b>†</b> | <b>/</b> | <b>\</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|------|----------|-----------|------|----------|----------|----------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL  | WBT      | WBR       | NBL  | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |      | 4        |           |      | 4        |          |          | 4        |      |
| Sign Control              |          | Stop     |       |      | Stop     |           |      | Stop     |          |          | Stop     |      |
| Volume (vph)              | 0        | 19       | 45    | 16   | 18       | 1         | 18   | 0        | 10       | 0        | 1        | 0    |
| Peak Hour Factor          | 0.73     | 0.73     | 0.73  | 0.86 | 0.86     | 0.86      | 0.67 | 0.67     | 0.67     | 0.50     | 0.50     | 0.50 |
| Hourly flow rate (vph)    | 0        | 26       | 62    | 19   | 21       | 1         | 27   | 0        | 15       | 0        | 2        | 0    |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1 |          |           |      |          |          |          |          |      |
| Volume Total (vph)        | 88       | 41       | 42    | 2    |          |           |      |          |          |          |          |      |
| Volume Left (vph)         | 0        | 19       | 27    | 0    |          |           |      |          |          |          |          |      |
| Volume Right (vph)        | 62       | 1        | 15    | 0    |          |           |      |          |          |          |          |      |
| Hadj (s)                  | -0.39    | 0.19     | 0.05  | 0.03 |          |           |      |          |          |          |          |      |
| Departure Headway (s)     | 3.7      | 4.3      | 4.2   | 4.2  |          |           |      |          |          |          |          |      |
| Degree Utilization, x     | 0.09     | 0.05     | 0.05  | 0.00 |          |           |      |          |          |          |          |      |
| Capacity (veh/h)          | 967      | 829      | 821   | 819  |          |           |      |          |          |          |          |      |
| Control Delay (s)         | 7.0      | 7.5      | 7.4   | 7.2  |          |           |      |          |          |          |          |      |
| Approach Delay (s)        | 7.0      | 7.5      | 7.4   | 7.2  |          |           |      |          |          |          |          |      |
| Approach LOS              | Α        | Α        | Α     | Α    |          |           |      |          |          |          |          |      |
| Intersection Summary      |          |          |       |      |          |           |      |          |          |          |          |      |
| Delay                     |          |          | 7.2   |      |          |           |      |          |          |          |          |      |
| HCM Level of Service      |          |          | Α     |      |          |           |      |          |          |          |          |      |
| Intersection Capacity Uti | lization |          | 23.5% | 10   | CU Leve  | el of Ser | vice |          | Α        |          |          |      |
| Analysis Period (min)     |          |          | 15    |      |          |           |      |          |          |          |          |      |
|                           |          |          |       |      |          |           |      |          |          |          |          |      |

|                           | ٠         | <b>→</b> | •     | •    | <b>←</b> | •         | 4    | †    | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 4    |
|---------------------------|-----------|----------|-------|------|----------|-----------|------|------|----------|-------------|----------|------|
| Movement                  | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL  | NBT  | NBR      | SBL         | SBT      | SBR  |
| Lane Configurations       |           | 4        |       |      | 4        |           |      | 4    |          |             | 4        |      |
| Sign Control              |           | Stop     |       |      | Stop     |           |      | Stop |          |             | Stop     |      |
| Volume (vph)              | 2         | 51       | 53    | 40   | 58       | 7         | 47   | 28   | 26       | 10          | 63       | 5    |
| Peak Hour Factor          | 0.85      | 0.85     | 0.85  | 0.88 | 0.88     | 0.88      | 0.70 | 0.70 | 0.70     | 0.78        | 0.78     | 0.78 |
| Hourly flow rate (vph)    | 2         | 60       | 62    | 45   | 66       | 8         | 67   | 40   | 37       | 13          | 81       | 6    |
| Direction, Lane #         | EB 1      | WB 1     | NB 1  | SB 1 |          |           |      |      |          |             |          |      |
| Volume Total (vph)        | 125       | 119      | 144   | 100  |          |           |      |      |          |             |          |      |
| Volume Left (vph)         | 2         | 45       | 67    | 13   |          |           |      |      |          |             |          |      |
| Volume Right (vph)        | 62        | 8        | 37    | 6    |          |           |      |      |          |             |          |      |
| Hadj (s)                  | -0.21     | 0.08     | 0.00  | 0.02 |          |           |      |      |          |             |          |      |
| Departure Headway (s)     | 4.4       | 4.7      | 4.6   | 4.7  |          |           |      |      |          |             |          |      |
| Degree Utilization, x     | 0.15      | 0.16     | 0.18  | 0.13 |          |           |      |      |          |             |          |      |
| Capacity (veh/h)          | 755       | 713      | 737   | 716  |          |           |      |      |          |             |          |      |
| Control Delay (s)         | 8.2       | 8.6      | 8.6   | 8.4  |          |           |      |      |          |             |          |      |
| Approach Delay (s)        | 8.2       | 8.6      | 8.6   | 8.4  |          |           |      |      |          |             |          |      |
| Approach LOS              | Α         | Α        | Α     | Α    |          |           |      |      |          |             |          |      |
| Intersection Summary      |           |          |       |      |          |           |      |      |          |             |          |      |
| Delay                     |           |          | 8.5   |      |          |           |      |      |          |             |          |      |
| HCM Level of Service      |           |          | Α     |      |          |           |      |      |          |             |          |      |
| Intersection Capacity Uti | ilization |          | 31.4% | - 10 | CU Leve  | el of Ser | vice |      | Α        |             |          |      |
| Analysis Period (min)     |           |          | 15    |      |          |           |      |      |          |             |          |      |
|                           |           |          |       |      |          |           |      |      |          |             |          |      |

|                          | ٠     | <b>→</b> | •     | •    | <b>←</b>    | •         | •      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ          | 1    |
|--------------------------|-------|----------|-------|------|-------------|-----------|--------|----------|-------------|-------------|------------|------|
| Movement                 | EBL   | EBT      | EBR   | WBL  | WBT         | WBR       | NBL    | NBT      | NBR         | SBL         | SBT        | SBR  |
| Lane Configurations      | 1/4   | <b>^</b> | 7     | 1,1  | <b>∱</b> î≽ |           | 7      | <b>†</b> | 7           | 7           | <b>∱</b> ∱ |      |
| Ideal Flow (vphpl)       | 1900  | 1900     | 1900  | 1900 | 1900        | 1900      | 1900   | 1900     | 1900        | 1900        | 1900       | 1900 |
| Total Lost time (s)      | 4.0   | 4.0      | 4.0   | 4.0  | 4.0         |           | 4.0    | 4.0      | 4.0         | 4.0         | 4.0        |      |
| Lane Util. Factor        | 0.97  | 0.95     | 1.00  | 0.97 | 0.95        |           | 1.00   | 1.00     | 1.00        | 1.00        | 0.95       |      |
| Frt                      | 1.00  | 1.00     | 0.85  | 1.00 | 0.98        |           | 1.00   | 1.00     | 0.85        | 1.00        | 0.97       |      |
| Flt Protected            | 0.95  | 1.00     | 1.00  | 0.95 | 1.00        |           | 0.95   | 1.00     | 1.00        | 0.95        | 1.00       |      |
| Satd. Flow (prot)        | 3433  | 3343     | 1538  | 3400 | 3368        |           | 1736   | 1863     | 1538        | 1752        | 3427       |      |
| Flt Permitted            | 0.95  | 1.00     | 1.00  | 0.95 | 1.00        |           | 0.95   | 1.00     | 1.00        | 0.95        | 1.00       |      |
| Satd. Flow (perm)        | 3433  | 3343     | 1538  | 3400 | 3368        |           | 1736   | 1863     | 1538        | 1752        | 3427       |      |
| Volume (vph)             | 116   | 383      | 209   | 109  | 521         | 82        | 92     | 88       | 86          | 116         | 150        | 40   |
| Peak-hour factor, PHF    | 0.72  | 0.72     | 0.72  | 0.90 | 0.90        | 0.90      | 0.63   | 0.63     | 0.63        | 0.84        | 0.84       | 0.84 |
| Adj. Flow (vph)          | 161   | 532      | 290   | 121  | 579         | 91        | 146    | 140      | 137         | 138         | 179        | 48   |
| RTOR Reduction (vph)     | 0     | 0        | 195   | 0    | 6           | 0         | 0      | 0        | 115         | 0           | 14         | 0    |
| Lane Group Flow (vph)    | 161   | 532      | 95    | 121  | 664         | 0         | 146    | 140      | 22          | 138         | 213        | 0    |
| Heavy Vehicles (%)       | 2%    | 8%       | 5%    | 3%   | 5%          | 5%        | 4%     | 2%       | 5%          | 3%          | 2%         | 2%   |
| Turn Type                | Prot  |          | Perm  | Prot |             |           | Prot   |          | Perm        | Prot        |            |      |
| Protected Phases         | 1     | 6        |       | 5    | 2           |           | 3      | 8        |             | 7           | 4          |      |
| Permitted Phases         |       |          | 6     |      |             |           |        |          | 8           |             |            |      |
| Actuated Green, G (s)    | 5.1   | 18.4     | 18.4  | 4.5  | 18.1        |           | 7.1    | 8.4      | 8.4         | 6.9         | 8.0        |      |
| Effective Green, g (s)   | 5.9   | 19.5     | 19.5  | 6.0  | 19.6        |           | 8.6    | 9.5      | 9.5         | 8.4         | 9.3        |      |
| Actuated g/C Ratio       | 0.10  | 0.33     | 0.33  | 0.10 | 0.33        |           | 0.14   | 0.16     | 0.16        | 0.14        | 0.16       |      |
| Clearance Time (s)       | 4.8   | 5.1      | 5.1   | 5.5  | 5.5         |           | 5.5    | 5.1      | 5.1         | 5.5         | 5.3        |      |
| Vehicle Extension (s)    | 1.0   | 1.0      | 1.0   | 1.0  | 1.0         |           | 1.0    | 1.0      | 1.0         | 1.0         | 1.0        |      |
| Lane Grp Cap (vph)       | 341   | 1097     | 505   | 343  | 1111        |           | 251    | 298      | 246         | 248         | 537        |      |
| v/s Ratio Prot           | c0.05 | 0.16     |       | 0.04 | c0.20       |           | c0.08  | c0.08    |             | 0.08        | 0.06       |      |
| v/s Ratio Perm           |       |          | 0.06  |      |             |           |        |          | 0.01        |             |            |      |
| v/c Ratio                | 0.47  | 0.48     | 0.19  | 0.35 | 0.60        |           | 0.58   | 0.47     | 0.09        | 0.56        | 0.40       |      |
| Uniform Delay, d1        | 25.3  | 15.9     | 14.3  | 24.9 | 16.6        |           | 23.7   | 22.7     | 21.3        | 23.8        | 22.5       |      |
| Progression Factor       | 1.00  | 1.00     | 1.00  | 1.00 | 1.00        |           | 1.00   | 1.00     | 1.00        | 1.00        | 1.00       |      |
| Incremental Delay, d2    | 0.4   | 0.1      | 0.1   | 0.2  | 0.6         |           | 2.2    | 0.4      | 0.1         | 1.5         | 0.2        |      |
| Delay (s)                | 25.7  | 16.1     | 14.4  | 25.1 | 17.2        |           | 25.9   | 23.1     | 21.3        | 25.3        | 22.7       |      |
| Level of Service         | С     | В        | В     | С    | В           |           | С      | С        | С           | С           | С          |      |
| Approach Delay (s)       |       | 17.1     |       |      | 18.4        |           |        | 23.5     |             |             | 23.7       |      |
| Approach LOS             |       | В        |       |      | В           |           |        | С        |             |             | С          |      |
| Intersection Summary     |       |          |       |      |             |           |        |          |             |             |            |      |
| HCM Average Control D    | elav  |          | 19.5  | F    | 1CM Lev     | vel of Se | ervice |          | В           |             |            |      |
| HCM Volume to Capacit    |       |          | 0.47  |      |             |           |        |          |             |             |            |      |
| Actuated Cycle Length (  | ,     |          | 59.4  | 9    | Sum of le   | ost time  | (s)    |          | 8.0         |             |            |      |
| Intersection Capacity Ut |       |          | 44.7% |      |             | el of Ser |        |          | Α           |             |            |      |
| Analysis Period (min)    |       |          | 15    |      |             |           |        |          |             |             |            |      |
| c Critical Lane Group    |       |          |       |      |             |           |        |          |             |             |            |      |

|                          | ۶         | <b>→</b> | •     | •    | <b>←</b>    | 4         | 4    | <b>†</b> | ~    | <b>/</b> | <b>+</b> | 4    |
|--------------------------|-----------|----------|-------|------|-------------|-----------|------|----------|------|----------|----------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL  | WBT         | WBR       | NBL  | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations      |           | 4        |       |      | 4           |           |      | 4        |      |          | 4        |      |
| Sign Control             |           | Free     |       |      | Free        |           |      | Stop     |      |          | Stop     |      |
| Grade                    |           | 0%       |       |      | 0%          |           |      | 0%       |      |          | 0%       |      |
| Volume (veh/h)           | 8         | 197      | 6     | 45   | 389         | 2         | 4    | 11       | 35   | 2        | 11       | 5    |
| Peak Hour Factor         | 0.91      | 0.91     | 0.91  | 0.88 | 0.88        | 0.88      | 0.93 | 0.93     | 0.93 | 0.75     | 0.75     | 0.75 |
| Hourly flow rate (vph)   | 9         | 216      | 7     | 51   | 442         | 2         | 4    | 12       | 38   | 3        | 15       | 7    |
| Pedestrians              |           |          |       |      |             |           |      |          |      |          |          |      |
| Lane Width (ft)          |           |          |       |      |             |           |      |          |      |          |          |      |
| Walking Speed (ft/s)     |           |          |       |      |             |           |      |          |      |          |          |      |
| Percent Blockage         |           |          |       |      |             |           |      |          |      |          |          |      |
| Right turn flare (veh)   |           |          |       |      |             |           |      |          |      |          |          |      |
| Median type              |           |          |       |      |             |           |      | None     |      |          | None     |      |
| Median storage veh)      |           |          |       |      |             |           |      |          |      |          |          |      |
| Upstream signal (ft)     |           |          |       |      |             |           |      |          |      |          |          |      |
| pX, platoon unblocked    |           |          |       |      |             |           |      |          |      |          |          |      |
| vC, conflicting volume   | 444       |          |       | 223  |             |           | 797  | 784      | 220  | 826      | 786      | 443  |
| vC1, stage 1 conf vol    |           |          |       |      |             |           |      |          |      |          |          |      |
| vC2, stage 2 conf vol    |           |          |       |      |             |           |      |          |      |          |          |      |
| vCu, unblocked vol       | 444       |          |       | 223  |             |           | 797  | 784      | 220  | 826      | 786      | 443  |
| tC, single (s)           | 4.2       |          |       | 4.2  |             |           | 7.1  | 6.6      | 6.2  | 7.3      | 6.5      | 6.2  |
| tC, 2 stage (s)          |           |          |       |      |             |           |      |          |      |          |          |      |
| tF (s)                   | 2.3       |          |       | 2.3  |             |           | 3.5  | 4.1      | 3.3  | 3.7      | 4.0      | 3.3  |
| p0 queue free %          | 99        |          |       | 96   |             |           | 98   | 96       | 95   | 99       | 95       | 99   |
| cM capacity (veh/h)      | 1060      |          |       | 1305 |             |           | 280  | 302      | 817  | 237      | 309      | 615  |
| Direction, Lane #        | EB 1      | WB 1     | NB 1  | SB 1 |             |           |      |          |      |          |          |      |
| Volume Total             | 232       | 495      | 54    | 24   |             |           |      |          |      |          |          |      |
| Volume Left              | 9         | 51       | 4     | 3    |             |           |      |          |      |          |          |      |
| Volume Right             | 7         | 2        | 38    | 7    |             |           |      |          |      |          |          |      |
| cSH                      | 1060      | 1305     | 535   | 345  |             |           |      |          |      |          |          |      |
| Volume to Capacity       | 0.01      | 0.04     | 0.10  | 0.07 |             |           |      |          |      |          |          |      |
| Queue Length 95th (ft)   | 1         | 3        | 8     | 6    |             |           |      |          |      |          |          |      |
| Control Delay (s)        | 0.4       | 1.2      | 12.5  | 16.2 |             |           |      |          |      |          |          |      |
| Lane LOS                 | Α         | Α        | В     | C    |             |           |      |          |      |          |          |      |
| Approach Delay (s)       | 0.4       | 1.2      | 12.5  | 16.2 |             |           |      |          |      |          |          |      |
| Approach LOS             |           |          | В     | С    |             |           |      |          |      |          |          |      |
| Intersection Summary     |           |          |       |      |             |           |      |          |      |          |          |      |
| Average Delay            |           |          | 2.2   |      |             |           |      |          |      |          |          |      |
| Intersection Capacity Ut | ilization |          | 47.9% | Į.   | CULeve      | el of Ser | vice |          | Α    |          |          |      |
| Analysis Period (min)    |           |          | 15    |      | J J _ J V V | J. J. JOI |      |          |      |          |          |      |
| a.joio i onoa (mm)       |           |          |       |      |             |           |      |          |      |          |          |      |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •         | 4    | <b>†</b> | /    | <b>\</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|-------|----------|-----------|------|----------|------|----------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR       | NBL  | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |       | 4        |           |      | 4        |      |          | 4        |      |
| Sign Control              |          | Stop     |       |       | Stop     |           |      | Stop     |      |          | Stop     |      |
| Volume (vph)              | 29       | 2        | 3     | 6     | 3        | 5         | 1    | 9        | 7    | 5        | 30       | 34   |
| Peak Hour Factor          | 0.88     | 0.88     | 0.88  | 0.67  | 0.67     | 0.67      | 0.92 | 0.92     | 0.92 | 0.82     | 0.82     | 0.82 |
| Hourly flow rate (vph)    | 33       | 2        | 3     | 9     | 4        | 7         | 1    | 10       | 8    | 6        | 37       | 41   |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |           |      |          |      |          |          |      |
| Volume Total (vph)        | 39       | 21       | 18    | 84    |          |           |      |          |      |          |          |      |
| Volume Left (vph)         | 33       | 9        | 1     | 6     |          |           |      |          |      |          |          |      |
| Volume Right (vph)        | 3        | 7        | 8     | 41    |          |           |      |          |      |          |          |      |
| Hadj (s)                  | 0.17     | -0.09    | -0.12 | -0.19 |          |           |      |          |      |          |          |      |
| Departure Headway (s)     | 4.3      | 4.1      | 4.0   | 3.9   |          |           |      |          |      |          |          |      |
| Degree Utilization, x     | 0.05     | 0.02     | 0.02  | 0.09  |          |           |      |          |      |          |          |      |
| Capacity (veh/h)          | 813      | 860      | 874   | 914   |          |           |      |          |      |          |          |      |
| Control Delay (s)         | 7.5      | 7.2      | 7.1   | 7.2   |          |           |      |          |      |          |          |      |
| Approach Delay (s)        | 7.5      | 7.2      | 7.1   | 7.2   |          |           |      |          |      |          |          |      |
| Approach LOS              | Α        | Α        | Α     | Α     |          |           |      |          |      |          |          |      |
| Intersection Summary      |          |          |       |       |          |           |      |          |      |          |          |      |
| Delay                     |          |          | 7.3   |       |          |           |      |          |      |          |          |      |
| HCM Level of Service      |          |          | Α     |       |          |           |      |          |      |          |          |      |
| Intersection Capacity Uti | lization |          | 15.5% | - 10  | CU Leve  | el of Ser | vice |          | Α    |          |          |      |
| Analysis Period (min)     |          |          | 15    |       |          |           |      |          |      |          |          |      |
|                           |          |          |       |       |          |           |      |          |      |          |          |      |

|                             | ⋆         | <b>→</b> | <b>←</b> | •    | <b>&gt;</b> | 4          | ✓          |
|-----------------------------|-----------|----------|----------|------|-------------|------------|------------|
| Movement                    | EBL       | EBT      | WBT      | WBR  | SBL         | SBR        | SBR        |
| Lane Configurations         |           | ની       | f)       |      | ¥           |            |            |
| Sign Control                |           | Free     | Free     |      | Stop        |            |            |
| Grade                       |           | 0%       | 0%       |      | 0%          |            |            |
| Volume (veh/h)              | 5         | 104      | 68       | 8    | 15          | 28         | 28         |
| Peak Hour Factor            | 0.72      | 0.72     | 0.85     | 0.85 | 0.92        | 0.92       | 0.92       |
| Hourly flow rate (vph)      | 7         | 144      | 80       | 9    | 16          | 30         | 30         |
| Pedestrians                 |           |          |          |      |             |            |            |
| Lane Width (ft)             |           |          |          |      |             |            |            |
| Walking Speed (ft/s)        |           |          |          |      |             |            |            |
| Percent Blockage            |           |          |          |      |             |            |            |
| Right turn flare (veh)      |           |          |          |      |             |            |            |
| Median type                 |           |          |          |      | None        |            |            |
| Median storage veh)         |           |          |          |      |             |            |            |
| Upstream signal (ft)        |           |          |          |      |             |            |            |
| pX, platoon unblocked       |           |          |          |      |             |            |            |
| vC, conflicting volume      | 89        |          |          |      | 243         | 85         | 85         |
| vC1, stage 1 conf vol       |           |          |          |      |             |            |            |
| vC2, stage 2 conf vol       |           |          |          |      |             |            |            |
| vCu, unblocked vol          | 89        |          |          |      | 243         | 85         |            |
| tC, single (s)              | 4.3       |          |          |      | 6.5         | 6.2        | 6.2        |
| tC, 2 stage (s)             |           |          |          |      |             |            |            |
| tF (s)                      | 2.4       |          |          |      | 3.6         | 3.3        |            |
| p0 queue free %             | 100       |          |          |      | 98          | 97         |            |
| cM capacity (veh/h)         | 1400      |          |          |      | 731         | 969        | 969        |
| Direction, Lane #           | EB 1      | WB 1     | SB 1     |      |             |            |            |
| Volume Total                | 151       | 89       | 47       |      |             |            |            |
| Volume Left                 | 7         | 0        | 16       |      |             |            |            |
| Volume Right                | 0         | 9        | 30       |      |             |            |            |
| cSH                         | 1400      | 1700     | 870      |      |             |            |            |
| Volume to Capacity          | 0.00      | 0.05     | 0.05     |      |             |            |            |
| Queue Length 95th (ft)      | 0         | 0        | 4        |      |             |            |            |
| Control Delay (s)           | 0.4       | 0.0      | 9.4      |      |             |            |            |
| Lane LOS                    | Α         |          | Α        |      |             |            |            |
| Approach Delay (s)          | 0.4       | 0.0      | 9.4      |      |             |            |            |
| Approach LOS                |           |          | Α        |      |             |            |            |
| Intersection Summary        |           |          |          |      |             |            |            |
| Average Delay               |           |          | 1.7      |      |             |            |            |
| Intersection Capacity Ut    | ilization |          | 19.5%    | 10   | CU Leve     | of Service | of Service |
| Analysis Period (min)       |           |          | 15       |      |             | 2. 2330    |            |
| i ii isiyoto i onou (iiiii) |           |          |          |      |             |            |            |

| ₾    | -                                                                                                                                        | •                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ←                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                           | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                |                                |
|------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|
| EBU  | EBT                                                                                                                                      | EBR                                                                                                                                                                                                                                                                | WBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NBL                         | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                            |                                |                                |
| D    | 44                                                                                                                                       | 7                                                                                                                                                                                                                                                                  | ች                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                |                                |
|      |                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1900                        | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |                                |                                |
| 4.0  | 4.0                                                                                                                                      | 4.0                                                                                                                                                                                                                                                                | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0                         | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                            |                                |                                |
| 1.00 | 0.95                                                                                                                                     | 1.00                                                                                                                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |                                |                                |
| 1.00 | 1.00                                                                                                                                     | 0.85                                                                                                                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                        | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |                                |                                |
| 0.95 | 1.00                                                                                                                                     | 1.00                                                                                                                                                                                                                                                               | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.95                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |                                |                                |
| 1770 | 3471                                                                                                                                     | 1553                                                                                                                                                                                                                                                               | 1736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1583                        | 1495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |                                |                                |
| 0.95 | 1.00                                                                                                                                     | 1.00                                                                                                                                                                                                                                                               | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.95                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |                                |                                |
| 1770 | 3471                                                                                                                                     | 1553                                                                                                                                                                                                                                                               | 1736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1583                        | 1495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |                                |                                |
| 1    | 512                                                                                                                                      | 51                                                                                                                                                                                                                                                                 | 347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                          | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                            |                                |                                |
| 0.86 | 0.86                                                                                                                                     | 0.86                                                                                                                                                                                                                                                               | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.76                        | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |                                |                                |
| 1    | 595                                                                                                                                      | 59                                                                                                                                                                                                                                                                 | 381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66                          | 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                            |                                |                                |
| 0    | 0                                                                                                                                        | 36                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                           | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                            |                                |                                |
| 1    | 595                                                                                                                                      | 23                                                                                                                                                                                                                                                                 | 381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66                          | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |                                |                                |
| 2%   | 4%                                                                                                                                       | 4%                                                                                                                                                                                                                                                                 | 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14%                         | 8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |                                |                                |
|      |                                                                                                                                          |                                                                                                                                                                                                                                                                    | Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |                                |                                |
|      | 6                                                                                                                                        |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      |                                                                                                                                          | 6                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                            |                                |                                |
| 0.4  | 25.3                                                                                                                                     |                                                                                                                                                                                                                                                                    | 22.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.4                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      |                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      |                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      |                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      |                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      |                                                                                                                                          |                                                                                                                                                                                                                                                                    | 572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      |                                                                                                                                          | 000                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                            |                                |                                |
| 0.00 | 00117                                                                                                                                    | 0.01                                                                                                                                                                                                                                                               | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |                                |                                |
| 0.04 | 0.45                                                                                                                                     |                                                                                                                                                                                                                                                                    | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.37                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      |                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      |                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      |                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      |                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      |                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      |                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      | В                                                                                                                                        |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      |                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
| elay |                                                                                                                                          | 15.0                                                                                                                                                                                                                                                               | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ICM Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vel of Se                   | ervice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | В                                                                                          |                                |                                |
| •    |                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                          |                                |                                |
|      |                                                                                                                                          |                                                                                                                                                                                                                                                                    | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sum of I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ost time                    | (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.0                                                                                       |                                |                                |
|      |                                                                                                                                          |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      |                                                                                                                                          | 15                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                |                                |
|      | EBU 1900 4.0 1.00 1.00 0.95 1770 0.95 1770 1 0.86 1 0 1 2% Prot 1 0.4 1.1 0.02 4.7 1.0 28 0.00 0.04 33.4 1.00 0.2 33.6 C elay y ratio s) | EBU EBT  1900 1900 4.0 4.0 1.00 0.95 1.00 1.00 0.95 1.00 1770 3471 0.95 1.00 1770 3471 1 512 0.86 0.86 1 595 0 0 1 595 2% 4%  Prot 1 6  0.4 25.3 1.1 26.4 0.02 0.38 4.7 5.1 1.0 4.9 28 1330 0.00 c0.17  0.04 0.45 33.4 15.8 1.00 1.00 0.2 0.5 33.6 16.3 C B 16.1 B | ## BBU BBT BBR  ## 7 7  1900 1900 1900  4.0 4.0 4.0 4.0  1.00 0.95 1.00  1.00 1.00 0.85  0.95 1.00 1.00  1770 3471 1553  0.95 1.00 1.00  1770 3471 1553  1 512 51  0.86 0.86 0.86  1 595 59  0 0 36  1 595 23  2% 4% 4%  Prot Perm  1 6  0.4 25.3 25.3  1.1 26.4 26.4  0.02 0.38 0.38  4.7 5.1 5.1  1.0 4.9 4.9  28 1330 595  0.00 c0.17  0.01  0.04 0.45 0.04  33.4 15.8 13.3  1.00 1.00 1.00  0.2 0.5 0.1  33.6 16.3 13.4  C B B  16.1  B  elay 15.0  y ratio 0.52  s) 68.9  llization 46.7% | ## FINAL COLORS   FEBR   FEBR | BBU   BBT   BBR   WBL   WBT | BBU   BBT   BBR   WBL   WBT   NBL   1900   1900   1900   1900   1900   1900   1900   1900   1.00   1.00   0.95   1.00   1.00   0.95   1.00   1.00   0.95   1.00   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   0.95   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   0.20   0.5   0.1   2.3   0.2   0.5   0.5   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52   0.50   0.52 | BBU   BBT   BBR   WBL   WBT   NBL   NBR     1900   1900   1900   1900   1900   1900   1900 | EBU EBT EBR WBL WBT NBL NBR  1 | EBU EBT EBR WBL WBT NBL NBR  1 |

|                          | $\rightarrow$ | •    | •     | •     | 4         | <b>/</b>      |      |   |
|--------------------------|---------------|------|-------|-------|-----------|---------------|------|---|
| Movement                 | EBT           | EBR  | WBL   | WBT   | NBL       | NBR           |      |   |
| Lane Configurations      | 1>            |      |       | 4     | ¥         |               |      |   |
| Ideal Flow (vphpl)       | 1900          | 1900 | 1900  | 1900  | 1900      | 1900          |      |   |
| Total Lost time (s)      | 4.0           |      |       | 4.0   | 4.0       |               |      |   |
| Lane Util. Factor        | 1.00          |      |       | 1.00  | 1.00      |               |      |   |
| Frt                      | 0.97          |      |       | 1.00  | 0.91      |               |      |   |
| Flt Protected            | 1.00          |      |       | 0.99  | 0.98      |               |      |   |
| Satd. Flow (prot)        | 1781          |      |       | 1840  | 1630      |               |      |   |
| Flt Permitted            | 1.00          |      |       | 0.99  | 0.98      |               |      |   |
| Satd. Flow (perm)        | 1781          |      |       | 1840  | 1630      |               |      |   |
| Volume (vph)             | 376           | 103  | 170   | 508   | 28        | 51            |      |   |
| Peak-hour factor, PHF    | 0.82          | 0.82 | 0.85  | 0.85  | 0.76      | 0.76          |      |   |
| Adj. Flow (vph)          | 459           | 126  | 200   | 598   | 37        | 67            |      |   |
| RTOR Reduction (vph)     | 6             | 0    | 0     | 0     | 47        | 0             |      |   |
| Lane Group Flow (vph)    | 579           | 0    | 0     | 798   | 57        | 0             |      |   |
| Heavy Vehicles (%)       | 4%            | 2%   | 2%    | 2%    | 2%        | 6%            |      |   |
| Turn Type                | - / -         |      | Split |       |           | 5.11          |      |   |
| Protected Phases         | 2             |      | 1     | 1     | 3         |               |      |   |
| Permitted Phases         | _             |      | •     | '     |           |               |      |   |
| Actuated Green, G (s)    | 47.1          |      |       | 50.5  | 8.8       |               |      |   |
| Effective Green, g (s)   | 48.1          |      |       | 51.3  | 8.3       |               |      |   |
| Actuated g/C Ratio       | 0.38          |      |       | 0.41  | 0.07      |               |      |   |
| Clearance Time (s)       | 5.0           |      |       | 4.8   | 3.5       |               |      |   |
| Vehicle Extension (s)    | 6.8           |      |       | 6.3   | 2.0       |               |      |   |
| Lane Grp Cap (vph)       | 683           |      |       | 753   | 108       |               |      | Ī |
| v/s Ratio Prot           | c0.32         |      |       | c0.43 | c0.04     |               |      |   |
| v/s Ratio Perm           | 00.02         |      |       | 00.10 | 00.01     |               |      |   |
| v/c Ratio                | 0.85          |      |       | 1.06  | 0.53      |               |      |   |
| Uniform Delay, d1        | 35.3          |      |       | 37.1  | 56.7      |               |      |   |
| Progression Factor       | 1.00          |      |       | 1.00  | 1.00      |               |      |   |
| Incremental Delay, d2    | 11.3          |      |       | 49.8  | 2.5       |               |      |   |
| Delay (s)                | 46.6          |      |       | 86.8  | 59.2      |               |      |   |
| Level of Service         | D             |      |       | F     | E         |               |      |   |
| Approach Delay (s)       | 46.6          |      |       | 86.8  | 59.2      |               |      |   |
| Approach LOS             | D             |      |       | F     | E         |               |      |   |
| Intersection Summary     |               |      |       |       |           |               |      |   |
| HCM Average Control D    | elay          |      | 69.1  | H     | ICM Lev   | el of Service | Е    |   |
| HCM Volume to Capacit    |               |      | 0.92  |       |           |               |      |   |
| Actuated Cycle Length (  | •             |      | 125.4 | 5     | Sum of Id | ost time (s)  | 17.7 |   |
| Intersection Capacity Ut |               |      | 76.9% |       |           | of Service    | D    |   |
| Analysis Period (min)    |               |      | 15    |       |           |               |      |   |
| 0 111 11                 |               |      |       |       |           |               |      |   |

|                              | -         | •    | •     | •        | •       | ~             |   |  |
|------------------------------|-----------|------|-------|----------|---------|---------------|---|--|
| Movement                     | EBT       | EBR  | WBL   | WBT      | NBL     | NBR           |   |  |
| Lane Configurations          | <b>†</b>  | 7    | ሻ     | <b>†</b> | ች       | 1             |   |  |
| Ideal Flow (vphpl)           | 1900      | 1900 | 1900  | 1900     | 1900    | 1900          |   |  |
| Total Lost time (s)          | 4.0       | 4.0  | 4.0   | 4.0      | 4.0     | 4.0           |   |  |
| Lane Util. Factor            | 1.00      | 1.00 | 1.00  | 1.00     | 1.00    | 1.00          |   |  |
| Frt                          | 1.00      | 0.85 | 1.00  | 1.00     | 1.00    | 0.85          |   |  |
| Flt Protected                | 1.00      | 1.00 | 0.95  | 1.00     | 0.95    | 1.00          |   |  |
| Satd. Flow (prot)            | 1863      | 1583 | 1770  | 1863     | 1770    | 1583          |   |  |
| Flt Permitted                | 1.00      | 1.00 | 0.95  | 1.00     | 0.95    | 1.00          |   |  |
| Satd. Flow (perm)            | 1863      | 1583 | 1770  | 1863     | 1770    | 1583          |   |  |
| Volume (vph)                 | 189       | 39   | 408   | 730      | 35      | 188           |   |  |
| Peak-hour factor, PHF        | 0.93      | 0.93 | 0.97  | 0.97     | 0.81    | 0.81          |   |  |
| Adj. Flow (vph)              | 203       | 42   | 421   | 753      | 43      | 232           |   |  |
| RTOR Reduction (vph)         | 0         | 16   | 0     | 0        | 0       | 181           |   |  |
| Lane Group Flow (vph)        | 203       | 26   | 421   | 753      | 43      | 51            |   |  |
| Turn Type                    |           | Perm | Prot  |          | ŗ       | m+ov          |   |  |
| Protected Phases             | 2         |      | 1     | 6        | 4       | 1             |   |  |
| Permitted Phases             |           | 2    |       |          |         | 4             |   |  |
| Actuated Green, G (s)        | 43.5      | 43.5 | 12.0  | 59.1     | 4.5     | 16.5          |   |  |
| Effective Green, g (s)       | 45.5      | 45.5 | 11.6  | 61.1     | 4.8     | 16.4          |   |  |
| Actuated g/C Ratio           | 0.62      | 0.62 | 0.16  | 0.83     | 0.06    | 0.22          |   |  |
| Clearance Time (s)           | 6.0       | 6.0  | 3.6   | 6.0      | 4.3     | 3.6           |   |  |
| Vehicle Extension (s)        | 2.0       | 2.0  | 1.0   | 2.0      | 1.0     | 1.0           |   |  |
| Lane Grp Cap (vph)           | 1147      | 975  | 278   | 1540     | 115     | 437           |   |  |
| v/s Ratio Prot               | 0.11      |      | c0.24 | c0.40    | c0.02   | 0.02          |   |  |
| v/s Ratio Perm               |           | 0.02 |       |          |         | 0.01          |   |  |
| v/c Ratio                    | 0.18      | 0.03 | 1.51  | 0.49     | 0.37    | 0.12          |   |  |
| Uniform Delay, d1            | 6.1       | 5.5  | 31.2  | 1.9      | 33.1    | 23.0          |   |  |
| Progression Factor           | 1.00      | 1.00 | 1.00  | 1.00     | 1.00    | 1.00          |   |  |
| Incremental Delay, d2        | 0.3       | 0.1  | 249.2 | 1.1      | 0.7     | 0.0           |   |  |
| Delay (s)                    | 6.5       | 5.6  | 280.3 | 3.0      | 33.9    | 23.0          |   |  |
| Level of Service             | Α         | Α    | F     | A        | С       | С             |   |  |
| Approach Delay (s)           | 6.3       |      |       | 102.4    | 24.7    |               |   |  |
| Approach LOS                 | Α         |      |       | F        | С       |               |   |  |
| Intersection Summary         |           |      |       |          |         |               |   |  |
| HCM Average Control D        | elay      |      | 75.9  | F        | ICM Lev | el of Service | ) |  |
| <b>HCM Volume to Capacit</b> | y ratio   |      | 0.65  |          |         |               |   |  |
| Actuated Cycle Length (      |           |      | 73.9  |          |         | ost time (s)  |   |  |
| Intersection Capacity Ut     | ilization |      | 48.4% | Į(       | CU Leve | of Service    |   |  |
| Analysis Period (min)        |           |      | 15    |          |         |               |   |  |
| c Critical Lane Group        |           |      |       |          |         |               |   |  |

|                          | ۶         | <b>→</b> | •     | •     | <b>←</b> | •         | 1      | <b>†</b> | <i>&gt;</i> | <b>/</b> | ţ     | 4    |
|--------------------------|-----------|----------|-------|-------|----------|-----------|--------|----------|-------------|----------|-------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR         | SBL      | SBT   | SBR  |
| Lane Configurations      | 44        | <b>^</b> | 7     | 44    | 44       | 7         | ሻሻ     | ተተተ      | 7           | ሻሻ       | ተተተ   | 7    |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900        | 1900     | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0         | 4.0      | 4.0   | 4.0  |
| Lane Util. Factor        | 0.97      | 0.95     | 1.00  | 0.97  | 0.95     | 1.00      | 0.97   | 0.91     | 1.00        | 0.97     | 0.91  | 1.00 |
| Frt                      | 1.00      | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85        | 1.00     | 1.00  | 0.85 |
| Flt Protected            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00  | 1.00 |
| Satd. Flow (prot)        | 3433      | 3539     | 1583  | 3433  | 3539     | 1583      | 3433   | 5085     | 1583        | 3433     | 5085  | 1583 |
| Flt Permitted            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00  | 1.00 |
| Satd. Flow (perm)        | 3433      | 3539     | 1583  | 3433  | 3539     | 1583      | 3433   | 5085     | 1583        | 3433     | 5085  | 1583 |
| Volume (vph)             | 250       | 134      | 121   | 429   | 391      | 348       | 165    | 463      | 84          | 110      | 991   | 295  |
| Peak-hour factor, PHF    | 0.92      | 0.92     | 0.92  | 0.95  | 0.95     | 0.95      | 0.93   | 0.93     | 0.93        | 0.95     | 0.95  | 0.95 |
| Adj. Flow (vph)          | 272       | 146      | 132   | 452   | 412      | 366       | 177    | 498      | 90          | 116      | 1043  | 311  |
| RTOR Reduction (vph)     | 0         | 0        | 111   | 0     | 0        | 256       | 0      | 0        | 53          | 0        | 0     | 140  |
| Lane Group Flow (vph)    | 272       | 146      | 21    | 452   | 412      | 110       | 177    | 498      | 37          | 116      | 1043  | 171  |
| Turn Type                | Prot      |          | Perm  | Prot  |          | Perm      | Prot   |          | Perm        | Prot     |       | Perm |
| Protected Phases         | 7         | 4        |       | 3     | 8        |           | 5      | 2        |             | 1        | 6     |      |
| Permitted Phases         |           |          | 4     |       |          | 8         |        |          | 2           |          |       | 6    |
| Actuated Green, G (s)    | 12.7      | 17.0     | 17.0  | 25.5  | 29.7     | 29.7      | 9.4    | 47.3     | 47.3        | 6.3      | 43.8  | 43.8 |
| Effective Green, g (s)   | 14.2      | 18.6     | 18.6  | 27.0  | 31.4     | 31.4      | 10.9   | 48.8     | 48.8        | 7.8      | 45.7  | 45.7 |
| Actuated g/C Ratio       | 0.12      | 0.16     | 0.16  | 0.23  | 0.27     | 0.27      | 0.09   | 0.41     | 0.41        | 0.07     | 0.39  | 0.39 |
| Clearance Time (s)       | 5.5       | 5.6      | 5.6   | 5.5   | 5.7      | 5.7       | 5.5    | 5.5      | 5.5         | 5.5      | 5.9   | 5.9  |
| Vehicle Extension (s)    | 1.0       | 5.0      | 5.0   | 1.0   | 5.9      | 5.9       | 1.0    | 5.4      | 5.4         | 1.0      | 5.4   | 5.4  |
| Lane Grp Cap (vph)       | 412       | 557      | 249   | 784   | 940      | 421       | 317    | 2099     | 654         | 227      | 1966  | 612  |
| v/s Ratio Prot           | c0.08     | 0.04     |       | c0.13 | c0.12    |           | c0.05  | c0.10    |             | 0.03     | c0.21 |      |
| v/s Ratio Perm           |           |          | 0.01  |       |          | 0.07      |        |          | 0.02        |          |       | 0.11 |
| v/c Ratio                | 0.66      | 0.26     | 0.08  | 0.58  | 0.44     | 0.26      | 0.56   | 0.24     | 0.06        | 0.51     | 0.53  | 0.28 |
| Uniform Delay, d1        | 49.7      | 43.8     | 42.5  | 40.5  | 36.1     | 34.2      | 51.3   | 22.6     | 20.9        | 53.4     | 28.0  | 24.9 |
| Progression Factor       | 1.00      | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00     | 1.00  | 1.00 |
| Incremental Delay, d2    | 3.1       | 0.5      | 0.3   | 0.6   | 0.9      | 0.9       | 1.2    | 0.1      | 0.1         | 8.0      | 0.6   | 0.6  |
| Delay (s)                | 52.8      | 44.3     | 42.8  | 41.2  | 37.0     | 35.1      | 52.6   | 22.7     | 21.0        | 54.2     | 28.5  | 25.5 |
| Level of Service         | D         | D        | D     | D     | D        | D         | D      | С        | С           | D        | С     | С    |
| Approach Delay (s)       |           | 48.1     |       |       | 38.0     |           |        | 29.4     |             |          | 29.9  |      |
| Approach LOS             |           | D        |       |       | D        |           |        | С        |             |          | С     |      |
| Intersection Summary     |           |          |       |       |          |           |        |          |             |          |       |      |
| HCM Average Control D    | •         |          | 34.8  | H     | HCM Le   | vel of Se | ervice |          | С           |          |       |      |
| HCM Volume to Capacit    |           |          | 0.54  |       |          |           |        |          |             |          |       |      |
| Actuated Cycle Length (  |           |          | 118.2 |       | Sum of I |           |        |          | 16.0        |          |       |      |
| Intersection Capacity Ut | ilization |          | 55.3% | I     | CU Lev   | el of Sei | vice   |          | В           |          |       |      |
| Analysis Period (min)    |           |          | 15    |       |          |           |        |          |             |          |       |      |
| c Critical Lane Group    |           |          |       |       |          |           |        |          |             |          |       |      |

|                          | ၨ         | <b>→</b> | •     | •    | <b>←</b> | •        | •      | <b>†</b> | /    | <b>&gt;</b> | ļ     | 4    |
|--------------------------|-----------|----------|-------|------|----------|----------|--------|----------|------|-------------|-------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL  | WBT      | WBR      | NBL    | NBT      | NBR  | SBL         | SBT   | SBR  |
| Lane Configurations      | ሻሻ        | <b>^</b> | 7     | 44   | <b>^</b> | 7        | ሻሻ     | ተተተ      | 7    | 44          | ተተኈ   |      |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900 | 1900     | 1900     | 1900   | 1900     | 1900 | 1900        | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   | 4.0  | 4.0      | 4.0      | 4.0    | 4.0      | 4.0  | 4.0         | 4.0   |      |
| Lane Util. Factor        | 0.97      | 0.95     | 1.00  | 0.97 | 0.95     | 1.00     | 0.97   | 0.91     | 1.00 | 0.97        | 0.91  |      |
| Frt                      | 1.00      | 1.00     | 0.85  | 1.00 | 1.00     | 0.85     | 1.00   | 1.00     | 0.85 | 1.00        | 0.97  |      |
| Flt Protected            | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00     | 0.95   | 1.00     | 1.00 | 0.95        | 1.00  |      |
| Satd. Flow (prot)        | 3433      | 3539     | 1583  | 3433 | 3539     | 1583     | 3433   | 5085     | 1583 | 3433        | 4937  |      |
| Flt Permitted            | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00     | 0.95   | 1.00     | 1.00 | 0.95        | 1.00  |      |
| Satd. Flow (perm)        | 3433      | 3539     | 1583  | 3433 | 3539     | 1583     | 3433   | 5085     | 1583 | 3433        | 4937  |      |
| Volume (vph)             | 164       | 308      | 178   | 266  | 589      | 47       | 179    | 395      | 46   | 67          | 1149  | 277  |
| Peak-hour factor, PHF    | 0.92      | 0.92     | 0.92  | 0.93 | 0.93     | 0.93     | 0.92   | 0.92     | 0.92 | 0.95        | 0.95  | 0.95 |
| Growth Factor (vph)      | 300%      | 100%     | 100%  | 100% | 100%     | 100%     | 100%   | 100%     | 100% | 100%        | 100%  | 100% |
| Adj. Flow (vph)          | 535       | 335      | 193   | 286  | 633      | 51       | 195    | 429      | 50   | 71          | 1209  | 292  |
| RTOR Reduction (vph)     | 0         | 0        | 135   | 0    | 0        | 33       | 0      | 0        | 28   | 0           | 17    | 0    |
| Lane Group Flow (vph)    | 535       | 335      | 58    | 286  | 633      | 18       | 195    | 429      | 22   | 71          | 1484  | 0    |
| Turn Type                | Prot      |          | Perm  | Prot |          | Perm     | Prot   |          | Perm | Prot        |       |      |
| Protected Phases         | 7         | 4        |       | 3    | 8        |          | 5      | 2        |      | 1           | 6     |      |
| Permitted Phases         |           |          | 4     |      |          | 8        |        |          | 2    |             |       |      |
| Actuated Green, G (s)    | 25.6      | 45.5     | 45.5  | 16.3 | 36.4     | 36.4     | 12.2   | 68.4     | 68.4 | 5.6         | 61.8  |      |
| Effective Green, g (s)   | 27.1      | 47.2     | 47.2  | 17.8 | 37.9     | 37.9     | 13.7   | 70.0     | 70.0 | 7.1         | 63.4  |      |
| Actuated g/C Ratio       | 0.17      | 0.30     | 0.30  | 0.11 | 0.24     | 0.24     | 0.09   | 0.44     | 0.44 | 0.04        | 0.40  |      |
| Clearance Time (s)       | 5.5       | 5.7      | 5.7   | 5.5  | 5.5      | 5.5      | 5.5    | 5.6      | 5.6  | 5.5         | 5.6   |      |
| Vehicle Extension (s)    | 1.0       | 4.9      | 4.9   | 1.0  | 4.9      | 4.9      | 1.0    | 4.9      | 4.9  | 1.0         | 4.9   |      |
| Lane Grp Cap (vph)       | 588       | 1057     | 473   | 387  | 848      | 379      | 297    | 2251     | 701  | 154         | 1980  |      |
| v/s Ratio Prot           | c0.16     | 0.09     |       | 0.08 | c0.18    |          | c0.06  | 0.08     |      | 0.02        | c0.30 |      |
| v/s Ratio Perm           |           |          | 0.04  |      |          | 0.01     |        |          | 0.01 |             |       |      |
| v/c Ratio                | 0.91      | 0.32     | 0.12  | 0.74 | 0.75     | 0.05     | 0.66   | 0.19     | 0.03 | 0.46        | 0.75  |      |
| Uniform Delay, d1        | 64.3      | 43.0     | 40.4  | 67.9 | 55.7     | 46.2     | 69.9   | 26.8     | 24.9 | 73.6        | 40.5  |      |
| Progression Factor       | 1.00      | 1.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00   | 1.00     | 1.00 | 1.00        | 1.00  |      |
| Incremental Delay, d2    | 17.7      | 0.4      | 0.2   | 6.3  | 4.3      | 0.1      | 4.0    | 0.1      | 0.0  | 0.8         | 1.9   |      |
| Delay (s)                | 82.0      | 43.3     | 40.6  | 74.2 | 59.9     | 46.3     | 73.9   | 26.9     | 24.9 | 74.4        | 42.4  |      |
| Level of Service         | F         | D        | D     | Е    | Е        | D        | Е      | С        | С    | Е           | D     |      |
| Approach Delay (s)       |           | 62.3     |       |      | 63.4     |          |        | 40.3     |      |             | 43.9  |      |
| Approach LOS             |           | E        |       |      | E        |          |        | D        |      |             | D     |      |
| Intersection Summary     |           |          |       |      |          |          |        |          |      |             |       |      |
| HCM Average Control D    | •         |          | 52.3  | H    | HCM Le   | vel of S | ervice |          | D    |             |       |      |
| HCM Volume to Capaci     | •         |          | 0.77  |      |          |          |        |          |      |             |       |      |
| Actuated Cycle Length (  |           |          | 158.1 |      | Sum of I |          |        |          | 16.0 |             |       |      |
| Intersection Capacity Ut | ilization |          | 77.1% | I.   | CU Lev   | el of Se | rvice  |          | D    |             |       |      |
| Analysis Period (min)    |           |          | 15    |      |          |          |        |          |      |             |       |      |

c Critical Lane Group

|                              | ۶         | <b>→</b> | $\rightarrow$ | •    | <b>←</b>   | •         | 4      | <b>†</b> | /    | <b>&gt;</b> | ļ          | 4    |
|------------------------------|-----------|----------|---------------|------|------------|-----------|--------|----------|------|-------------|------------|------|
| Movement                     | EBL       | EBT      | EBR           | WBL  | WBT        | WBR       | NBL    | NBT      | NBR  | SBL         | SBT        | SBR  |
| Lane Configurations          | 7         | <b>^</b> | 7             | ¥    | <b>†</b> † | 7         | 44     | <b>^</b> | 7    | ,           | <b>十</b> 十 | 7    |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900          | 1900 | 1900       | 1900      | 1900   | 1900     | 1900 | 1900        | 1900       | 1900 |
| Total Lost time (s)          | 4.0       | 4.0      | 4.0           | 4.0  | 4.0        | 4.0       | 4.0    | 4.0      | 4.0  | 4.0         | 4.0        | 4.0  |
| Lane Util. Factor            | 1.00      | 0.95     | 1.00          | 1.00 | 0.95       | 1.00      | 0.97   | 0.95     | 1.00 | 1.00        | 0.95       | 1.00 |
| Frt                          | 1.00      | 1.00     | 0.85          | 1.00 | 1.00       | 0.85      | 1.00   | 1.00     | 0.85 | 1.00        | 1.00       | 0.85 |
| Flt Protected                | 0.95      | 1.00     | 1.00          | 0.95 | 1.00       | 1.00      | 0.95   | 1.00     | 1.00 | 0.95        | 1.00       | 1.00 |
| Satd. Flow (prot)            | 1770      | 3539     | 1583          | 1770 | 3539       | 1583      | 3433   | 3539     | 1583 | 1770        | 3539       | 1583 |
| Flt Permitted                | 0.95      | 1.00     | 1.00          | 0.95 | 1.00       | 1.00      | 0.95   | 1.00     | 1.00 | 0.95        | 1.00       | 1.00 |
| Satd. Flow (perm)            | 1770      | 3539     | 1583          | 1770 | 3539       | 1583      | 3433   | 3539     | 1583 | 1770        | 3539       | 1583 |
| Volume (vph)                 | 123       | 176      | 592           | 85   | 109        | 48        | 219    | 686      | 43   | 57          | 1202       | 107  |
| Peak-hour factor, PHF        | 0.91      | 0.91     | 0.91          | 0.74 | 0.74       | 0.74      | 0.88   | 0.88     | 0.88 | 0.99        | 0.99       | 0.99 |
| Adj. Flow (vph)              | 135       | 193      | 651           | 115  | 147        | 65        | 249    | 780      | 49   | 58          | 1214       | 108  |
| RTOR Reduction (vph)         | 0         | 0        | 181           | 0    | 0          | 47        | 0      | 0        | 28   | 0           | 0          | 53   |
| Lane Group Flow (vph)        | 135       | 193      | 470           | 115  | 147        | 18        | 249    | 780      | 21   | 58          | 1214       | 55   |
| Turn Type                    | Prot      |          | Perm          | Prot |            | Perm      | Prot   |          | Perm | Prot        |            | Perm |
| Protected Phases             | 7         | 4        |               | 3    | 8          |           | 5      | 2        |      | 1           | 6          |      |
| Permitted Phases             |           |          | 4             |      |            | 8         |        |          | 2    |             |            | 6    |
| Actuated Green, G (s)        | 13.1      | 33.0     | 33.0          | 10.7 | 31.6       | 31.6      | 12.5   | 49.0     | 49.0 | 7.3         | 43.8       | 43.8 |
| Effective Green, g (s)       | 13.1      | 35.0     | 35.0          | 10.7 | 32.6       | 32.6      | 12.5   | 51.0     | 51.0 | 7.3         | 45.8       | 45.8 |
| Actuated g/C Ratio           | 0.11      | 0.29     | 0.29          | 0.09 | 0.27       | 0.27      | 0.10   | 0.42     | 0.42 | 0.06        | 0.38       | 0.38 |
| Clearance Time (s)           | 4.0       | 6.0      | 6.0           | 4.0  | 5.0        | 5.0       | 4.0    | 6.0      | 6.0  | 4.0         | 6.0        | 6.0  |
| Vehicle Extension (s)        | 2.0       | 4.5      | 4.5           | 2.0  | 5.0        | 5.0       | 2.0    | 3.4      | 3.4  | 2.0         | 4.1        | 4.1  |
| Lane Grp Cap (vph)           | 193       | 1032     | 462           | 158  | 961        | 430       | 358    | 1504     | 673  | 108         | 1351       | 604  |
| v/s Ratio Prot               | c0.08     | 0.05     |               | 0.06 | 0.04       |           | c0.07  | 0.22     |      | 0.03        | c0.34      |      |
| v/s Ratio Perm               |           |          | c0.30         |      |            | 0.01      |        |          | 0.01 |             |            | 0.03 |
| v/c Ratio                    | 0.70      | 0.19     | 1.02          | 0.73 | 0.15       | 0.04      | 0.70   | 0.52     | 0.03 | 0.54        | 0.90       | 0.09 |
| Uniform Delay, d1            | 51.6      | 31.8     | 42.5          | 53.2 | 33.2       | 32.2      | 51.9   | 25.4     | 20.1 | 54.7        | 34.9       | 23.8 |
| Progression Factor           | 1.00      | 1.00     | 1.00          | 1.00 | 1.00       | 1.00      | 1.00   | 1.00     | 1.00 | 1.00        | 1.00       | 1.00 |
| Incremental Delay, d2        | 8.6       | 0.2      | 46.1          | 13.2 | 0.2        | 0.1       | 4.7    | 1.3      | 0.1  | 2.6         | 9.7        | 0.3  |
| Delay (s)                    | 60.2      | 32.0     | 88.6          | 66.4 | 33.4       | 32.3      | 56.6   | 26.7     | 20.2 | 57.3        | 44.6       | 24.1 |
| Level of Service             | Е         | С        | F             | Е    | С          | С         | Е      | С        | С    | Е           | D          | С    |
| Approach Delay (s)           |           | 73.5     |               |      | 44.8       |           |        | 33.3     |      |             | 43.6       |      |
| Approach LOS                 |           | E        |               |      | D          |           |        | С        |      |             | D          |      |
| Intersection Summary         |           |          |               |      |            |           |        |          |      |             |            |      |
| HCM Average Control D        | elay (    |          | 48.5          | F    | ICM Le     | vel of Se | ervice |          | D    |             |            |      |
| <b>HCM Volume to Capacit</b> | ty ratio  |          | 0.87          |      |            |           |        |          |      |             |            |      |
| Actuated Cycle Length (      |           |          | 120.0         |      |            | ost time  |        |          | 12.0 |             |            |      |
| Intersection Capacity Ut     | ilization |          | 84.6%         | [(   | CU Leve    | el of Sei | vice   |          | Е    |             |            |      |
| Analysis Period (min)        |           |          | 15            |      |            |           |        |          |      |             |            |      |
| c Critical Lane Group        |           |          |               |      |            |           |        |          |      |             |            |      |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •        | •      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ        | 4    |
|---------------------------|----------|----------|-------|-------|----------|----------|--------|----------|-------------|-------------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR      | NBL    | NBT      | NBR         | SBL         | SBT      | SBR  |
| Lane Configurations       |          | ર્ન      | 7     | ሻ     | ર્ન      | 7        | ሻ      | <b>^</b> | 7           | ሻ           | <b>^</b> | 7    |
| Ideal Flow (vphpl)        | 1900     | 1900     | 1900  | 1900  | 1900     | 1900     | 1900   | 1900     | 1900        | 1900        | 1900     | 1900 |
| Total Lost time (s)       |          | 4.0      | 4.0   | 4.0   | 4.0      | 4.0      | 4.0    | 4.0      | 4.0         | 4.0         | 4.0      | 4.0  |
| Lane Util. Factor         |          | 1.00     | 1.00  | 0.95  | 0.95     | 1.00     | 1.00   | 0.95     | 1.00        | 1.00        | 0.95     | 1.00 |
| Frt                       |          | 1.00     | 0.85  | 1.00  | 1.00     | 0.85     | 1.00   | 1.00     | 0.85        | 1.00        | 1.00     | 0.85 |
| Flt Protected             |          | 0.98     | 1.00  | 0.95  | 0.96     | 1.00     | 0.95   | 1.00     | 1.00        | 0.95        | 1.00     | 1.00 |
| Satd. Flow (prot)         |          | 1700     | 1292  | 1603  | 1594     | 1583     | 1770   | 3438     | 1538        | 1687        | 3195     | 1583 |
| Flt Permitted             |          | 0.98     | 1.00  | 0.95  | 0.96     | 1.00     | 0.95   | 1.00     | 1.00        | 0.95        | 1.00     | 1.00 |
| Satd. Flow (perm)         |          | 1700     | 1292  | 1603  | 1594     | 1583     | 1770   | 3438     | 1538        | 1687        | 3195     | 1583 |
| Volume (vph)              | 10       | 13       | 16    | 178   | 10       | 38       | 7      | 1922     | 564         | 44          | 1009     | 1    |
| Peak-hour factor, PHF     | 0.76     | 0.76     | 0.76  | 0.83  | 0.83     | 0.83     | 0.95   | 0.95     | 0.95        | 0.93        | 0.93     | 0.93 |
| Adj. Flow (vph)           | 13       | 17       | 21    | 214   | 12       | 46       | 7      | 2023     | 594         | 47          | 1085     | 1    |
| RTOR Reduction (vph)      | 0        | 0        | 20    | 0     | 0        | 41       | 0      | 0        | 102         | 0           | 0        | 0    |
| Lane Group Flow (vph)     | 0        | 30       | 1     | 117   | 109      | 5        | 7      | 2023     | 492         | 47          | 1085     | 1    |
| Heavy Vehicles (%)        | 2%       | 15%      | 25%   | 7%    | 20%      | 2%       | 2%     | 5%       | 5%          | 7%          | 13%      | 2%   |
| Turn Type                 | Split    |          | Perm  | Split |          | Perm     | Prot   |          | Perm        | Prot        |          | Perm |
| Protected Phases          | 7        | 7        |       | 8     | 8        |          | 5      | 2        |             | 1           | 6        |      |
| Permitted Phases          |          |          | 7     |       |          | 8        |        |          | 2           |             |          | 6    |
| Actuated Green, G (s)     |          | 5.0      | 5.0   | 11.7  | 11.7     | 11.7     | 1.0    | 76.9     | 76.9        | 6.6         | 82.5     | 82.5 |
| Effective Green, g (s)    |          | 7.0      | 7.0   | 13.7  | 13.7     | 13.7     | 0.5    | 80.0     | 80.0        | 6.1         | 85.6     | 85.6 |
| Actuated g/C Ratio        |          | 0.06     | 0.06  | 0.11  | 0.11     | 0.11     | 0.00   | 0.65     | 0.65        | 0.05        | 0.70     | 0.70 |
| Clearance Time (s)        |          | 6.0      | 6.0   | 6.0   | 6.0      | 6.0      | 3.5    | 7.1      | 7.1         | 3.5         | 7.1      | 7.1  |
| Vehicle Extension (s)     |          | 1.0      | 1.0   | 1.0   | 1.0      | 1.0      | 2.0    | 2.0      | 2.0         | 2.0         | 2.0      | 2.0  |
| Lane Grp Cap (vph)        |          | 97       | 74    | 179   | 178      | 177      | 7      | 2240     | 1002        | 84          | 2227     | 1103 |
| v/s Ratio Prot            |          | c0.02    |       | c0.07 | 0.07     |          | 0.00   | c0.59    |             | c0.03       | 0.34     |      |
| v/s Ratio Perm            |          |          | 0.00  |       |          | 0.00     |        |          | 0.32        |             |          | 0.00 |
| v/c Ratio                 |          | 0.31     | 0.02  | 0.65  | 0.61     | 0.03     | 1.00   | 0.90     | 0.49        | 0.56        | 0.49     | 0.00 |
| Uniform Delay, d1         |          | 55.6     | 54.6  | 52.3  | 52.0     | 48.6     | 61.1   | 18.1     | 11.0        | 57.0        | 8.5      | 5.6  |
| Progression Factor        |          | 1.00     | 1.00  | 1.00  | 1.00     | 1.00     | 1.00   | 1.00     | 1.00        | 1.00        | 1.00     | 1.00 |
| Incremental Delay, d2     |          | 0.7      | 0.0   | 6.4   | 4.3      | 0.0      | 340.2  | 5.5      | 0.1         | 4.5         | 0.1      | 0.0  |
| Delay (s)                 |          | 56.2     | 54.7  | 58.7  | 56.4     | 48.6     | 401.3  | 23.6     | 11.1        | 61.6        | 8.6      | 5.6  |
| Level of Service          |          | E        | D     | Е     | Е        | D        | F      | С        | В           | Е           | Α        | Α    |
| Approach Delay (s)        |          | 55.6     |       |       | 56.0     |          |        | 21.8     |             |             | 10.8     |      |
| Approach LOS              |          | Е        |       |       | E        |          |        | С        |             |             | В        |      |
| Intersection Summary      |          |          |       |       |          |          |        |          |             |             |          |      |
| HCM Average Control D     |          |          | 21.4  | H     | ICM Le   | vel of S | ervice |          | С           |             |          |      |
| HCM Volume to Capacit     |          |          | 0.81  |       |          |          |        |          |             |             |          |      |
| Actuated Cycle Length (   | ,        |          | 122.8 |       | Sum of I |          |        |          | 16.0        |             |          |      |
| Intersection Capacity Uti | lization |          | 71.7% | Į(    | CU Leve  | el of Se | rvice  |          | С           |             |          |      |
| Analysis Period (min)     |          |          | 15    |       |          |          |        |          |             |             |          |      |

Analysis Period (min) c Critical Lane Group

|                           | ᄼ         | <b>→</b> | •     | •     | <b>←</b> | •         | 4      | <b>†</b> | /     | <b>&gt;</b> | ļ        | 4     |
|---------------------------|-----------|----------|-------|-------|----------|-----------|--------|----------|-------|-------------|----------|-------|
| Movement                  | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR   | SBL         | SBT      | SBR   |
| Lane Configurations       |           | ર્ન      | 7     | 7     | ર્ન      | 7         | 7      | <b>^</b> | 7     | 7           | <b>^</b> | 7     |
| Ideal Flow (vphpl)        | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900  | 1900        | 1900     | 1900  |
| Total Lost time (s)       |           | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0   | 4.0         | 4.0      | 4.0   |
| Lane Util. Factor         |           | 1.00     | 1.00  | 0.95  | 0.95     | 1.00      | 1.00   | 0.95     | 1.00  | 1.00        | 0.95     | 1.00  |
| Frt                       |           | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85  | 1.00        | 1.00     | 0.85  |
| Flt Protected             |           | 0.98     | 1.00  | 0.95  | 0.96     | 1.00      | 0.95   | 1.00     | 1.00  | 0.95        | 1.00     | 1.00  |
| Satd. Flow (prot)         |           | 1714     | 1468  | 1665  | 1651     | 1524      | 1543   | 3406     | 1568  | 1612        | 3195     | 1324  |
| Flt Permitted             |           | 0.98     | 1.00  | 0.95  | 0.96     | 1.00      | 0.95   | 1.00     | 1.00  | 0.95        | 1.00     | 1.00  |
| Satd. Flow (perm)         |           | 1714     | 1468  | 1665  | 1651     | 1524      | 1543   | 3406     | 1568  | 1612        | 3195     | 1324  |
| Volume (vph)              | 15        | 25       | 59    | 66    | 7        | 35        | 12     | 2443     | 444   | 34          | 1160     | 9     |
| Peak-hour factor, PHF     | 0.88      | 0.88     | 0.88  | 0.85  | 0.85     | 0.85      | 0.97   | 0.97     | 0.97  | 0.90        | 0.90     | 0.90  |
| Adj. Flow (vph)           | 17        | 28       | 67    | 78    | 8        | 41        | 12     | 2519     | 458   | 38          | 1289     | 10    |
| RTOR Reduction (vph)      | 0         | 0        | 63    | 0     | 0        | 39        | 0      | 0        | 48    | 0           | 0        | 2     |
| Lane Group Flow (vph)     | 0         | 45       | 4     | 44    | 42       | 2         | 12     | 2519     | 410   | 38          | 1289     | 8     |
| Heavy Vehicles (%)        | 20%       | 2%       | 10%   | 3%    | 14%      | 6%        | 17%    | 6%       | 3%    | 12%         | 13%      | 22%   |
| Turn Type                 | Split     |          | Perm  | Split |          | Perm      | Prot   |          | Perm  | Prot        |          | Perm  |
| Protected Phases          | 7         | 7        |       | 8     | 8        |           | 5      | 2        |       | 1           | 6        |       |
| Permitted Phases          |           |          | 7     |       |          | 8         |        |          | 2     |             |          | 6     |
| Actuated Green, G (s)     |           | 8.5      | 8.5   | 7.2   | 7.2      | 7.2       | 3.0    | 134.5    | 134.5 | 7.8         | 139.3    | 139.3 |
| Effective Green, g (s)    |           | 10.5     | 10.5  | 9.2   | 9.2      | 9.2       | 2.5    | 137.6    | 137.6 | 7.3         | 142.4    | 142.4 |
| Actuated g/C Ratio        |           | 0.06     | 0.06  | 0.05  | 0.05     | 0.05      | 0.01   | 0.76     | 0.76  | 0.04        | 0.79     | 0.79  |
| Clearance Time (s)        |           | 6.0      | 6.0   | 6.0   | 6.0      | 6.0       | 3.5    | 7.1      | 7.1   | 3.5         | 7.1      | 7.1   |
| Vehicle Extension (s)     |           | 1.0      | 1.0   | 1.0   | 1.0      | 1.0       | 2.2    | 2.0      | 2.0   | 2.2         | 2.0      | 2.0   |
| Lane Grp Cap (vph)        |           | 100      | 85    | 85    | 84       | 78        | 21     | 2595     | 1195  | 65          | 2519     | 1044  |
| v/s Ratio Prot            |           | c0.03    |       | c0.03 | 0.03     |           | 0.01   | c0.74    |       | c0.02       | 0.40     |       |
| v/s Ratio Perm            |           |          | 0.00  |       |          | 0.00      |        |          | 0.26  |             |          | 0.01  |
| v/c Ratio                 |           | 0.45     | 0.05  | 0.52  | 0.50     | 0.03      | 0.57   | 0.97     | 0.34  | 0.58        | 0.51     | 0.01  |
| Uniform Delay, d1         |           | 82.3     | 80.3  | 83.5  | 83.5     | 81.4      | 88.5   | 19.7     | 6.9   | 85.2        | 6.8      | 4.1   |
| Progression Factor        |           | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00  | 1.00        | 1.00     | 1.00  |
| Incremental Delay, d2     |           | 1.2      | 0.1   | 2.2   | 1.7      | 0.1       | 23.7   | 12.0     | 0.8   | 9.3         | 0.7      | 0.0   |
| Delay (s)                 |           | 83.4     | 80.4  | 85.7  | 85.2     | 81.5      | 112.2  | 31.7     | 7.7   | 94.4        | 7.5      | 4.1   |
| Level of Service          |           | F        | F     | F     | F        | F         | F      | С        | Α     | F           | Α        | Α     |
| Approach Delay (s)        |           | 81.6     |       |       | 84.2     |           |        | 28.3     |       |             | 10.0     |       |
| Approach LOS              |           | F        |       |       | F        |           |        | С        |       |             | Α        |       |
| Intersection Summary      |           |          |       |       |          |           |        |          |       |             |          |       |
| HCM Average Control D     | •         |          | 25.8  | H     | ICM Le   | vel of Se | ervice |          | С     |             |          |       |
| HCM Volume to Capacit     |           |          | 0.90  |       |          |           |        |          |       |             |          |       |
| Actuated Cycle Length (   | ,         |          | 180.6 |       |          | ost time  | ` '    |          | 16.0  |             |          |       |
| Intersection Capacity Uti | ilization |          | 84.2% | le    | CU Leve  | el of Sei | vice   |          | Е     |             |          |       |
| Analysis Period (min)     |           |          | 15    |       |          |           |        |          |       |             |          |       |

|                          | ၨ         | <b>→</b> | <b>←</b> | •    | <b>\</b> | 4            |   |  |
|--------------------------|-----------|----------|----------|------|----------|--------------|---|--|
| Movement                 | EBL       | EBT      | WBT      | WBR  | SBL      | SBR          |   |  |
| Lane Configurations      |           | <b>†</b> | f)       |      | 7        | 7            |   |  |
| Sign Control             |           | Free     | Free     |      | Stop     |              |   |  |
| Grade                    |           | 0%       | 0%       |      | 0%       |              |   |  |
| Volume (veh/h)           | 0         | 7        | 13       | 356  | 90       | 2            |   |  |
| Peak Hour Factor         | 0.54      | 0.54     | 0.83     | 0.83 | 0.88     | 0.88         |   |  |
| Hourly flow rate (vph)   | 0         | 13       | 16       | 429  | 102      | 2            |   |  |
| Pedestrians              |           |          |          |      |          |              |   |  |
| Lane Width (ft)          |           |          |          |      |          |              |   |  |
| Walking Speed (ft/s)     |           |          |          |      |          |              |   |  |
| Percent Blockage         |           |          |          |      |          |              |   |  |
| Right turn flare (veh)   |           |          |          |      |          |              |   |  |
| Median type              |           |          |          |      | None     |              |   |  |
| Median storage veh)      |           |          |          |      |          |              |   |  |
| Upstream signal (ft)     |           |          |          |      |          |              |   |  |
| pX, platoon unblocked    |           |          |          |      |          |              |   |  |
| vC, conflicting volume   | 445       |          |          |      | 243      | 230          |   |  |
| vC1, stage 1 conf vol    |           |          |          |      |          |              |   |  |
| vC2, stage 2 conf vol    |           |          |          |      |          |              |   |  |
| vCu, unblocked vol       | 445       |          |          |      | 243      | 230          |   |  |
| tC, single (s)           | 4.1       |          |          |      | 6.4      | 6.2          |   |  |
| tC, 2 stage (s)          |           |          |          |      |          |              |   |  |
| tF (s)                   | 2.2       |          |          |      | 3.5      | 3.3          |   |  |
| p0 queue free %          | 100       |          |          |      | 86       | 100          |   |  |
| cM capacity (veh/h)      | 1116      |          |          |      | 745      | 809          |   |  |
|                          |           |          |          |      |          |              |   |  |
| Direction, Lane #        | EB 1      | WB 1     | SB 1     | SB 2 |          |              |   |  |
| Volume Total             | 13        | 445      | 102      | 2    |          |              |   |  |
| Volume Left              | 0         | 0        | 102      | 0    |          |              |   |  |
| Volume Right             | 0         | 429      | 0        | 2    |          |              |   |  |
| cSH                      | 1700      | 1700     | 745      | 809  |          |              |   |  |
| Volume to Capacity       | 0.01      | 0.26     | 0.14     | 0.00 |          |              |   |  |
| Queue Length 95th (ft)   | 0         | 0        | 12       | 0    |          |              |   |  |
| Control Delay (s)        | 0.0       | 0.0      | 10.6     | 9.5  |          |              |   |  |
| Lane LOS                 |           |          | В        | Α    |          |              |   |  |
| Approach Delay (s)       | 0.0       | 0.0      | 10.6     |      |          |              |   |  |
| Approach LOS             |           |          | В        |      |          |              |   |  |
| ntersection Summary      |           |          |          |      |          |              |   |  |
| Average Delay            |           |          | 2.0      |      |          |              |   |  |
| Intersection Capacity Ut | ilization |          | 34.4%    | I    | CU Leve  | I of Service | Α |  |
| Analysis Period (min)    |           |          | 15       |      |          |              |   |  |

|                                                    | <b>→</b>  | •    | •     | <b>←</b> | 4       | <b>/</b>       |              |
|----------------------------------------------------|-----------|------|-------|----------|---------|----------------|--------------|
| Movement                                           | EBT       | EBR  | WBL   | WBT      | NBL     | NBR            |              |
| Lane Configurations                                | ĵ.        |      |       | <b>†</b> | *       | 1              |              |
| Sign Control                                       | Free      |      |       | Free     | Stop    |                |              |
| Grade                                              | 0%        |      |       | 0%       | 0%      |                |              |
| Volume (veh/h)                                     | 94        | 3    | 0     | 350      | 19      | 1062           |              |
| Peak Hour Factor                                   | 0.84      | 0.84 | 0.88  | 0.88     | 0.90    | 0.90           |              |
| Hourly flow rate (vph)                             | 112       | 4    | 0     | 398      | 21      | 1180           |              |
| Pedestrians                                        |           |      |       |          |         |                |              |
| Lane Width (ft)                                    |           |      |       |          |         |                |              |
| Walking Speed (ft/s)                               |           |      |       |          |         |                |              |
| Percent Blockage                                   |           |      |       |          |         |                |              |
| Right turn flare (veh)                             |           |      |       |          |         |                |              |
| Median type                                        |           |      |       |          | None    |                |              |
| Median storage veh)                                |           |      |       |          |         |                |              |
| Upstream signal (ft)                               |           |      |       |          |         |                |              |
| pX, platoon unblocked                              |           |      |       |          |         |                |              |
| vC, conflicting volume                             |           |      | 115   |          | 511     | 114            |              |
| vC1, stage 1 conf vol                              |           |      |       |          |         |                |              |
| vC2, stage 2 conf vol                              |           |      |       |          |         |                |              |
| vCu, unblocked vol                                 |           |      | 115   |          | 511     | 114            |              |
| tC, single (s)                                     |           |      | 4.1   |          | 6.4     | 6.2            |              |
| tC, 2 stage (s)                                    |           |      |       |          |         |                |              |
| tF (s)                                             |           |      | 2.2   |          | 3.5     | 3.3            |              |
| p0 queue free %                                    |           |      | 100   |          | 96      | 0              |              |
| cM capacity (veh/h)                                |           |      | 1473  |          | 522     | 939            |              |
| Direction, Lane #                                  | EB 1      | WB 1 | NB 1  | NB 2     |         |                |              |
| Volume Total                                       | 115       | 398  | 21    | 1180     |         |                |              |
| Volume Left                                        | 0         | 0    | 21    | 0        |         |                |              |
| Volume Right                                       | 4         | 0    | 0     | 1180     |         |                |              |
| cSH                                                | 1700      | 1700 | 522   | 939      |         |                |              |
| Volume to Capacity                                 | 0.07      | 0.23 | 0.04  | 1.26     |         |                |              |
| Queue Length 95th (ft)                             | 0         | 0    | 3     | 1023     |         |                |              |
| Control Delay (s)                                  | 0.0       | 0.0  | 12.2  | 140.8    |         |                |              |
| Lane LOS                                           |           |      | В     | F        |         |                |              |
| Approach Delay (s)                                 | 0.0       | 0.0  | 138.5 | -        |         |                |              |
| Approach LOS                                       |           |      | F     |          |         |                |              |
| Intersection Summary                               |           |      |       |          |         |                |              |
| Average Delay                                      |           |      | 97.0  |          |         |                |              |
|                                                    | ilization |      | 77.6% | 1/       |         | ol of Consider |              |
| Intersection Capacity Uti<br>Analysis Period (min) | mzauon    |      |       | 10       | JU Leve | el of Service  | <del>,</del> |
| Analysis Fellou (IIIIII)                           |           |      | 15    |          |         |                |              |

|                           | ۶        | <b>→</b> | •     | •    | <b>←</b> | •         | 4    | <b>†</b> | <b>/</b> | <b>\</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|------|----------|-----------|------|----------|----------|----------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL  | WBT      | WBR       | NBL  | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |      | 4        |           |      | 4        |          |          | 4        |      |
| Sign Control              |          | Stop     |       |      | Stop     |           |      | Stop     |          |          | Stop     |      |
| Volume (vph)              | 22       | 596      | 0     | 29   | 104      | 0         | 4    | 60       | 87       | 4        | 25       | 2    |
| Peak Hour Factor          | 0.91     | 0.91     | 0.91  | 0.92 | 0.92     | 0.92      | 0.97 | 0.97     | 0.97     | 0.70     | 0.70     | 0.70 |
| Hourly flow rate (vph)    | 24       | 655      | 0     | 32   | 113      | 0         | 4    | 62       | 90       | 6        | 36       | 3    |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1 |          |           |      |          |          |          |          |      |
| Volume Total (vph)        | 679      | 145      | 156   | 44   |          |           |      |          |          |          |          |      |
| Volume Left (vph)         | 24       | 32       | 4     | 6    |          |           |      |          |          |          |          |      |
| Volume Right (vph)        | 0        | 0        | 90    | 3    |          |           |      |          |          |          |          |      |
| Hadj (s)                  | 0.04     | 0.12     | -0.31 | 0.02 |          |           |      |          |          |          |          |      |
| Departure Headway (s)     | 4.8      | 5.5      | 5.7   | 6.3  |          |           |      |          |          |          |          |      |
| Degree Utilization, x     | 0.90     | 0.22     | 0.25  | 0.08 |          |           |      |          |          |          |          |      |
| Capacity (veh/h)          | 742      | 623      | 598   | 529  |          |           |      |          |          |          |          |      |
| Control Delay (s)         | 34.8     | 10.1     | 10.6  | 9.9  |          |           |      |          |          |          |          |      |
| Approach Delay (s)        | 34.8     | 10.1     | 10.6  | 9.9  |          |           |      |          |          |          |          |      |
| Approach LOS              | D        | В        | В     | Α    |          |           |      |          |          |          |          |      |
| Intersection Summary      |          |          |       |      |          |           |      |          |          |          |          |      |
| Delay                     |          |          | 26.5  |      |          |           |      |          |          |          |          |      |
| HCM Level of Service      |          |          | D     |      |          |           |      |          |          |          |          |      |
| Intersection Capacity Uti | lization |          | 49.7% | - 10 | CU Leve  | el of Ser | vice |          | Α        |          |          |      |
| Analysis Period (min)     |          |          | 15    |      |          |           |      |          |          |          |          |      |
|                           |          |          |       |      |          |           |      |          |          |          |          |      |

| Movement         EBL         EBT         WBT         WBR         SBL         SBR           Lane Configurations         Image: Control of the control |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sign Control         Free         Free         Stop           Grade         0%         0%         0%           Volume (veh/h)         110         873         491         34         11         49           Peak Hour Factor         0.92         0.92         0.91         0.91         0.76         0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sign Control         Free         Free         Stop           Grade         0%         0%         0%           Volume (veh/h)         110         873         491         34         11         49           Peak Hour Factor         0.92         0.92         0.91         0.91         0.76         0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Volume (veh/h)         110         873         491         34         11         49           Peak Hour Factor         0.92         0.92         0.91         0.91         0.76         0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Peak Hour Factor 0.92 0.92 0.91 0.91 0.76 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Hourly flow rate (vph) 120 949 540 37 14 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Today now rate (vpii) 120 343 340 37 14 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pedestrians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Lane Width (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Walking Speed (ft/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Percent Blockage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Right turn flare (veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Median type None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Median storage veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Upstream signal (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| oX, platoon unblocked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| vC, conflicting volume 577 1746 558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| vC1, stage 1 conf vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| vC2, stage 2 conf vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VCu, unblocked vol 577 1746 558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C, single (s) 4.1 6.4 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C, 2 stage (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| :F(s) 2.2 3.5 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| o0 queue free % 88 83 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| cM capacity (veh/h) 997 83 529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Direction, Lane # EB 1 WB 1 SB 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Volume Total 1068 577 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Volume Left 120 0 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Volume Right 0 37 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| cSH 997 1700 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Volume to Capacity 0.12 0.34 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Queue Length 95th (ft) 10 0 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Control Delay (s) 3.2 0.0 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lane LOS A C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Approach Delay (s) 3.2 0.0 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Approach LOS C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ntersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Average Delay 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ntersection Capacity Utilization 93.6% ICU Level of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|                          | ۶         | <b>→</b> | •     | •    | <b>←</b> | •         | 1    | <b>†</b> | ~    | <b>&gt;</b> | ļ    | 1    |
|--------------------------|-----------|----------|-------|------|----------|-----------|------|----------|------|-------------|------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL  | NBT      | NBR  | SBL         | SBT  | SBR  |
| Lane Configurations      |           | 4        |       |      | 4        |           |      | 4        |      |             | 4    |      |
| Sign Control             |           | Free     |       |      | Free     |           |      | Stop     |      |             | Stop |      |
| Grade                    |           | 0%       |       |      | 0%       |           |      | 0%       |      |             | 0%   |      |
| Volume (veh/h)           | 33        | 651      | 3     | 2    | 121      | 3         | 1    | 1        | 5    | 3           | 2    | 11   |
| Peak Hour Factor         | 0.88      | 0.88     | 0.88  | 0.88 | 0.88     | 0.88      | 0.45 | 0.45     | 0.45 | 0.71        | 0.71 | 0.71 |
| Hourly flow rate (vph)   | 38        | 740      | 3     | 2    | 138      | 3         | 2    | 2        | 11   | 4           | 3    | 15   |
| Pedestrians              |           |          |       |      |          |           |      |          |      |             |      |      |
| Lane Width (ft)          |           |          |       |      |          |           |      |          |      |             |      |      |
| Walking Speed (ft/s)     |           |          |       |      |          |           |      |          |      |             |      |      |
| Percent Blockage         |           |          |       |      |          |           |      |          |      |             |      |      |
| Right turn flare (veh)   |           |          |       |      |          |           |      |          |      |             |      |      |
| Median type              |           |          |       |      |          |           |      | None     |      |             | None |      |
| Median storage veh)      |           |          |       |      |          |           |      |          |      |             |      |      |
| Upstream signal (ft)     |           |          |       |      |          |           |      |          |      |             |      |      |
| pX, platoon unblocked    |           |          |       |      |          |           |      |          |      |             |      |      |
| vC, conflicting volume   | 141       |          |       | 743  |          |           | 977  | 962      | 741  | 972         | 962  | 139  |
| vC1, stage 1 conf vol    |           |          |       |      |          |           |      |          |      |             |      |      |
| vC2, stage 2 conf vol    |           |          |       |      |          |           |      |          |      |             |      |      |
| vCu, unblocked vol       | 141       |          |       | 743  |          |           | 977  | 962      | 741  | 972         | 962  | 139  |
| tC, single (s)           | 4.2       |          |       | 4.1  |          |           | 7.1  | 6.8      | 6.2  | 7.1         | 6.8  | 6.3  |
| tC, 2 stage (s)          |           |          |       |      |          |           |      |          |      |             |      |      |
| tF (s)                   | 2.3       |          |       | 2.2  |          |           | 3.5  | 4.2      | 3.3  | 3.5         | 4.2  | 3.4  |
| p0 queue free %          | 97        |          |       | 100  |          |           | 99   | 99       | 97   | 98          | 99   | 98   |
| cM capacity (veh/h)      | 1418      |          |       | 864  |          |           | 219  | 227      | 416  | 219         | 227  | 891  |
| Direction, Lane #        | EB 1      | WB 1     | NB 1  | SB 1 |          |           |      |          |      |             |      |      |
| Volume Total             | 781       | 143      | 16    | 23   |          |           |      |          |      |             |      |      |
| Volume Left              | 38        | 2        | 2     | 4    |          |           |      |          |      |             |      |      |
| Volume Right             | 3         | 3        | 11    | 15   |          |           |      |          |      |             |      |      |
| cSH                      | 1418      | 864      | 334   | 459  |          |           |      |          |      |             |      |      |
| Volume to Capacity       | 0.03      | 0.00     | 0.05  | 0.05 |          |           |      |          |      |             |      |      |
| Queue Length 95th (ft)   | 2         | 0        | 4     | 4    |          |           |      |          |      |             |      |      |
| Control Delay (s)        | 0.7       | 0.2      | 16.3  | 13.2 |          |           |      |          |      |             |      |      |
| Lane LOS                 | Α         | Α        | С     | В    |          |           |      |          |      |             |      |      |
| Approach Delay (s)       | 0.7       | 0.2      | 16.3  | 13.2 |          |           |      |          |      |             |      |      |
| Approach LOS             |           |          | С     | В    |          |           |      |          |      |             |      |      |
| Intersection Summary     |           |          |       |      |          |           |      |          |      |             |      |      |
| Average Delay            |           |          | 1.2   |      |          |           |      |          |      |             |      |      |
| Intersection Capacity Ut | ilization |          | 56.3% | ŀ    | CU Leve  | el of Ser | vice |          | В    |             |      |      |
| Analysis Period (min)    |           |          | 15    |      |          |           |      |          |      |             |      |      |

|                          | ۶         | <b>→</b> | •     | •     | <b>←</b> | •         | 4    | <b>†</b> | /    | <b>&gt;</b> | <b>↓</b> | 4    |
|--------------------------|-----------|----------|-------|-------|----------|-----------|------|----------|------|-------------|----------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations      |           | 4        |       |       | ર્ન      | 7         |      | 4        |      |             | 4        |      |
| Sign Control             |           | Stop     |       |       | Stop     |           |      | Stop     |      |             | Stop     |      |
| Volume (vph)             | 157       | 480      | 15    | 9     | 109      | 122       | 6    | 18       | 8    | 88          | 26       | 10   |
| Peak Hour Factor         | 0.90      | 0.90     | 0.90  | 0.92  | 0.92     | 0.92      | 0.80 | 0.80     | 0.80 | 0.63        | 0.63     | 0.63 |
| Hourly flow rate (vph)   | 174       | 533      | 17    | 10    | 118      | 133       | 8    | 22       | 10   | 140         | 41       | 16   |
| Direction, Lane #        | EB 1      | WB 1     | WB 2  | NB 1  | SB 1     |           |      |          |      |             |          |      |
| Volume Total (vph)       | 724       | 128      | 133   | 40    | 197      |           |      |          |      |             |          |      |
| Volume Left (vph)        | 174       | 10       | 0     | 8     | 140      |           |      |          |      |             |          |      |
| Volume Right (vph)       | 17        | 0        | 133   | 10    | 16       |           |      |          |      |             |          |      |
| Hadj (s)                 | 0.07      | 0.10     | -0.57 | -0.08 | 0.16     |           |      |          |      |             |          |      |
| Departure Headway (s)    | 5.0       | 5.8      | 3.2   | 6.6   | 6.4      |           |      |          |      |             |          |      |
| Degree Utilization, x    | 1.00      | 0.21     | 0.12  | 0.07  | 0.35     |           |      |          |      |             |          |      |
| Capacity (veh/h)         | 719       | 602      | 1121  | 529   | 555      |           |      |          |      |             |          |      |
| Control Delay (s)        | 55.6      | 10.3     | 6.6   | 10.1  | 12.7     |           |      |          |      |             |          |      |
| Approach Delay (s)       | 55.6      | 8.5      |       | 10.1  | 12.7     |           |      |          |      |             |          |      |
| Approach LOS             | F         | Α        |       | В     | В        |           |      |          |      |             |          |      |
| Intersection Summary     |           |          |       |       |          |           |      |          |      |             |          |      |
| Delay                    |           |          | 37.2  |       |          |           |      |          |      |             |          |      |
| HCM Level of Service     |           |          | Е     |       |          |           |      |          |      |             |          |      |
| Intersection Capacity Ut | ilization |          | 61.7% | 10    | CU Leve  | el of Ser | vice |          | В    |             |          |      |
| Analysis Period (min)    |           |          | 15    |       |          |           |      |          |      |             |          |      |
|                          |           |          |       |       |          |           |      |          |      |             |          |      |

|                           | -         | •    | •     | <b>←</b> | •       | <b>/</b>      |  |
|---------------------------|-----------|------|-------|----------|---------|---------------|--|
| Movement                  | EBT       | EBR  | WBL   | WBT      | NBL     | NBR           |  |
| Lane Configurations       | f)        |      |       | 4        | J.      | 7             |  |
| Sign Control              | Stop      |      |       | Stop     | Stop    |               |  |
| Volume (vph)              | 503       | 87   | 55    | 152      | 105     | 55            |  |
| Peak Hour Factor          | 0.97      | 0.97 | 0.81  | 0.81     | 0.91    | 0.91          |  |
| Hourly flow rate (vph)    | 519       | 90   | 68    | 188      | 115     | 60            |  |
| Direction, Lane #         | EB 1      | WB 1 | NB 1  | NB 2     |         |               |  |
| Volume Total (vph)        | 608       | 256  | 115   | 60       |         |               |  |
| Volume Left (vph)         | 0         | 68   | 115   | 0        |         |               |  |
| Volume Right (vph)        | 90        | 0    | 0     | 60       |         |               |  |
| Hadj (s)                  | -0.05     | 0.11 | 0.53  | -0.58    |         |               |  |
| Departure Headway (s)     | 4.8       | 5.4  | 7.1   | 6.0      |         |               |  |
| Degree Utilization, x     | 0.81      | 0.38 | 0.23  | 0.10     |         |               |  |
| Capacity (veh/h)          | 736       | 641  | 475   | 556      |         |               |  |
| Control Delay (s)         | 24.9      | 11.7 | 11.0  | 8.5      |         |               |  |
| Approach Delay (s)        | 24.9      | 11.7 | 10.2  |          |         |               |  |
| Approach LOS              | С         | В    | В     |          |         |               |  |
| Intersection Summary      |           |      |       |          |         |               |  |
| Delay                     |           |      | 19.2  |          |         |               |  |
| HCM Level of Service      |           |      | С     |          |         |               |  |
| Intersection Capacity Uti | ilization |      | 58.6% | 10       | CU Leve | el of Service |  |
| Analysis Period (min)     |           |      | 15    |          |         |               |  |
| Analysis Period (min)     |           |      | 15    |          |         |               |  |

|                           | -         | •    | •     | ←    | •      | <b>/</b>     |   |
|---------------------------|-----------|------|-------|------|--------|--------------|---|
| Movement                  | EBT       | EBR  | WBL   | WBT  | NBL    | NBR          |   |
| Lane Configurations       | 1>        |      |       | 4    | ¥      |              |   |
| Sign Control              | Free      |      |       | Free | Stop   |              |   |
| Grade                     | 0%        |      |       | 0%   | 0%     |              |   |
| Volume (veh/h)            | 539       | 5    | 23    | 249  | 2      | 19           |   |
| Peak Hour Factor          | 0.95      | 0.95 | 0.89  | 0.89 | 0.58   | 0.58         |   |
| Hourly flow rate (vph)    | 567       | 5    | 26    | 280  | 3      | 33           |   |
| Pedestrians               |           |      |       |      |        |              |   |
| Lane Width (ft)           |           |      |       |      |        |              |   |
| Walking Speed (ft/s)      |           |      |       |      |        |              |   |
| Percent Blockage          |           |      |       |      |        |              |   |
| Right turn flare (veh)    |           |      |       |      |        |              |   |
| Median type               |           |      |       |      | None   |              |   |
| Median storage veh)       |           |      |       |      |        |              |   |
| Upstream signal (ft)      |           |      |       |      |        |              |   |
| pX, platoon unblocked     |           |      |       |      |        |              |   |
| vC, conflicting volume    |           |      | 573   |      | 901    | 570          |   |
| vC1, stage 1 conf vol     |           |      |       |      |        |              |   |
| vC2, stage 2 conf vol     |           |      |       |      |        |              |   |
| vCu, unblocked vol        |           |      | 573   |      | 901    | 570          |   |
| tC, single (s)            |           |      | 4.1   |      | 6.4    | 6.2          |   |
| tC, 2 stage (s)           |           |      |       |      |        |              |   |
| tF (s)                    |           |      | 2.2   |      | 3.5    | 3.3          |   |
| p0 queue free %           |           |      | 97    |      | 99     | 94           |   |
| cM capacity (veh/h)       |           |      | 1000  |      | 300    | 521          |   |
| Direction, Lane #         | EB 1      | WB 1 | NB 1  |      |        |              |   |
| Volume Total              | 573       | 306  | 36    |      |        |              |   |
| Volume Left               | 0         | 26   | 3     |      |        |              |   |
| Volume Right              | 5         | 0    | 33    |      |        |              |   |
| cSH                       | 1700      | 1000 | 487   |      |        |              |   |
| Volume to Capacity        | 0.34      | 0.03 | 0.07  |      |        |              |   |
| Queue Length 95th (ft)    | 0         | 2    | 6     |      |        |              |   |
| Control Delay (s)         | 0.0       | 1.0  | 13.0  |      |        |              |   |
| Lane LOS                  |           | Α    | В     |      |        |              |   |
| Approach Delay (s)        | 0.0       | 1.0  | 13.0  |      |        |              |   |
| Approach LOS              |           |      | В     |      |        |              |   |
| Intersection Summary      |           |      |       |      |        |              |   |
| Average Delay             |           |      | 0.8   |      |        |              |   |
| Intersection Capacity Uti | ilization |      | 42.2% | 10   | CULeve | l of Service | ) |
| Analysis Period (min)     | 2411011   |      | 15    |      |        | . Si Coivido |   |
| rangolo i onod (imii)     |           |      |       |      |        |              |   |

| 7<br>0.97<br>7 | Free 0% 551 0.97 568                                         | WBT<br>Free<br>0%<br>269<br>0.92<br>292                                                 | 6<br>0.92<br>7                                                                                                                                | SBL<br>Stop<br>0%<br>1<br>0.50<br>2                                                                                                                                          | 3<br>0.50<br>6                                                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|----------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.97           | Free<br>0%<br>551<br>0.97                                    | Free<br>0%<br>269<br>0.92                                                               | 0.92                                                                                                                                          | Stop<br>0%<br>1<br>0.50                                                                                                                                                      | 0.50                                                                                                                                                                       |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
| 0.97           | 0%<br><b>551</b><br>0.97                                     | Free<br>0%<br>269<br>0.92                                                               | 0.92                                                                                                                                          | 0%<br>1<br>0.50                                                                                                                                                              | 0.50                                                                                                                                                                       |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
| 0.97           | 551<br>0.97                                                  | 269<br>0.92                                                                             | 0.92                                                                                                                                          | 0%<br>1<br>0.50                                                                                                                                                              | 0.50                                                                                                                                                                       |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
| 0.97           | 0.97                                                         | 0.92                                                                                    | 0.92                                                                                                                                          | 0.50                                                                                                                                                                         | 0.50                                                                                                                                                                       |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
| 7              | 568                                                          | 292                                                                                     | 7                                                                                                                                             | 2                                                                                                                                                                            | 6                                                                                                                                                                          |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               | None                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
| 299            |                                                              |                                                                                         |                                                                                                                                               | 878                                                                                                                                                                          | 296                                                                                                                                                                        |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
| 299            |                                                              |                                                                                         |                                                                                                                                               | 878                                                                                                                                                                          | 296                                                                                                                                                                        |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
| 2.2            |                                                              |                                                                                         |                                                                                                                                               | 3.5                                                                                                                                                                          | 3.3                                                                                                                                                                        |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
| 1262           |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                       | 05.4                                                                                    |                                                                                                                                               | • • • • • • • • • • • • • • • • • • • •                                                                                                                                      |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
| 1262           |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
| 0.01           |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                | 0.0                                                          |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
| 0.2            | 0.0                                                          |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              | В                                                                                       |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
|                |                                                              |                                                                                         |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
| -              |                                                              | 0.2                                                                                     |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
| zation         |                                                              | 44.6%                                                                                   | 10                                                                                                                                            | CU Leve                                                                                                                                                                      | of Service                                                                                                                                                                 |                                                                                                                                                                                                            | P                                                                                                                                                                                                        | 4                                                                                                                                                                                                        |                                                                                                                                                                                                            |
|                |                                                              | 15                                                                                      |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                            |
| 1.             | EB 1<br>575<br>7<br>0<br>262<br>0.01<br>0<br>0.2<br>A<br>0.2 | 299 4.1  2.2 99 262 EB 1 WB 1  575 299 7 0 0 7 262 1700 0.01 0.18 0 0 0.2 0.0 A 0.2 0.0 | 299 4.1  2.2 99 262  EB 1 WB 1 SB 1  575 299 8 7 0 2 0 7 6 262 1700 556 0.01 0.18 0.01 0 0 1 0.2 0.0 11.6 A B 0.2 0.0 11.6 B  0.2 ation 44.6% | 299 4.1  2.2 99 262  EB 1 WB 1 SB 1  575 299 8 7 0 2 0 7 6 262 1700 556 0.01 0.18 0.01 0 0 1 0.2 0.0 11.6 A B 0.2 0.0 11.6 B  0.2 0.0 11.6 B  0.2 0.0 11.6 B  0.2 0.0 11.6 B | 299 878 4.1 6.4  2.2 3.5 99 99 262 317  EB 1 WB 1 SB 1  575 299 8 7 0 2 0 7 6 262 1700 556 0.01 0.18 0.01 0 0 1 0.2 0.0 11.6 A B 0.2 0.0 11.6 B  0.2 ation 44.6% ICU Level | 299 878 296 4.1 6.4 6.2  2.2 3.5 3.3 99 99 99 262 317 744  EB 1 WB 1 SB 1  575 299 8 7 0 2 0 7 6 262 1700 556 0.01 0.18 0.01 0 0 0 1 0.2 0.0 11.6 A B 0.2 0.0 11.6 B  0.2 ation 44.6% ICU Level of Service | 299 878 296 4.1 6.4 6.2  2.2 3.5 3.3 99 99 99 262 317 744  EB 1 WB 1 SB 1  575 299 8 7 0 2 0 7 6 262 1700 556 0.01 0.18 0.01 0 0 1 0.2 0.0 11.6 A B 0.2 0.0 11.6 B  0.2 ation 44.6% ICU Level of Service | 299 878 296 4.1 6.4 6.2  2.2 3.5 3.3 99 99 99 262 317 744  EB 1 WB 1 SB 1  575 299 8 7 0 2 0 7 6 262 1700 556 0.01 0.18 0.01 0 0 1 0.2 0.0 11.6 A B 0.2 0.0 11.6 B  O.2 ation 44.6% ICU Level of Service | 299 878 296 4.1 6.4 6.2  2.2 3.5 3.3 99 99 99 262 317 744  EB 1 WB 1 SB 1  575 299 8 7 0 2 0 7 6 262 1700 556 0.01 0.18 0.01 0 0 1 0.2 0.0 11.6 A B 0.2 0.0 11.6 B  O.2 ation 44.6% ICU Level of Service A |

|                           | ۶        | <b>→</b> | •     | •     | •       | •         | 4    | <b>†</b> | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|-------|---------|-----------|------|----------|----------|-------------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT     | WBR       | NBL  | NBT      | NBR      | SBL         | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |       | 4       |           |      | 4        |          |             | 4        |      |
| Sign Control              |          | Stop     |       |       | Stop    |           |      | Stop     |          |             | Stop     |      |
| Volume (vph)              | 0        | 31       | 31    | 20    | 26      | 1         | 53   | 2        | 25       | 1           | 0        | 2    |
| Peak Hour Factor          | 0.84     | 0.84     | 0.84  | 0.90  | 0.90    | 0.90      | 0.83 | 0.83     | 0.83     | 0.38        | 0.38     | 0.38 |
| Hourly flow rate (vph)    | 0        | 37       | 37    | 22    | 29      | 1         | 64   | 2        | 30       | 3           | 0        | 5    |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |         |           |      |          |          |             |          |      |
| Volume Total (vph)        | 74       | 52       | 96    | 8     |         |           |      |          |          |             |          |      |
| Volume Left (vph)         | 0        | 22       | 64    | 3     |         |           |      |          |          |             |          |      |
| Volume Right (vph)        | 37       | 1        | 30    | 5     |         |           |      |          |          |             |          |      |
| Hadj (s)                  | -0.27    | 0.11     | -0.02 | -0.30 |         |           |      |          |          |             |          |      |
| Departure Headway (s)     | 3.9      | 4.3      | 4.2   | 4.0   |         |           |      |          |          |             |          |      |
| Degree Utilization, x     | 0.08     | 0.06     | 0.11  | 0.01  |         |           |      |          |          |             |          |      |
| Capacity (veh/h)          | 889      | 811      | 834   | 868   |         |           |      |          |          |             |          |      |
| Control Delay (s)         | 7.3      | 7.6      | 7.7   | 7.0   |         |           |      |          |          |             |          |      |
| Approach Delay (s)        | 7.3      | 7.6      | 7.7   | 7.0   |         |           |      |          |          |             |          |      |
| Approach LOS              | Α        | Α        | Α     | Α     |         |           |      |          |          |             |          |      |
| Intersection Summary      |          |          |       |       |         |           |      |          |          |             |          |      |
| Delay                     |          |          | 7.5   |       |         |           |      |          |          |             |          |      |
| HCM Level of Service      |          |          | Α     |       |         |           |      |          |          |             |          |      |
| Intersection Capacity Uti | lization |          | 24.4% | 10    | CU Leve | el of Ser | vice |          | Α        |             |          |      |
| Analysis Period (min)     |          |          | 15    |       |         |           |      |          |          |             |          |      |
|                           |          |          |       |       |         |           |      |          |          |             |          |      |

|                           | ۶        | <b>→</b> | •     | •    | <b>←</b> | •         | 4    | <b>†</b> | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|------|----------|-----------|------|----------|----------|-------------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL  | WBT      | WBR       | NBL  | NBT      | NBR      | SBL         | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |      | 4        |           |      | 4        |          |             | 4        |      |
| Sign Control              |          | Stop     |       |      | Stop     |           |      | Stop     |          |             | Stop     |      |
| Volume (vph)              | 4        | 68       | 44    | 45   | 76       | 17        | 63   | 69       | 60       | 4           | 52       | 2    |
| Peak Hour Factor          | 0.95     | 0.95     | 0.95  | 0.86 | 0.86     | 0.86      | 0.80 | 0.80     | 0.80     | 0.86        | 0.86     | 0.86 |
| Hourly flow rate (vph)    | 4        | 72       | 46    | 52   | 88       | 20        | 79   | 86       | 75       | 5           | 60       | 2    |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1 |          |           |      |          |          |             |          |      |
| Volume Total (vph)        | 122      | 160      | 240   | 67   |          |           |      |          |          |             |          |      |
| Volume Left (vph)         | 4        | 52       | 79    | 5    |          |           |      |          |          |             |          |      |
| Volume Right (vph)        | 46       | 20       | 75    | 2    |          |           |      |          |          |             |          |      |
| Hadj (s)                  | -0.19    | 0.03     | -0.08 | 0.06 |          |           |      |          |          |             |          |      |
| Departure Headway (s)     | 4.7      | 4.8      | 4.6   | 5.0  |          |           |      |          |          |             |          |      |
| Degree Utilization, x     | 0.16     | 0.22     | 0.31  | 0.09 |          |           |      |          |          |             |          |      |
| Capacity (veh/h)          | 707      | 691      | 739   | 663  |          |           |      |          |          |             |          |      |
| Control Delay (s)         | 8.6      | 9.2      | 9.7   | 8.5  |          |           |      |          |          |             |          |      |
| Approach Delay (s)        | 8.6      | 9.2      | 9.7   | 8.5  |          |           |      |          |          |             |          |      |
| Approach LOS              | Α        | Α        | Α     | Α    |          |           |      |          |          |             |          |      |
| Intersection Summary      |          |          |       |      |          |           |      |          |          |             |          |      |
| Delay                     |          |          | 9.2   |      |          |           |      |          |          |             |          |      |
| HCM Level of Service      |          |          | Α     |      |          |           |      |          |          |             |          |      |
| Intersection Capacity Uti | lization |          | 38.3% | 10   | CU Leve  | el of Ser | vice |          | Α        |             |          |      |
| Analysis Period (min)     |          |          | 15    |      |          |           |      |          |          |             |          |      |
|                           |          |          |       |      |          |           |      |          |          |             |          |      |

|                          | ʹ         | <b>→</b> | •     | •     | <b>←</b>   | •                | 4      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ    | 4    |
|--------------------------|-----------|----------|-------|-------|------------|------------------|--------|----------|-------------|-------------|------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL   | WBT        | WBR              | NBL    | NBT      | NBR         | SBL         | SBT  | SBR  |
| Lane Configurations      | ሻሻ        | <b>^</b> | 7     | 44    | <b>∱</b> ⊅ |                  | ሻ      | <b>†</b> | 7           | 7           | ħβ   |      |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900  | 1900       | 1900             | 1900   | 1900     | 1900        | 1900        | 1900 | 1900 |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   | 4.0   | 4.0        |                  | 4.0    | 4.0      | 4.0         | 4.0         | 4.0  |      |
| Lane Util. Factor        | 0.97      | 0.95     | 1.00  | 0.97  | 0.95       |                  | 1.00   | 1.00     | 1.00        | 1.00        | 0.95 |      |
| Frt                      | 1.00      | 1.00     | 0.85  | 1.00  | 0.97       |                  | 1.00   | 1.00     | 0.85        | 1.00        | 0.99 |      |
| Flt Protected            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00       |                  | 0.95   | 1.00     | 1.00        | 0.95        | 1.00 |      |
| Satd. Flow (prot)        | 3303      | 3539     | 1583  | 3303  | 3377       |                  | 1770   | 1845     | 1583        | 1770        | 3445 |      |
| Flt Permitted            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00       |                  | 0.95   | 1.00     | 1.00        | 0.95        | 1.00 |      |
| Satd. Flow (perm)        | 3303      | 3539     | 1583  | 3303  | 3377       |                  | 1770   | 1845     | 1583        | 1770        | 3445 |      |
| Volume (vph)             | 55        | 881      | 158   | 110   | 506        | 150              | 107    | 153      | 78          | 103         | 136  | 14   |
| Peak-hour factor, PHF    | 0.92      | 0.92     | 0.92  | 0.94  | 0.94       | 0.94             | 0.87   | 0.87     | 0.87        | 0.91        | 0.91 | 0.91 |
| Adj. Flow (vph)          | 60        | 958      | 172   | 117   | 538        | 160              | 123    | 176      | 90          | 113         | 149  | 15   |
| RTOR Reduction (vph)     | 0         | 0        | 58    | 0     | 11         | 0                | 0      | 0        | 76          | 0           | 4    | 0    |
| Lane Group Flow (vph)    | 60        | 958      | 114   | 117   | 687        | 0                | 123    | 176      | 14          | 113         | 160  | 0    |
| Heavy Vehicles (%)       | 6%        | 2%       | 2%    | 6%    | 3%         | 4%               | 2%     | 3%       | 2%          | 2%          | 3%   | 7%   |
| Turn Type                | Prot      |          | Perm  | Prot  |            |                  | Prot   |          | Perm        | Prot        |      |      |
| Protected Phases         | 1         | 6        |       | 5     | 2          |                  | 3      | 8        |             | 7           | 4    |      |
| Permitted Phases         |           |          | 6     |       |            |                  |        |          | 8           |             |      |      |
| Actuated Green, G (s)    | 2.7       | 25.3     | 25.3  | 4.7   | 27.6       |                  | 6.8    | 9.6      | 9.6         | 6.5         | 9.1  |      |
| Effective Green, g (s)   | 3.5       | 26.4     | 26.4  | 6.2   | 29.1       |                  | 8.3    | 10.7     | 10.7        | 8.0         | 10.4 |      |
| Actuated g/C Ratio       | 0.05      | 0.39     | 0.39  | 0.09  | 0.43       |                  | 0.12   | 0.16     | 0.16        | 0.12        | 0.15 |      |
| Clearance Time (s)       | 4.8       | 5.1      | 5.1   | 5.5   | 5.5        |                  | 5.5    | 5.1      | 5.1         | 5.5         | 5.3  |      |
| Vehicle Extension (s)    | 1.0       | 1.0      | 1.0   | 1.0   | 1.0        |                  | 1.0    | 1.0      | 1.0         | 1.0         | 1.0  |      |
| Lane Grp Cap (vph)       | 172       | 1388     | 621   | 304   | 1460       |                  | 218    | 293      | 252         | 210         | 532  |      |
| v/s Ratio Prot           | 0.02      | c0.27    |       | c0.04 | c0.20      |                  | c0.07  | c0.10    |             | 0.06        | 0.05 |      |
| v/s Ratio Perm           |           |          | 0.07  |       |            |                  |        |          | 0.01        |             |      |      |
| v/c Ratio                | 0.35      | 0.69     | 0.18  | 0.38  | 0.47       |                  | 0.56   | 0.60     | 0.06        | 0.54        | 0.30 |      |
| Uniform Delay, d1        | 30.8      | 17.0     | 13.4  | 28.8  | 13.6       |                  | 27.8   | 26.3     | 24.0        | 27.9        | 25.2 |      |
| Progression Factor       | 1.00      | 1.00     | 1.00  | 1.00  | 1.00       |                  | 1.00   | 1.00     | 1.00        | 1.00        | 1.00 |      |
| Incremental Delay, d2    | 0.4       | 1.2      | 0.1   | 0.3   | 0.1        |                  | 2.0    | 2.4      | 0.0         | 1.3         | 0.1  |      |
| Delay (s)                | 31.2      | 18.3     | 13.4  | 29.1  | 13.7       |                  | 29.8   | 28.7     | 24.1        | 29.2        | 25.3 |      |
| Level of Service         | С         | В        | В     | С     | В          |                  | С      | С        | С           | С           | С    |      |
| Approach Delay (s)       |           | 18.2     |       |       | 15.9       |                  |        | 28.0     |             |             | 26.9 |      |
| Approach LOS             |           | В        |       |       | В          |                  |        | С        |             |             | С    |      |
| Intersection Summary     |           |          |       |       |            |                  |        |          |             |             |      |      |
| HCM Average Control D    |           |          | 19.8  | H     | HCM Lev    | vel of Se        | ervice |          | В           |             |      |      |
| HCM Volume to Capacit    | ,         |          | 0.61  |       |            |                  |        |          |             |             |      |      |
| Actuated Cycle Length (  |           |          | 67.3  |       |            | of lost time (s) |        |          | 16.0        |             |      |      |
| Intersection Capacity Ut | ilization |          | 54.8% | I     | CU Leve    | el of Ser        | vice   |          | Α           |             |      | _    |
| Analysis Period (min)    |           |          | 15    |       |            |                  |        |          |             |             |      |      |

|                          | •         | <b>→</b> | •     | •    | <b>—</b> | •         | 1    | †    | <i>&gt;</i> | <b>/</b> | <b>+</b> | <b>√</b> |
|--------------------------|-----------|----------|-------|------|----------|-----------|------|------|-------------|----------|----------|----------|
| Movement                 | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL  | NBT  | NBR         | SBL      | SBT      | SBR      |
| Lane Configurations      |           | 4        |       |      | 4        |           |      | 4    |             |          | 4        |          |
| Sign Control             |           | Free     |       |      | Free     |           |      | Stop |             |          | Stop     |          |
| Grade                    |           | 0%       |       |      | 0%       |           |      | 0%   |             |          | 0%       |          |
| Volume (veh/h)           | 6         | 528      | 5     | 56   | 248      | 5         | 3    | 8    | 63          | 2        | 12       | 11       |
| Peak Hour Factor         | 0.94      | 0.94     | 0.94  | 0.97 | 0.97     | 0.97      | 0.84 | 0.84 | 0.84        | 0.72     | 0.72     | 0.72     |
| Hourly flow rate (vph)   | 6         | 562      | 5     | 58   | 256      | 5         | 4    | 10   | 75          | 3        | 17       | 15       |
| Pedestrians              |           |          |       |      |          |           |      |      |             |          |          |          |
| Lane Width (ft)          |           |          |       |      |          |           |      |      |             |          |          |          |
| Walking Speed (ft/s)     |           |          |       |      |          |           |      |      |             |          |          |          |
| Percent Blockage         |           |          |       |      |          |           |      |      |             |          |          |          |
| Right turn flare (veh)   |           |          |       |      |          |           |      |      |             |          |          |          |
| Median type              |           |          |       |      |          |           |      | None |             |          | None     |          |
| Median storage veh)      |           |          |       |      |          |           |      |      |             |          |          |          |
| Upstream signal (ft)     |           |          |       |      |          |           |      |      |             |          |          |          |
| pX, platoon unblocked    |           |          |       |      |          |           |      |      |             |          |          |          |
| vC, conflicting volume   | 261       |          |       | 567  |          |           | 974  | 953  | 564         | 1031     | 953      | 258      |
| vC1, stage 1 conf vol    |           |          |       |      |          |           |      |      |             |          |          |          |
| vC2, stage 2 conf vol    |           |          |       |      |          |           |      |      |             |          |          |          |
| vCu, unblocked vol       | 261       |          |       | 567  |          |           | 974  | 953  | 564         | 1031     | 953      | 258      |
| tC, single (s)           | 4.1       |          |       | 4.1  |          |           | 7.1  | 6.5  | 6.3         | 7.1      | 6.7      | 6.2      |
| tC, 2 stage (s)          |           |          |       |      |          |           |      |      |             |          |          |          |
| tF (s)                   | 2.2       |          |       | 2.2  |          |           | 3.5  | 4.0  | 3.4         | 3.5      | 4.2      | 3.3      |
| p0 queue free %          | 100       |          |       | 94   |          |           | 98   | 96   | 86          | 98       | 93       | 98       |
| cM capacity (veh/h)      | 1304      |          |       | 1005 |          |           | 204  | 243  | 517         | 167      | 229      | 780      |
| Direction, Lane #        | EB 1      | WB 1     | NB 1  | SB 1 |          |           |      |      |             |          |          |          |
| Volume Total             | 573       | 319      | 88    | 35   |          |           |      |      |             |          |          |          |
| Volume Left              | 6         | 58       | 4     | 3    |          |           |      |      |             |          |          |          |
| Volume Right             | 5         | 5        | 75    | 15   |          |           |      |      |             |          |          |          |
| cSH                      | 1304      | 1005     | 437   | 319  |          |           |      |      |             |          |          |          |
| Volume to Capacity       | 0.00      | 0.06     | 0.20  | 0.11 |          |           |      |      |             |          |          |          |
| Queue Length 95th (ft)   | 0         | 5        | 19    | 9    |          |           |      |      |             |          |          |          |
| Control Delay (s)        | 0.1       | 2.1      | 15.3  | 17.7 |          |           |      |      |             |          |          |          |
| Lane LOS                 | Α         | Α        | С     | С    |          |           |      |      |             |          |          |          |
| Approach Delay (s)       | 0.1       | 2.1      | 15.3  | 17.7 |          |           |      |      |             |          |          |          |
| Approach LOS             |           |          | С     | С    |          |           |      |      |             |          |          |          |
| Intersection Summary     |           |          |       |      |          |           |      |      |             |          |          |          |
| Average Delay            |           |          | 2.7   |      |          |           |      |      |             |          |          |          |
| Intersection Capacity Ut | ilization |          | 60.0% | ŀ    | CU Lev   | el of Ser | vice |      | В           |          |          |          |
| Analysis Period (min)    |           |          | 15    |      |          |           |      |      |             |          |          |          |
| _ , ,                    |           |          |       |      |          |           |      |      |             |          |          |          |

|                           | ۶         | <b>→</b> | •     | •     | <b>←</b> | •         | 4    | <b>†</b> | /    | <b>&gt;</b> | <b>↓</b> | 4    |
|---------------------------|-----------|----------|-------|-------|----------|-----------|------|----------|------|-------------|----------|------|
| Movement                  | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations       |           | 4        |       |       | 4        |           |      | 4        |      |             | 4        |      |
| Sign Control              |           | Stop     |       |       | Stop     |           |      | Stop     |      |             | Stop     |      |
| Volume (vph)              | 49        | 5        | 5     | 7     | 2        | 4         | 2    | 31       | 8    | 8           | 34       | 46   |
| Peak Hour Factor          | 0.87      | 0.87     | 0.87  | 0.75  | 0.75     | 0.75      | 0.79 | 0.79     | 0.79 | 0.92        | 0.92     | 0.92 |
| Hourly flow rate (vph)    | 56        | 6        | 6     | 9     | 3        | 5         | 3    | 39       | 10   | 9           | 37       | 50   |
| Direction, Lane #         | EB 1      | WB 1     | NB 1  | SB 1  |          |           |      |          |      |             |          |      |
| Volume Total (vph)        | 68        | 17       | 52    | 96    |          |           |      |          |      |             |          |      |
| Volume Left (vph)         | 56        | 9        | 3     | 9     |          |           |      |          |      |             |          |      |
| Volume Right (vph)        | 6         | 5        | 10    | 50    |          |           |      |          |      |             |          |      |
| Hadj (s)                  | 0.20      | 0.08     | -0.07 | -0.24 |          |           |      |          |      |             |          |      |
| Departure Headway (s)     | 4.4       | 4.4      | 4.1   | 3.9   |          |           |      |          |      |             |          |      |
| Degree Utilization, x     | 0.08      | 0.02     | 0.06  | 0.10  |          |           |      |          |      |             |          |      |
| Capacity (veh/h)          | 783       | 791      | 843   | 897   |          |           |      |          |      |             |          |      |
| Control Delay (s)         | 7.8       | 7.5      | 7.4   | 7.4   |          |           |      |          |      |             |          |      |
| Approach Delay (s)        | 7.8       | 7.5      | 7.4   | 7.4   |          |           |      |          |      |             |          |      |
| Approach LOS              | Α         | Α        | Α     | Α     |          |           |      |          |      |             |          |      |
| Intersection Summary      |           |          |       |       |          |           |      |          |      |             |          |      |
| Delay                     |           |          | 7.5   |       |          |           |      |          |      |             |          |      |
| HCM Level of Service      |           |          | Α     |       |          |           |      |          |      |             |          |      |
| Intersection Capacity Uti | ilization |          | 19.2% | ŀ     | CU Leve  | el of Ser | vice |          | Α    |             |          |      |
| Analysis Period (min)     |           |          | 15    |       |          |           |      |          |      |             |          |      |
|                           |           |          |       |       |          |           |      |          |      |             |          |      |

| Movement   EBL   EBT   WBT   WBR   SBL   SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sign Control         Free         Free         Stop           Grade         0%         0%         0%           Volume (veh/h)         23         123         112         18         17         26           Peak Hour Factor         0.83         0.83         0.88         0.83         0.83         0.83           Hourly flow rate (vph)         28         148         127         20         20         31           Pedestrians         Lane Width (ft)         Walking Speed (ft/s)         Percent Blockage         Percent Blockage         Percent Blockage         Percent Blockage         Percent Blockage         None         Median type         None         Median storage veh)         Upstream signal (ft)         PX, platoon unblocked         VC, conflicting volume         148         341         138         341         138         138         138         138         138         138         148         148         148         148         148         148         148         148         148         148         148         148         148         148         148         148         148         148         148         148         148         148         148         148         148         148         148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sign Control         Free         Free         Stop           Grade         0%         0%         0%           Volume (veh/h)         23         123         112         18         17         26           Peak Hour Factor         0.83         0.83         0.88         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83         0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Grade 0% 0% 0% 0% Volume (veh/h) 23 123 112 18 17 26 Peak Hour Factor 0.83 0.83 0.88 0.83 0.83 Hourly flow rate (vph) 28 148 127 20 20 31 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 3 conf vol vC3, signel (s) 4.1 6.5 6.2 tC, 2 stage (s) tF (s) 2.2 3.6 3.3 p0 queue free % 98 97 97 cM capacity (veh/h) 1434 634 906  Direction, Lane # EB 1 WB 1 SB 1 Volume Total 176 148 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Peak Hour Factor 0.83 0.83 0.88 0.88 0.83 0.83 0.83 Phourly flow rate (vph) 28 148 127 20 20 31 Pedestrians  Lane Width (ft)  Walking Speed (ft/s)  Percent Blockage  Right turn flare (veh)  Median type None  Median storage veh)  Upstream signal (ft)  oX, platoon unblocked vC, conflicting volume 148 341 138 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 148 341 138 cC, single (s) 4.1 6.5 6.2 cC, 2 stage (s)  IF (s) 2.2 3.6 3.3 op on queue free % 98 97 97 cM capacity (veh/h) 1434 634 906  Direction, Lane # EB 1 WB 1 SB 1  Volume Total 176 148 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Peak Hour Factor 0.83 0.83 0.88 0.88 0.83 0.83 Hourly flow rate (vph) 28 148 127 20 20 31 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) DX, platoon unblocked VC, conflicting volume 148 341 138 VC1, stage 1 conf vol VC2, stage 2 conf vol VC3, stage 2 conf vol VC4, unblocked vol 148 341 138 CC5, single (s) 4.1 6.5 6.2 CC7, 2 stage (s) FF (s) 2.2 3.6 3.3 DO queue free % 98 97 97 DM capacity (veh/h) 1434 634 906  Direction, Lane # EB 1 WB 1 SB 1 Volume Total 176 148 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pedestrians Lane Width (ft)  Walking Speed (ft/s)  Percent Blockage  Right turn flare (veh)  Median type  Median storage veh)  Upstream signal (ft)  DX, platoon unblocked  VC, conflicting volume  VC1, stage 1 conf vol  VC2, stage 2 conf vol  VC2, stage 2 conf vol  VC3, stage 1 conf vol  VC4, unblocked vol  VC5, stage 3 conf vol  VC6, single (s)  VC7, stage 6.5  VC8, single (s)  VC9, stage 9 conf vol  VC9, stage 1 conf vol  VC9, stage 9 conf vol  VC9, stag |
| Pedestrians Lane Width (ft)  Walking Speed (ft/s)  Percent Blockage  Right turn flare (veh)  Median type  Median storage veh)  Upstream signal (ft)  DX, platoon unblocked  VC, conflicting volume  VC1, stage 1 conf vol  VC2, stage 2 conf vol  VC2, stage 2 conf vol  VC3, stage 1 conf vol  VC4, stage 1 conf vol  VC5, stage 2 conf vol  VC5, stage 2 conf vol  VC6, single (s)  VC9, stage (s)  VC9, sta |
| Lane Width (ft)  Walking Speed (ft/s)  Percent Blockage  Right turn flare (veh)  Median type  Median storage veh)  Upstream signal (ft)  oX, platoon unblocked  vC, conflicting volume  vC1, stage 1 conf vol  vC2, stage 2 conf vol  vCu, unblocked vol  148  341  138  CC, single (s)  4.1  6.5  6.2  CC, 2 stage (s)  FF (s)  2.2  3.6  3.3  o0 queue free %  98  97  97  cM capacity (veh/h)  1434  SB 1  Volume Total  None  No |
| Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) oX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol vCu, unblocked vol signal (s) s |
| Percent Blockage Right turn flare (veh)  Median type  Median storage veh)  Upstream signal (ft) oX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, single (s) tF (s) |
| Right turn flare (veh)  Median type  Median storage veh)  Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol vCu, unblocked vol vCu, single (s) tC, single (s) tF (s) p3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Median type       None         Median storage veh)       Upstream signal (ft)         pX, platoon unblocked       341         vC, conflicting volume       148         vC1, stage 1 conf vol       341         vC2, stage 2 conf vol       341         vCu, unblocked vol       148         stC, single (s)       4.1         tC, 2 stage (s)       6.5         tF (s)       2.2         p0 queue free %       98         p0 queue free free free       98         p0 queue free free       98         p0 queue free free       98         p0 queue free       98         p1 queue free         p0 queue free<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 148 341 138 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 148 341 138 tC, single (s) 4.1 6.5 6.2 tC, 2 stage (s) tF (s) 2.2 3.6 3.3 p0 queue free % 98 97 97 cM capacity (veh/h) 1434 634 906  Direction, Lane # EB 1 WB 1 SB 1  Volume Total 176 148 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 148 341 138 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 148 341 138 tC, single (s) 4.1 6.5 6.2 tC, 2 stage (s) tF (s) 2.2 3.6 3.3 p0 queue free % 98 97 97 cM capacity (veh/h) 1434 634 906  Direction, Lane # EB 1 WB 1 SB 1  Volume Total 176 148 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DX, platoon unblocked  vC, conflicting volume  vC1, stage 1 conf vol  vC2, stage 2 conf vol  vCu, unblocked vol  tC, single (s)  tC, 2 stage (s)  tF (s)  2.2  3.6  3.3  00 queue free %  98  97  97  cM capacity (veh/h)  Direction, Lane #  EB 1 WB 1 SB 1  Volume Total  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  341  138  46.5  3.6  3.3  3.9  97  97  97  97  98  98  98  97  97  9                                                                                                                                                                                                                                                                               |
| vC1, stage 1 conf vol<br>vC2, stage 2 conf vol<br>vCu, unblocked vol 148 341 138<br>tC, single (s) 4.1 6.5 6.2<br>tC, 2 stage (s)<br>tF (s) 2.2 3.6 3.3<br>p0 queue free % 98 97 97<br>cM capacity (veh/h) 1434 634 906<br>Direction, Lane # EB 1 WB 1 SB 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| vC1, stage 1 conf vol<br>vC2, stage 2 conf vol<br>vCu, unblocked vol 148 341 138<br>tC, single (s) 4.1 6.5 6.2<br>tC, 2 stage (s)<br>tF (s) 2.2 3.6 3.3<br>p0 queue free % 98 97 97<br>cM capacity (veh/h) 1434 634 906<br>Direction, Lane # EB 1 WB 1 SB 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| vC2, stage 2 conf vol<br>vCu, unblocked vol 148 341 138<br>cC, single (s) 4.1 6.5 6.2<br>cC, 2 stage (s)<br>cF (s) 2.2 3.6 3.3<br>c0 queue free % 98 97 97<br>cM capacity (veh/h) 1434 634 906<br>Direction, Lane # EB 1 WB 1 SB 1<br>Volume Total 176 148 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| vCu, unblocked vol 148 341 138 tC, single (s) 4.1 6.5 6.2 tC, 2 stage (s) tF (s) 2.2 3.6 3.3 p0 queue free % 98 97 97 cM capacity (veh/h) 1434 634 906  Direction, Lane # EB 1 WB 1 SB 1  Volume Total 176 148 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| tC, single (s) 4.1 6.5 6.2 tC, 2 stage (s) tF (s) 2.2 3.6 3.3 to 0 queue free % 98 97 97 tcM capacity (veh/h) 1434 634 906  Direction, Lane # EB 1 WB 1 SB 1  Volume Total 176 148 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| tC, 2 stage (s) tF (s) 2.2 3.6 3.3 p0 queue free % 98 97 97 cM capacity (veh/h) 1434 634 906  Direction, Lane # EB 1 WB 1 SB 1  Volume Total 176 148 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.2 3.6 3.3 97 97 97 97 97 97 97 97 97 97 97 97 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 00 queue free % 98 97 97 cM capacity (veh/h) 1434 634 906  Direction, Lane # EB 1 WB 1 SB 1  Volume Total 176 148 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| cM capacity (veh/h)       1434       634       906         Direction, Lane #       EB 1       WB 1       SB 1         Volume Total       176       148       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Direction, Lane # EB 1 WB 1 SB 1 Volume Total 176 148 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Volume Total 176 148 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Volume Left 28 0 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Volume Right 0 20 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| cSH 1434 1700 775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Volume to Capacity 0.02 0.09 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Queue Length 95th (ft) 1 0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Control Delay (s) 1.3 0.0 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Lane LOS A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Approach Delay (s) 1.3 0.0 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Approach LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Average Delay 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Intersection Capacity Utilization 28.1% ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                              | ₾         | -        | •     | •     | •        | 4         | ~      |      |   |
|------------------------------|-----------|----------|-------|-------|----------|-----------|--------|------|---|
| Movement                     | EBU       | EBT      | EBR   | WBL   | WBT      | NBL       | NBR    |      |   |
| Lane Configurations          | Ð         | <b>^</b> | 7     | ች     | <b>^</b> | ች         | 7      |      | _ |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   |      |   |
| Total Lost time (s)          | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    |      |   |
| Lane Util. Factor            | 1.00      | 0.95     | 1.00  | 1.00  | 0.95     | 1.00      | 1.00   |      |   |
| Frt                          | 1.00      | 1.00     | 0.85  | 1.00  | 1.00     | 1.00      | 0.85   |      |   |
| Flt Protected                | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 0.95      | 1.00   |      |   |
| Satd. Flow (prot)            | 1770      | 3539     | 1538  | 1703  | 3505     | 1736      | 1583   |      |   |
| Flt Permitted                | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 0.95      | 1.00   |      |   |
| Satd. Flow (perm)            | 1770      | 3539     | 1538  | 1703  | 3505     | 1736      | 1583   |      |   |
| Volume (vph)                 | 1         | 1006     | 38    | 154   | 670      | 101       | 300    |      |   |
| Peak-hour factor, PHF        | 0.92      | 0.92     | 0.92  | 0.89  | 0.89     | 0.94      | 0.94   |      |   |
| Adj. Flow (vph)              | 1         | 1093     | 41    | 173   | 753      | 107       | 319    |      |   |
| RTOR Reduction (vph)         | 0         | 0        | 8     | 0     | 0        | 0         | 233    |      |   |
| Lane Group Flow (vph)        | 1         | 1093     | 33    | 173   | 753      | 107       | 86     |      |   |
| Heavy Vehicles (%)           | 2%        | 2%       | 5%    | 6%    | 3%       | 4%        | 2%     |      |   |
| Turn Type                    | Prot      |          | Perm  | Prot  |          | С         | ustom  |      |   |
| Protected Phases             | 1         | 6        |       | 4 5   | 2        | 3         | 2      |      |   |
| Permitted Phases             |           |          | 6     |       |          |           |        |      |   |
| Actuated Green, G (s)        | 0.6       | 72.4     | 72.4  | 24.2  | 49.8     | 14.4      | 49.8   |      |   |
| Effective Green, g (s)       | 1.3       | 73.5     | 73.5  | 23.7  | 50.9     | 15.8      | 50.9   |      |   |
| Actuated g/C Ratio           | 0.01      | 0.39     | 0.39  | 0.13  | 0.27     | 0.08      | 0.27   |      |   |
| Clearance Time (s)           | 4.7       | 5.1      | 5.1   |       | 5.1      | 5.4       | 5.1    |      |   |
| Vehicle Extension (s)        | 1.0       | 4.9      | 4.9   |       | 4.9      | 1.0       | 4.9    |      |   |
| Lane Grp Cap (vph)           | 12        | 1375     | 597   | 213   | 943      | 145       | 426    |      |   |
| v/s Ratio Prot               | c0.00     | c0.31    |       | c0.10 | c0.21    | c0.06     | 0.05   |      |   |
| v/s Ratio Perm               |           |          | 0.02  |       |          |           |        |      |   |
| v/c Ratio                    | 0.08      | 0.79     | 0.06  | 0.81  | 0.80     | 0.74      | 0.20   |      |   |
| Uniform Delay, d1            | 93.4      | 51.2     | 36.2  | 80.6  | 64.4     | 84.7      | 53.4   |      |   |
| Progression Factor           | 1.00      | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   |      |   |
| Incremental Delay, d2        | 1.1       | 3.7      | 0.1   | 19.5  | 5.5      | 15.5      | 0.5    |      |   |
| Delay (s)                    | 94.4      | 54.9     | 36.2  | 100.1 | 69.8     | 100.1     | 53.9   |      |   |
| Level of Service             | F         | D        | D     | F     | Е        | F         | D      |      |   |
| Approach Delay (s)           |           | 54.3     |       |       | 75.5     | 65.5      |        |      |   |
| Approach LOS                 |           | D        |       |       | Е        | Е         |        |      |   |
| Intersection Summary         |           |          |       |       |          |           |        |      |   |
| <b>HCM Average Control D</b> | •         |          | 64.1  | F     | HCM Le   | vel of Se | ervice | E    |   |
| <b>HCM Volume to Capacit</b> | •         |          | 0.79  |       |          |           |        |      |   |
| Actuated Cycle Length (      |           |          | 189.2 |       |          | ost time  |        | 24.0 |   |
| Intersection Capacity Ut     | ilization |          | 61.9% | I     | CU Leve  | el of Ser | vice   | В    |   |
| Analysis Period (min)        |           |          | 15    |       |          |           |        |      |   |

|                          | -         | •    | •     | <b>←</b> | 1         | <i>&gt;</i>   |  |
|--------------------------|-----------|------|-------|----------|-----------|---------------|--|
| Movement                 | EBT       | EBR  | WBL   | WBT      | NBL       | NBR           |  |
| Lane Configurations      | <b>1</b>  |      |       | 4        | W         |               |  |
| Ideal Flow (vphpl)       | 1900      | 1900 | 1900  | 1900     | 1900      | 1900          |  |
| Total Lost time (s)      | 4.0       |      |       | 4.0      | 4.0       |               |  |
| Lane Util. Factor        | 1.00      |      |       | 1.00     | 1.00      |               |  |
| Frt                      | 0.99      |      |       | 1.00     | 0.92      |               |  |
| Flt Protected            | 1.00      |      |       | 0.99     | 0.98      |               |  |
| Satd. Flow (prot)        | 1843      |      |       | 1850     | 1684      |               |  |
| Flt Permitted            | 1.00      |      |       | 0.99     | 0.98      |               |  |
| Satd. Flow (perm)        | 1843      |      |       | 1850     | 1684      |               |  |
| Volume (vph)             | 678       | 58   | 84    | 546      | 132       | 171           |  |
| Peak-hour factor, PHF    | 0.92      | 0.92 | 0.93  | 0.93     | 0.87      | 0.87          |  |
| Adj. Flow (vph)          | 737       | 63   | 90    | 587      | 152       | 197           |  |
| RTOR Reduction (vph)     | 2         | 0    | 0     | 0        | 31        | 0             |  |
| Lane Group Flow (vph)    | 798       | 0    | 0     | 677      | 318       | 0             |  |
| Turn Type                |           |      | Split |          |           |               |  |
| Protected Phases         | 2         |      | 1     | 1        | 3         |               |  |
| Permitted Phases         |           |      |       |          |           |               |  |
| Actuated Green, G (s)    | 50.1      |      |       | 50.1     | 20.0      |               |  |
| Effective Green, g (s)   | 51.1      |      |       | 50.9     | 19.5      |               |  |
| Actuated g/C Ratio       | 0.37      |      |       | 0.37     | 0.14      |               |  |
| Clearance Time (s)       | 5.0       |      |       | 4.8      | 3.5       |               |  |
| Vehicle Extension (s)    | 6.8       |      |       | 6.3      | 2.0       |               |  |
| Lane Grp Cap (vph)       | 676       |      |       | 676      | 236       |               |  |
| v/s Ratio Prot           | c0.43     |      |       | c0.37    | c0.19     |               |  |
| v/s Ratio Perm           |           |      |       |          |           |               |  |
| v/c Ratio                | 1.18      |      |       | 1.00     | 1.35      |               |  |
| Uniform Delay, d1        | 44.1      |      |       | 44.2     | 60.0      |               |  |
| Progression Factor       | 1.00      |      |       | 1.00     | 1.00      |               |  |
| Incremental Delay, d2    | 96.0      |      |       | 35.0     | 181.9     |               |  |
| Delay (s)                | 140.2     |      |       | 79.2     | 241.8     |               |  |
| Level of Service         | F         |      |       | E        | F         |               |  |
| Approach Delay (s)       | 140.2     |      |       | 79.2     | 241.8     |               |  |
| Approach LOS             | F         |      |       | Е        | F         |               |  |
| Intersection Summary     |           |      |       |          |           |               |  |
| HCM Average Control D    | elay      |      | 137.0 | F        | ICM Lev   | el of Service |  |
| HCM Volume to Capacit    |           |      | 1.13  |          |           |               |  |
| Actuated Cycle Length (  | (s)       |      | 139.4 | 5        | Sum of Io | ost time (s)  |  |
| Intersection Capacity Ut | ilization | 1    | 00.4% | ŀ        | CU Leve   | el of Service |  |
| Analysis Period (min)    |           |      | 15    |          |           |               |  |
| c Critical Lane Group    |           |      |       |          |           |               |  |

|                          | -         | •    | •     | ←       | 1       | ~              |   |     |
|--------------------------|-----------|------|-------|---------|---------|----------------|---|-----|
| Movement                 | EBT       | EBR  | WBL   | WBT     | NBL     | NBR            |   |     |
| Lane Configurations      | <b></b>   | 7    | ች     | <b></b> | ች       | 7"             |   |     |
| Ideal Flow (vphpl)       | 1900      | 1900 | 1900  | 1900    | 1900    | 1900           |   |     |
| Total Lost time (s)      | 4.0       | 4.0  | 4.0   | 4.0     | 4.0     | 4.0            |   |     |
| Lane Util. Factor        | 1.00      | 1.00 | 1.00  | 1.00    | 1.00    | 1.00           |   |     |
| Frt                      | 1.00      | 0.85 | 1.00  | 1.00    | 1.00    | 0.85           |   |     |
| Flt Protected            | 1.00      | 1.00 | 0.95  | 1.00    | 0.95    | 1.00           |   |     |
| Satd. Flow (prot)        | 1863      | 1583 | 1770  | 1863    | 1770    | 1583           |   |     |
| Flt Permitted            | 1.00      | 1.00 | 0.95  | 1.00    | 0.95    | 1.00           |   |     |
| Satd. Flow (perm)        | 1863      | 1583 | 1770  | 1863    | 1770    | 1583           |   |     |
| Volume (vph)             | 922       | 46   | 203   | 241     | 40      | 349            |   |     |
| Peak-hour factor, PHF    | 0.96      | 0.96 | 0.79  | 0.79    | 0.86    | 0.86           |   |     |
| Adj. Flow (vph)          | 960       | 48   | 257   | 305     | 47      | 406            |   |     |
| RTOR Reduction (vph)     | 0         | 9    | 0     | 0       | 0       | 65             |   |     |
| Lane Group Flow (vph)    | 960       | 39   | 257   | 305     | 47      | 341            |   |     |
| Turn Type                |           | Perm | Prot  |         |         | pm+ov          |   |     |
| Protected Phases         | 2         |      | 1     | 6       | 4       | 1              |   |     |
| Permitted Phases         |           | 2    |       |         |         | 4              |   |     |
| Actuated Green, G (s)    | 96.5      | 96.5 | 25.9  | 126.0   | 7.6     | 33.5           |   |     |
| Effective Green, g (s)   | 98.5      | 98.5 | 25.5  | 128.0   | 7.9     | 33.4           |   |     |
| Actuated g/C Ratio       | 0.68      | 0.68 | 0.18  | 0.89    | 0.05    | 0.23           |   |     |
| Clearance Time (s)       | 6.0       | 6.0  | 3.6   | 6.0     | 4.3     | 3.6            |   |     |
| Vehicle Extension (s)    | 2.0       | 2.0  | 1.0   | 2.0     | 1.0     | 1.0            |   |     |
| Lane Grp Cap (vph)       | 1275      | 1084 | 314   | 1657    | 97      | 411            |   |     |
| v/s Ratio Prot           | c0.52     |      | 0.15  | 0.16    | 0.03    | c0.15          |   |     |
| v/s Ratio Perm           |           | 0.02 |       |         |         | 0.07           |   |     |
| v/c Ratio                | 0.75      | 0.04 | 0.82  | 0.18    | 0.48    | 0.83           |   |     |
| Uniform Delay, d1        | 14.8      | 7.3  | 57.0  | 1.1     | 66.0    | 52.5           |   |     |
| Progression Factor       | 1.00      | 1.00 | 1.00  | 1.00    | 1.00    | 1.00           |   |     |
| Incremental Delay, d2    | 4.1       | 0.1  | 14.5  | 0.2     | 1.4     | 12.4           |   |     |
| Delay (s)                | 18.9      | 7.4  | 71.4  | 1.3     | 67.4    | 64.9           |   |     |
| Level of Service         | В         | Α    | Е     | Α       | Е       | E              |   |     |
| Approach Delay (s)       | 18.4      |      |       | 33.4    | 65.2    |                |   |     |
| Approach LOS             | В         |      |       | С       | E       |                |   |     |
| Intersection Summary     |           |      |       |         |         |                |   |     |
| HCM Average Control D    | )elay     |      | 33.0  | F       | ICM Lev | vel of Service |   | С   |
| HCM Volume to Capaci     |           |      | 0.77  |         |         |                |   |     |
| Actuated Cycle Length (  | ` '       |      | 143.9 |         |         | ost time (s)   | 3 | 3.0 |
| Intersection Capacity Ut | ilization |      | 76.8% | 10      | CU Leve | el of Service  |   | D   |
| Analysis Period (min)    |           |      | 15    |         |         |                |   |     |
| c Critical Lane Group    |           |      |       |         |         |                |   |     |

|                         | ۶                                  | <b>→</b> | •    | •    | -        | •         | 4      | †    | <i>&gt;</i> | <b>/</b> | ţ     | 4    |
|-------------------------|------------------------------------|----------|------|------|----------|-----------|--------|------|-------------|----------|-------|------|
| Movement                | EBL                                | EBT      | EBR  | WBL  | WBT      | WBR       | NBL    | NBT  | NBR         | SBL      | SBT   | SBR  |
| Lane Configurations     | 77                                 | <b>^</b> | 7    | 77   | 44       | 7         | ሻሻ     | ተተተ  | 7           | 77       | ተተተ   | 7    |
| Ideal Flow (vphpl)      | 1900                               | 1900     | 1900 | 1900 | 1900     | 1900      | 1900   | 1900 | 1900        | 1900     | 1900  | 1900 |
| Total Lost time (s)     | 4.0                                | 4.0      | 4.0  | 4.0  | 4.0      | 4.0       | 4.0    | 4.0  | 4.0         | 4.0      | 4.0   | 4.0  |
| Lane Util. Factor       | 0.97                               | 0.95     | 1.00 | 0.97 | 0.95     | 1.00      | 0.97   | 0.91 | 1.00        | 0.97     | 0.91  | 1.00 |
| Frt                     | 1.00                               | 1.00     | 0.85 | 1.00 | 1.00     | 0.85      | 1.00   | 1.00 | 0.85        | 1.00     | 1.00  | 0.85 |
| Flt Protected           | 0.95                               | 1.00     | 1.00 | 0.95 | 1.00     | 1.00      | 0.95   | 1.00 | 1.00        | 0.95     | 1.00  | 1.00 |
| Satd. Flow (prot)       | 3433                               | 3539     | 1583 | 3433 | 3539     | 1583      | 3433   | 5085 | 1583        | 3433     | 5085  | 1583 |
| Flt Permitted           | 0.95                               | 1.00     | 1.00 | 0.95 | 1.00     | 1.00      | 0.95   | 1.00 | 1.00        | 0.95     | 1.00  | 1.00 |
| Satd. Flow (perm)       | 3433                               | 3539     | 1583 | 3433 | 3539     | 1583      | 3433   | 5085 | 1583        | 3433     | 5085  | 1583 |
| Volume (vph)            | 297                                | 489      | 191  | 260  | 283      | 81        | 386    | 500  | 272         | 136      | 404   | 150  |
| Peak-hour factor, PHF   | 0.93                               | 0.93     | 0.93 | 0.92 | 0.92     | 0.92      | 0.95   | 0.95 | 0.95        | 0.92     | 0.92  | 0.92 |
| Adj. Flow (vph)         | 319                                | 526      | 205  | 283  | 308      | 88        | 406    | 526  | 286         | 148      | 439   | 163  |
| RTOR Reduction (vph)    | 0                                  | 0        | 144  | 0    | 0        | 66        | 0      | 0    | 184         | 0        | 0     | 125  |
| Lane Group Flow (vph)   | 319                                | 526      | 61   | 283  | 308      | 22        | 406    | 526  | 102         | 148      | 439   | 38   |
| Turn Type               | Prot                               |          | Perm | Prot |          | Perm      | Prot   |      | Perm        | Prot     |       | Perm |
| Protected Phases        | 7                                  | 4        |      | 3    | 8        |           | 5      | 2    |             | 1        | 6     |      |
| Permitted Phases        |                                    |          | 4    |      |          | 8         |        |      | 2           |          |       | 6    |
| Actuated Green, G (s)   | 12.2                               | 23.2     | 23.2 | 11.2 | 22.1     | 22.1      | 18.2   | 32.6 | 32.6        | 6.4      | 20.4  | 20.4 |
| Effective Green, g (s)  | 13.7                               | 24.8     | 24.8 | 12.7 | 23.8     | 23.8      | 19.7   | 34.1 | 34.1        | 7.9      | 22.3  | 22.3 |
| Actuated g/C Ratio      | 0.14                               | 0.26     | 0.26 | 0.13 | 0.25     | 0.25      | 0.21   | 0.36 | 0.36        | 0.08     | 0.23  | 0.23 |
| Clearance Time (s)      | 5.5                                | 5.6      | 5.6  | 5.5  | 5.7      | 5.7       | 5.5    | 5.5  | 5.5         | 5.5      | 5.9   | 5.9  |
| Vehicle Extension (s)   | 1.0                                | 5.0      | 5.0  | 1.0  | 5.9      | 5.9       | 1.0    | 5.4  | 5.4         | 1.0      | 5.4   | 5.4  |
| Lane Grp Cap (vph)      | 492                                | 919      | 411  | 457  | 882      | 395       | 708    | 1816 | 565         | 284      | 1187  | 370  |
| v/s Ratio Prot          | c0.09                              | c0.15    |      | 0.08 | 0.09     |           | c0.12  | 0.10 |             | 0.04     | c0.09 |      |
| v/s Ratio Perm          |                                    |          | 0.04 |      |          | 0.01      |        |      | 0.06        |          |       | 0.02 |
| v/c Ratio               | 0.65                               | 0.57     | 0.15 | 0.62 | 0.35     | 0.06      | 0.57   | 0.29 | 0.18        | 0.52     | 0.37  | 0.10 |
| Uniform Delay, d1       | 38.6                               | 30.7     | 27.2 | 39.1 | 29.5     | 27.3      | 34.1   | 22.0 | 21.1        | 42.0     | 30.7  | 28.7 |
| Progression Factor      | 1.00                               | 1.00     | 1.00 | 1.00 | 1.00     | 1.00      | 1.00   | 1.00 | 1.00        | 1.00     | 1.00  | 1.00 |
| Incremental Delay, d2   | 2.2                                | 1.4      | 0.3  | 1.8  | 0.7      | 0.2       | 0.7    | 0.2  | 0.4         | 8.0      | 0.5   | 0.3  |
| Delay (s)               | 40.8                               | 32.1     | 27.6 | 40.9 | 30.1     | 27.5      | 34.8   | 22.2 | 21.5        | 42.8     | 31.2  | 29.0 |
| Level of Service        | D                                  | С        | С    | D    | С        | С         | С      | С    | С           | D        | С     | С    |
| Approach Delay (s)      |                                    | 33.9     |      |      | 34.3     |           |        | 26.2 |             |          | 33.0  |      |
| Approach LOS            |                                    | С        |      |      | С        |           |        | С    |             |          | С     |      |
| Intersection Summary    |                                    |          |      |      |          |           |        |      |             |          |       |      |
| HCM Average Control D   | -                                  |          | 31.3 | H    | HCM Le   | vel of Se | ervice |      | С           |          |       |      |
| HCM Volume to Capacit   |                                    |          | 0.51 |      |          |           |        |      |             |          |       |      |
| Actuated Cycle Length ( |                                    |          | 95.5 |      | Sum of I |           |        |      | 12.0        |          |       |      |
|                         | section Capacity Utilization 53.1% |          |      |      |          | el of Sei | vice   |      | Α           |          |       |      |
| Analysis Period (min)   |                                    |          | 15   |      |          |           |        |      |             |          |       |      |
| c Critical Lane Group   |                                    |          |      |      |          |           |        |      |             |          |       |      |

|                              | ۶         | <b>→</b>   | •     | •    | <b>←</b>   | •         | 4      | <b>†</b> | <i>&gt;</i> | <b>/</b> | ļ               | 4    |
|------------------------------|-----------|------------|-------|------|------------|-----------|--------|----------|-------------|----------|-----------------|------|
| Movement                     | EBL       | EBT        | EBR   | WBL  | WBT        | WBR       | NBL    | NBT      | NBR         | SBL      | SBT             | SBR  |
| Lane Configurations          | 1,1       | <b>†</b> † | 7     | 1,1  | <b>†</b> † | 7         | ሻሻ     | <b>^</b> | 7           | 44       | ተተ <sub>ጉ</sub> |      |
| Ideal Flow (vphpl)           | 1900      | 1900       | 1900  | 1900 | 1900       | 1900      | 1900   | 1900     | 1900        | 1900     | 1900            | 1900 |
| Total Lost time (s)          | 4.0       | 4.0        | 4.0   | 4.0  | 4.0        | 4.0       | 4.0    | 4.0      | 4.0         | 4.0      | 4.0             |      |
| Lane Util. Factor            | 0.97      | 0.95       | 1.00  | 0.97 | 0.95       | 1.00      | 0.97   | 0.91     | 1.00        | 0.97     | 0.91            |      |
| Frt                          | 1.00      | 1.00       | 0.85  | 1.00 | 1.00       | 0.85      | 1.00   | 1.00     | 0.85        | 1.00     | 0.97            |      |
| Flt Protected                | 0.95      | 1.00       | 1.00  | 0.95 | 1.00       | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00            |      |
| Satd. Flow (prot)            | 3433      | 3539       | 1583  | 3433 | 3539       | 1583      | 3433   | 5085     | 1583        | 3433     | 4924            |      |
| Flt Permitted                | 0.95      | 1.00       | 1.00  | 0.95 | 1.00       | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00            |      |
| Satd. Flow (perm)            | 3433      | 3539       | 1583  | 3433 | 3539       | 1583      | 3433   | 5085     | 1583        | 3433     | 4924            |      |
| Volume (vph)                 | 402       | 533        | 206   | 239  | 416        | 131       | 210    | 1161     | 168         | 116      | 758             | 203  |
| Peak-hour factor, PHF        | 0.94      | 0.94       | 0.94  | 0.92 | 0.92       | 0.92      | 0.95   | 0.95     | 0.95        | 0.95     | 0.95            | 0.95 |
| Adj. Flow (vph)              | 428       | 567        | 219   | 260  | 452        | 142       | 221    | 1222     | 177         | 122      | 798             | 214  |
| RTOR Reduction (vph)         | 0         | 0          | 147   | 0    | 0          | 112       | 0      | 0        | 67          | 0        | 22              | 0    |
| Lane Group Flow (vph)        | 428       | 567        | 72    | 260  | 452        | 30        | 221    | 1222     | 110         | 122      | 990             | 0    |
| Turn Type                    | Prot      |            | Perm  | Prot |            | Perm      | Prot   |          | Perm        | Prot     |                 |      |
| Protected Phases             | 7         | 4          |       | 3    | 8          |           | 5      | 2        |             | 1        | 6               |      |
| Permitted Phases             |           |            | 4     |      |            | 8         |        |          | 2           |          |                 |      |
| Actuated Green, G (s)        | 21.8      | 33.4       | 33.4  | 12.6 | 24.4       | 24.4      | 11.2   | 46.8     | 46.8        | 6.5      | 42.1            |      |
| Effective Green, g (s)       | 23.3      | 35.1       | 35.1  | 14.1 | 25.9       | 25.9      | 12.7   | 48.4     | 48.4        | 8.0      | 43.7            |      |
| Actuated g/C Ratio           | 0.19      | 0.29       | 0.29  | 0.12 | 0.21       | 0.21      | 0.10   | 0.40     | 0.40        | 0.07     | 0.36            |      |
| Clearance Time (s)           | 5.5       | 5.7        | 5.7   | 5.5  | 5.5        | 5.5       | 5.5    | 5.6      | 5.6         | 5.5      | 5.6             |      |
| Vehicle Extension (s)        | 1.0       | 4.9        | 4.9   | 1.0  | 4.9        | 4.9       | 1.0    | 4.9      | 4.9         | 1.0      | 4.9             |      |
| Lane Grp Cap (vph)           | 658       | 1022       | 457   | 398  | 754        | 337       | 359    | 2024     | 630         | 226      | 1770            |      |
| v/s Ratio Prot               | c0.12     | c0.16      |       | 0.08 | 0.13       |           | c0.06  | c0.24    |             | 0.04     | 0.20            |      |
| v/s Ratio Perm               |           |            | 0.05  |      |            | 0.02      |        |          | 0.07        |          |                 |      |
| v/c Ratio                    | 0.65      | 0.55       | 0.16  | 0.65 | 0.60       | 0.09      | 0.62   | 0.60     | 0.17        | 0.54     | 0.56            |      |
| Uniform Delay, d1            | 45.4      | 36.6       | 32.2  | 51.4 | 43.2       | 38.4      | 52.1   | 29.0     | 23.7        | 55.0     | 31.2            |      |
| Progression Factor           | 1.00      | 1.00       | 1.00  | 1.00 | 1.00       | 1.00      | 1.00   | 1.00     | 1.00        | 1.00     | 1.00            |      |
| Incremental Delay, d2        | 1.8       | 1.1        | 0.3   | 2.9  | 1.9        | 0.2       | 2.2    | 0.7      | 0.3         | 1.2      | 0.6             |      |
| Delay (s)                    | 47.2      | 37.7       | 32.6  | 54.3 | 45.1       | 38.6      | 54.3   | 29.7     | 23.9        | 56.3     | 31.9            |      |
| Level of Service             | D         | D          | С     | D    | D          | D         | D      | С        | С           | Е        | С               |      |
| Approach Delay (s)           |           | 40.1       |       |      | 46.8       |           |        | 32.5     |             |          | 34.5            |      |
| Approach LOS                 |           | D          |       |      | D          |           |        | С        |             |          | С               |      |
| Intersection Summary         |           |            |       |      |            |           |        |          |             |          |                 |      |
| HCM Average Control D        |           |            | 37.4  | H    | ICM Le     | vel of Se | ervice |          | D           |          |                 |      |
| <b>HCM Volume to Capacit</b> | •         |            | 0.59  |      |            |           |        |          |             |          |                 |      |
| Actuated Cycle Length (      | ,         |            | 121.6 |      |            | ost time  |        |          | 8.0         |          |                 | _    |
| Intersection Capacity Ut     | ilization |            | 62.1% |      |            |           |        |          | В           |          |                 |      |
| Analysis Period (min)        |           |            | 15    |      |            |           |        |          |             |          |                 | _    |
| c Critical Lane Group        |           |            |       |      |            |           |        |          |             |          |                 |      |

|                              | ۶         | -        | $\rightarrow$ | •    | <b>←</b> | •         | 4      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ţ        | 4    |
|------------------------------|-----------|----------|---------------|------|----------|-----------|--------|----------|-------------|-------------|----------|------|
| Movement                     | EBL       | EBT      | EBR           | WBL  | WBT      | WBR       | NBL    | NBT      | NBR         | SBL         | SBT      | SBR  |
| Lane Configurations          | ሻ         | <b>^</b> | 7             | ሻ    | <b>^</b> | 7         | 44     | <b>^</b> | 7           | ሻ           | <b>^</b> | 7    |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900          | 1900 | 1900     | 1900      | 1900   | 1900     | 1900        | 1900        | 1900     | 1900 |
| Total Lost time (s)          | 4.0       | 4.0      | 4.0           | 4.0  | 4.0      | 4.0       | 4.0    | 4.0      | 4.0         | 4.0         | 4.0      | 4.0  |
| Lane Util. Factor            | 1.00      | 0.95     | 1.00          | 1.00 | 0.95     | 1.00      | 0.97   | 0.95     | 1.00        | 1.00        | 0.95     | 1.00 |
| Frt                          | 1.00      | 1.00     | 0.85          | 1.00 | 1.00     | 0.85      | 1.00   | 1.00     | 0.85        | 1.00        | 1.00     | 0.85 |
| Flt Protected                | 0.95      | 1.00     | 1.00          | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95        | 1.00     | 1.00 |
| Satd. Flow (prot)            | 1770      | 3539     | 1583          | 1770 | 3539     | 1583      | 3433   | 3539     | 1583        | 1770        | 3539     | 1583 |
| Flt Permitted                | 0.95      | 1.00     | 1.00          | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95        | 1.00     | 1.00 |
| Satd. Flow (perm)            | 1770      | 3539     | 1583          | 1770 | 3539     | 1583      | 3433   | 3539     | 1583        | 1770        | 3539     | 1583 |
| Volume (vph)                 | 183       | 200      | 309           | 106  | 254      | 124       | 515    | 1111     | 83          | 130         | 1078     | 131  |
| Peak-hour factor, PHF        | 0.92      | 0.92     | 0.92          | 0.92 | 0.92     | 0.92      | 0.90   | 0.90     | 0.90        | 0.90        | 0.90     | 0.90 |
| Adj. Flow (vph)              | 199       | 217      | 336           | 115  | 276      | 135       | 572    | 1234     | 92          | 144         | 1198     | 146  |
| RTOR Reduction (vph)         | 0         | 0        | 284           | 0    | 0        | 120       | 0      | 0        | 41          | 0           | 0        | 65   |
| Lane Group Flow (vph)        | 199       | 217      | 52            | 115  | 276      | 15        | 572    | 1234     | 51          | 144         | 1198     | 81   |
| Turn Type                    | Prot      |          | Perm          | Prot |          | Perm      | Prot   |          | Perm        | Prot        |          | Perm |
| Protected Phases             | 7         | 4        |               | 3    | 8        |           | 5      | 2        |             | 1           | 6        |      |
| Permitted Phases             |           |          | 4             |      |          | 8         |        |          | 2           |             |          | 6    |
| Actuated Green, G (s)        | 16.4      | 16.7     | 16.7          | 10.7 | 11.0     | 11.0      | 23.3   | 58.8     | 58.8        | 13.8        | 49.3     | 49.3 |
| Effective Green, g (s)       | 16.4      | 18.7     | 18.7          | 10.7 | 13.0     | 13.0      | 23.3   | 60.8     | 60.8        | 13.8        | 51.3     | 51.3 |
| Actuated g/C Ratio           | 0.14      | 0.16     | 0.16          | 0.09 | 0.11     | 0.11      | 0.19   | 0.51     | 0.51        | 0.12        | 0.43     | 0.43 |
| Clearance Time (s)           | 4.0       | 6.0      | 6.0           | 4.0  | 6.0      | 6.0       | 4.0    | 6.0      | 6.0         | 4.0         | 6.0      | 6.0  |
| Vehicle Extension (s)        | 2.0       | 4.5      | 4.5           | 2.0  | 5.0      | 5.0       | 2.0    | 3.4      | 3.4         | 2.0         | 4.1      | 4.1  |
| Lane Grp Cap (vph)           | 242       | 551      | 247           | 158  | 383      | 171       | 667    | 1793     | 802         | 204         | 1513     | 677  |
| v/s Ratio Prot               | c0.11     | 0.06     |               | 0.06 | c0.08    |           | c0.17  | 0.35     |             | 0.08        | c0.34    |      |
| v/s Ratio Perm               |           |          | 0.03          |      |          | 0.01      |        |          | 0.03        |             |          | 0.05 |
| v/c Ratio                    | 0.82      | 0.39     | 0.21          | 0.73 | 0.72     | 0.09      | 0.86   | 0.69     | 0.06        | 0.71        | 0.79     | 0.12 |
| Uniform Delay, d1            | 50.4      | 45.6     | 44.2          | 53.2 | 51.7     | 48.2      | 46.7   | 22.4     | 15.1        | 51.1        | 29.7     | 20.7 |
| Progression Factor           | 1.00      | 1.00     | 1.00          | 1.00 | 1.00     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00        | 1.00     | 1.00 |
| Incremental Delay, d2        | 18.8      | 0.8      | 0.7           | 13.2 | 8.0      | 0.5       | 10.2   | 2.2      | 0.2         | 8.7         | 4.3      | 0.4  |
| Delay (s)                    | 69.2      | 46.4     | 45.0          | 66.4 | 59.7     | 48.6      | 57.0   | 24.6     | 15.2        | 59.9        | 34.1     | 21.1 |
| Level of Service             | E         | D        | D             | Е    | E        | D         | Е      | С        | В           | E           | С        | С    |
| Approach Delay (s)           |           | 51.8     |               |      | 58.3     |           |        | 33.9     |             |             | 35.3     |      |
| Approach LOS                 |           | D        |               |      | E        |           |        | С        |             |             | D        |      |
| Intersection Summary         |           |          |               |      |          |           |        |          |             |             |          |      |
| HCM Average Control D        |           |          | 40.0          | H    | ICM Le   | vel of Se | ervice |          | D           |             |          |      |
| <b>HCM Volume to Capacit</b> |           |          | 0.80          |      |          |           |        |          |             |             |          |      |
| Actuated Cycle Length (      | ,         |          | 120.0         |      | Sum of l |           |        |          | 16.0        |             |          |      |
| Intersection Capacity Ut     | ilization |          | 75.0%         | l l  | CU Leve  | el of Sei | vice   |          | D           |             |          |      |
| Analysis Period (min)        |           |          | 15            |      |          |           |        |          |             |             |          |      |
| c Critical Lane Group        |           |          |               |      |          |           |        |          |             |             |          |      |

Appendix A-2: Freeway Operations

Existing Conditions

HCM 2000 Basic Freeway Segments Capacity Analysis Jurisdiction Sacramento County
Analysis Year Existing
Analyst F&P

Agency or Company Caltrans
Date 10/4/2010
Project Description Elverta Specific Plan

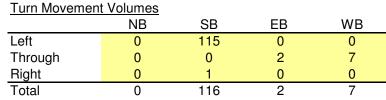
| Genera | l Information |                              | F           | low Rate Ca | alculatio | n     |         |        |      |                |     |          |                |                         | Speed Calcu | lation | Results    |          |
|--------|---------------|------------------------------|-------------|-------------|-----------|-------|---------|--------|------|----------------|-----|----------|----------------|-------------------------|-------------|--------|------------|----------|
|        | Freeway/      |                              | Analysis    | Volume      |           |       |         | Truck/ |      |                |     |          |                | Flow Rate               | Measured    | S      | Density, D | Level of |
|        | Direction     | From/To                      | Time Period | (vph)       | PHF       | Lanes | Terrain | Bus %  | RV % | E <sub>T</sub> | ER  | $f_{HV}$ | f <sub>P</sub> | v <sub>p</sub> (pcphpl) | FFS (mph)   | (mph)  | (pcplpm)   | Service  |
| 1      | SR-99 SB      | Sankey Road to Riego Road    | AM          | 1,865       | 0.92      | 2     | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 1,049                   | 65.0        | 60.5   | 17.3       | В        |
| 2      | SR 99 SB      | Riego Road to Elverta Road   | AM          | 2,411       | 0.92      | 2     | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 1,356                   | 65.0        | 60.5   | 22.4       | С        |
| 3      | SR 99 SB      | Elverta Road to Elkhorn Blvd | AM          | 2,724       | 0.92      | 2     | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 1,532                   | 65.0        | 60.5   | 25.3       | С        |
| 4      | SR 99 SB      | Elkhorn Blvd to I-5          | AM          | 3,473       | 0.92      | 2     | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 1,954                   | 65.0        | 58.9   | 33.2       | D        |
| 5      | SR 99 NB      | I-5 to Elkhorn Blvd          | AM          | 1,108       | 0.92      | 2     | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 671                     | 65.0        | 60.5   | 11.1       | В        |
| 6      | SR 99 NB      | Elkhorn Blvd to Elverta Road | AM          | 938         | 0.92      | 2     | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 568                     | 65.0        | 60.5   | 9.4        | Α        |
| 7      | SR 99 NB      | Elverta Road to Riego Road   | AM          | 870         | 0.92      | 2     | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 527                     | 65.0        | 60.5   | 8.7        | Α        |
| 8      | SR 99 NB      | Riego Road to Sankey Road    | AM          | 713         | 0.92      | 2     | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 432                     | 65.0        | 60.5   | 7.1        | Α        |
| 1      |               | Sankey Road to Riego Road    | PM          | 1,054       | 0.92      | 2     | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 587                     | 65.0        | 60.5   | 9.7        | Α        |
| 2      | SR 99 SB      | Riego Road to Elverta Road   | PM          | 1,203       | 0.92      | 2     | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 670                     | 65.0        | 60.5   | 11.1       | В        |
| 3      | SR 99 SB      | Elverta Road to Elkhorn Blvd | PM          | 1,285       | 0.92      | 2     | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 716                     | 65.0        | 60.5   | 11.8       | В        |
| 4      | SR 99 SB      | Elkhorn Blvd to I-5          | PM          | 1,555       | 0.92      | 2     | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 866                     | 65.0        | 60.5   | 14.3       | В        |
| 5      | SR 99 NB      | I-5 to Elkhorn Blvd          | PM          | 3,859       | 0.92      | 2     | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 2,234                   | 65.0        | 53.4   | 41.8       | E        |
| 6      | SR 99 NB      | Elkhorn Blvd to Elverta Road | PM          | 2,899       | 0.92      | 2     | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 1,678                   | 65.0        | 60.5   | 27.8       | D        |
| 7      | SR 99 NB      | Elverta Road to Riego Road   | PM          | 2,493       | 0.92      | 2     | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 1,443                   | 65.0        | 60.5   | 23.9       | С        |
| 8      | SR 99 NB      | Riego Road to Sankey Road    | PM          | 1,970       | 0.92      | 2     | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 1,140                   | 65.0        | 60.5   | 18.8       | С        |
|        |               |                              |             |             |           |       |         |        |      |                |     |          |                |                         |             |        |            | 1        |

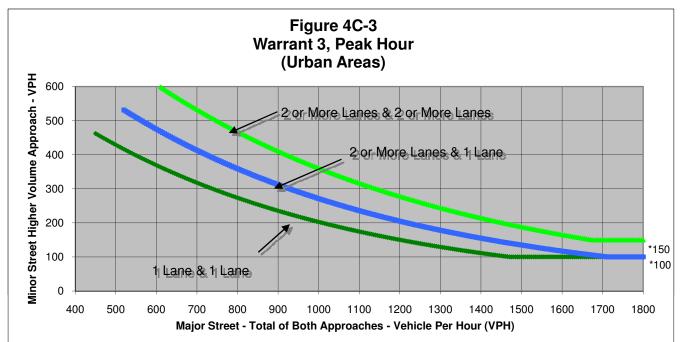
Page 1 of 1 11/23/2010 Fehr & Peers

Appendix A-3: Peak Hour Signal Warrant Analysis

Existing Conditions




Elkhorn Boulevard SR 99 SB Off-Ramp Sheet No 1 of


Project Elverta Specific Plan EIS
Scenario Existing Conditions

Peak Hour AM

**Major Street Direction** 

|   | North/South |
|---|-------------|
| Х | East/West   |



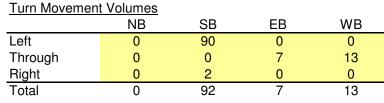


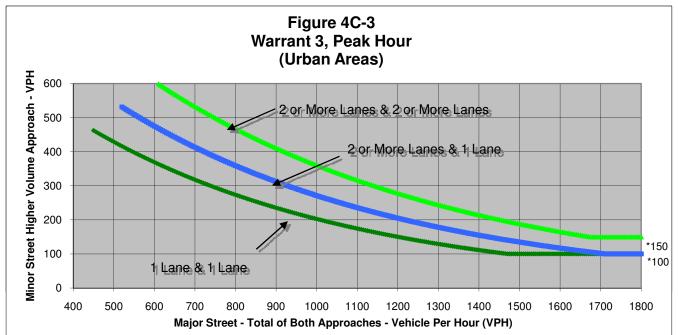
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street      | Minor Street      | Warrant Met |
|--------------------------|-------------------|-------------------|-------------|
|                          | Elkhorn Boulevard | SR 99 SB Off-Ramp | warrant wet |
| Number of Approach Lanes | 1                 | 1                 | NO          |
| Traffic Volume (VPH) *   | 9                 | 116               | <u></u>     |




Elkhorn Boulevard SR 99 SB Off-Ramp Sheet No 2 of


Project Elverta Specific Plan EIS
Scenario Existing Conditions

Peak Hour PM

Major Street Direction

|   | North/South |
|---|-------------|
| Х | East/West   |





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

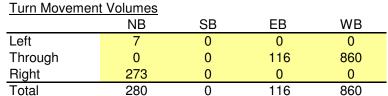
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

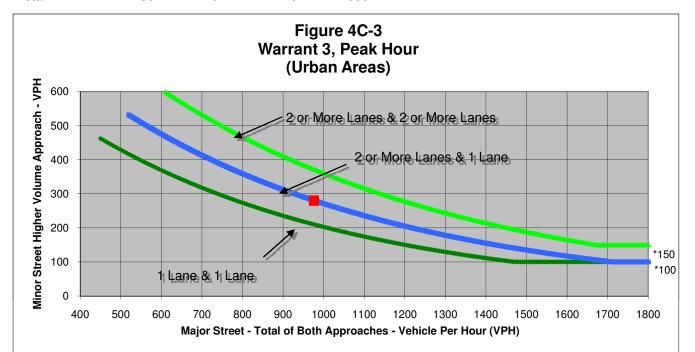
|                          | Major Street      | Minor Street      | Warrant Met |
|--------------------------|-------------------|-------------------|-------------|
|                          | Elkhorn Boulevard | SR 99 SB Off-Ramp | warrant wet |
| Number of Approach Lanes | 1                 | 1                 | NO          |
| Traffic Volume (VPH) *   | 20                | 92                | <u></u>     |



Elkhorn Boulevard SR 99 NB Off-Ramp Sheet No 1

of


2


Project Scenario Elverta Specific Plan EIS
Existing Conditions

Peak Hour AM

Major Street Direction

North/South
x East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street      | Minor Street      | Warrant Met |
|--------------------------|-------------------|-------------------|-------------|
|                          | Elkhorn Boulevard | SR 99 NB Off-Ramp | warrant wet |
| Number of Approach Lanes | 1                 | 1                 | <u>YES</u>  |
| Traffic Volume (VPH) *   | 976               | 280               | <u> </u>    |

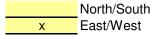
<sup>\*</sup> Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

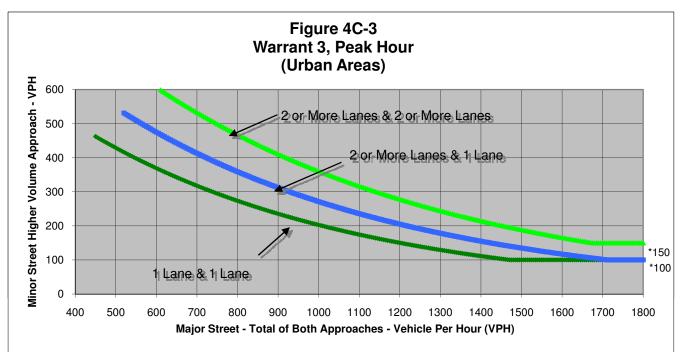
Traffic Volume for Minor Street is the Volume of High Volume Approach.



Elkhorn Boulevard SR 99 NB Off-Ramp Sheet No

of


Project Scenario Elverta Specific Plan EIS **Existing Conditions** 


Peak Hour PM

**Turn Movement Volumes** 

|         | NB    | SB | EB | WB  |
|---------|-------|----|----|-----|
| Left    | 19    | 0  | 0  | 0   |
| Through | 0     | 0  | 94 | 350 |
| Right   | 1,062 | 0  | 0  | 0   |
| Total   | 1,081 | 0  | 94 | 350 |

Major Street Direction





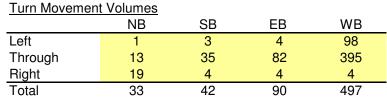
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

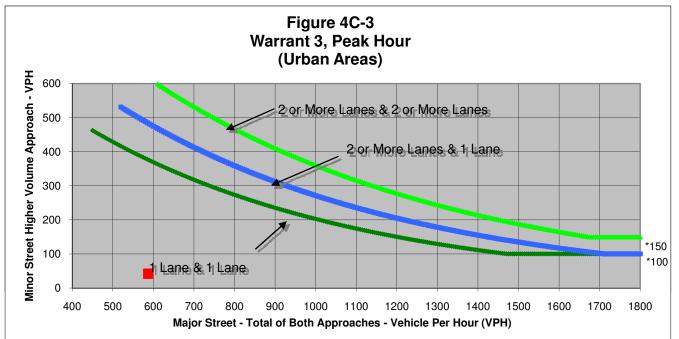
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street      | Minor Street      | Warrant Met |
|--------------------------|-------------------|-------------------|-------------|
|                          | Elkhorn Boulevard | SR 99 NB Off-Ramp | warrant wet |
| Number of Approach Lanes | 1                 | 1                 | <u>YES</u>  |
| Traffic Volume (VPH) *   | 444               | 1,081             | <u> </u>    |



Elverta Road E. Levee Road Sheet No of


Project Scenario


Elverta Specific Plan EIS **Existing Conditions** 

Peak Hour AM

Major Street Direction

North/South East/West





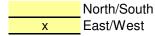
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

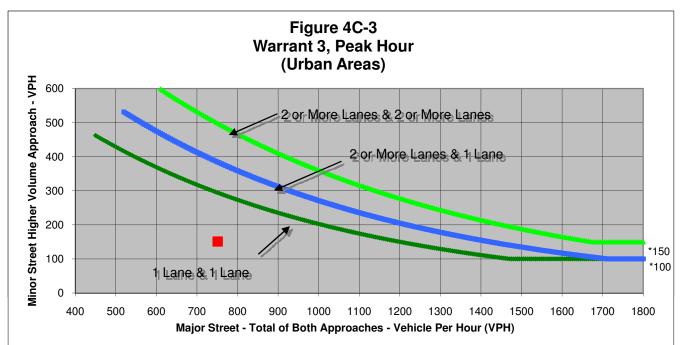
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street  | Warrant Met        |
|--------------------------|--------------|---------------|--------------------|
|                          | Elverta Road | E. Levee Road | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1             | NO                 |
| Traffic Volume (VPH) *   | 587          | 42            | <u></u>            |



Elverta Road E. Levee Road Sheet No 2 of 2


Project Elverta Specific Plan EIS
Scenario Existing Conditions


Peak Hour PM

Turn Movement Volumes

|         | NB  | SB | EB  | WB  |
|---------|-----|----|-----|-----|
| Left    | 4   | 4  | 22  | 29  |
| Through | 60  | 25 | 596 | 104 |
| Right   | 87  | 2  | 0   | 0   |
| Total   | 151 | 31 | 618 | 133 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street  | Warrant Met |
|--------------------------|--------------|---------------|-------------|
|                          | Elverta Road | E. Levee Road | warrant wet |
| Number of Approach Lanes | 1            | 1             | NO          |
| Traffic Volume (VPH) *   | 751          | 151           | <u></u>     |

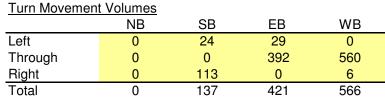


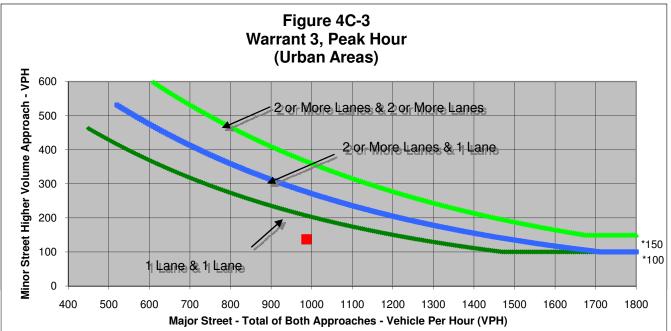
Elkhorn Boulevard

E. Levee Road

Sheet No

of


2


Project Scenario Elverta Specific Plan EIS
Existing Conditions

Peak Hour AM

Major Street Direction

North/South
x East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street      | Minor Street  | Warrant Met        |
|--------------------------|-------------------|---------------|--------------------|
|                          | Elkhorn Boulevard | E. Levee Road | <u>wairant wet</u> |
| Number of Approach Lanes | 1                 | 1             | NO                 |
| Traffic Volume (VPH) *   | 987               | 137           | <u></u>            |



0

0

0

Major Street Minor Street

Left

Right

Through

**Turn Movement Volumes** 

Elkhorn Boulevard
E. Levee Road

SB

11

0

49

EB

110

873

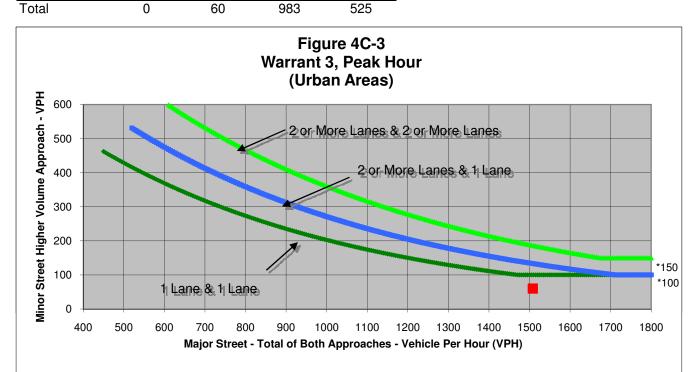
0

Sheet No

2

of

2


Project Scenario Elverta Specific Plan EIS
Existing Conditions

Peak Hour PM

Major Street Direction

| WB  |  |
|-----|--|
| 0   |  |
| 491 |  |
| 34  |  |

North/South
x East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street      | Minor Street  | Warrant Met        |
|--------------------------|-------------------|---------------|--------------------|
|                          | Elkhorn Boulevard | E. Levee Road | <u>wairant wet</u> |
| Number of Approach Lanes | 1                 | 1             | NO                 |
| Traffic Volume (VPH) *   | 1,508             | 60            | <u></u>            |

<sup>\*</sup> Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

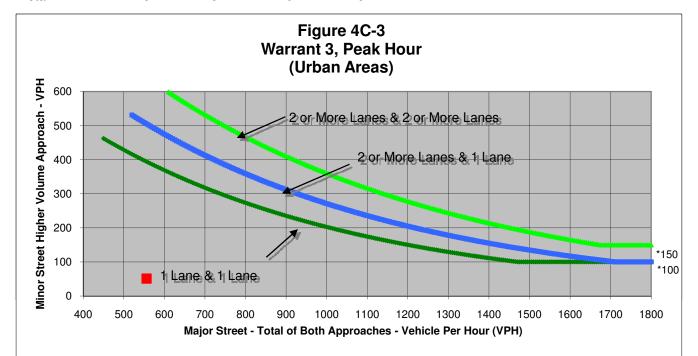
Traffic Volume for Minor Street is the Volume of High Volume Approach.



Elverta Road Sorento Road Sheet No

of

Project Scenario


Elverta Specific Plan EIS **Existing Conditions** 

Peak Hour AM

Major Street Direction

| <u>Turn Movement Volumes</u> |    |    |     |     |
|------------------------------|----|----|-----|-----|
|                              | NB | SB | EB  | WB  |
| Left                         | 0  | 0  | 4   | 3   |
| Through                      | 1  | 1  | 99  | 447 |
| Right                        | 5  | 50 | 1   | 2   |
| Total                        | 6  | 51 | 104 | 452 |

North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

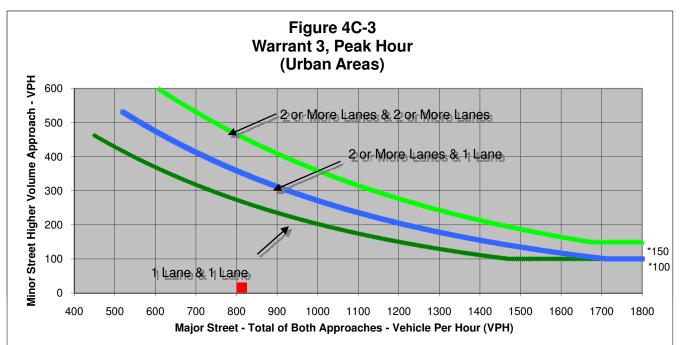
|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | Sorento Road | <u>wairant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 556          | 51           | <u></u>            |



Elverta Road Sorento Road Sheet No 2 of 2

Project Elv Scenario Ex

Elverta Specific Plan EIS
Existing Conditions


Peak Hour PM

**Turn Movement Volumes** 

|         | NB | SB | EB  | WB  |
|---------|----|----|-----|-----|
| Left    | 1  | 3  | 33  | 3   |
| Through | 1  | 2  | 651 | 121 |
| Right   | 5  | 11 | 3   | 2   |
| Total   | 7  | 16 | 687 | 126 |

Major Street Direction





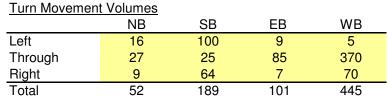
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

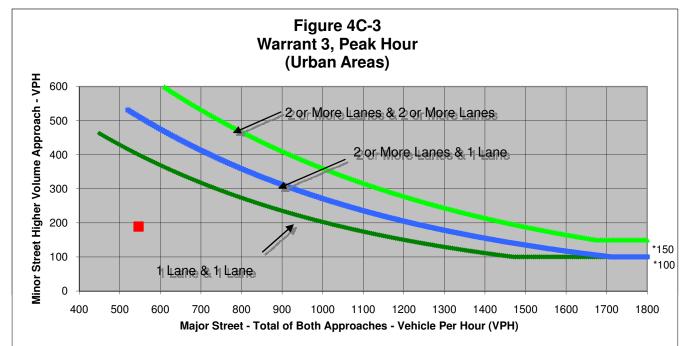
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | Sorento Road | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 813          | 16           | <u></u>            |



Elverta Road Elwyn Road


Sheet No of


Project Scenario

Elverta Specific Plan EIS **Existing Conditions** Peak Hour AM

Major Street Direction

|   | North/South |  |
|---|-------------|--|
| X | East/West   |  |



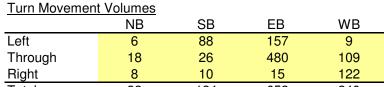


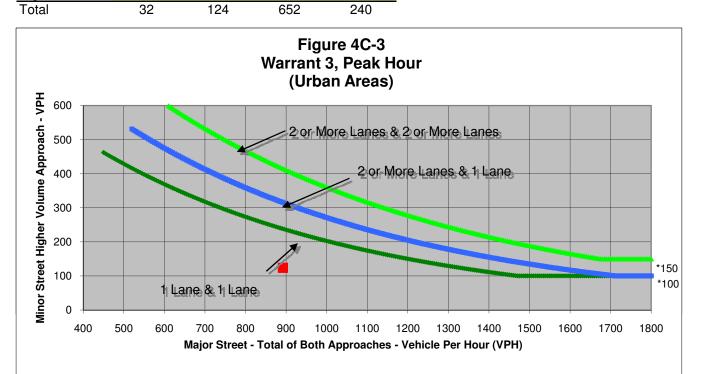
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | Elwyn Road   | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 546          | 189          | <u></u>            |




Elverta Road Elwyn Road Sheet No 2 of


Project Elverta Specific Plan EIS
Scenario Existing Conditions

Peak Hour PM

Major Street Direction

|   | North/South |
|---|-------------|
| Х | East/West   |





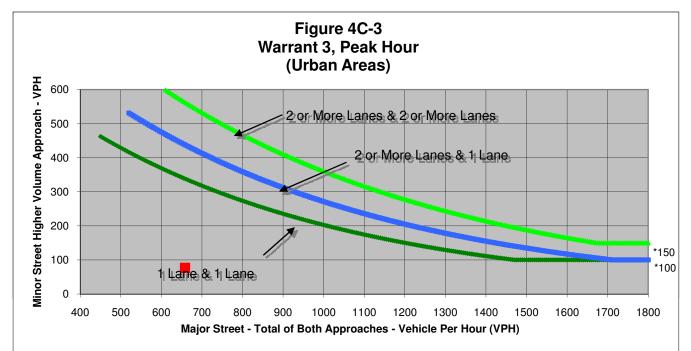
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | Elwyn Road   | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 892          | 124          | <u></u>            |



Elverta Road Rio Linda Blvd Sheet No 1 of


Project Elverta Specific Plan EIS
Scenario Existing Conditions

Peak Hour AM

<u>Turn Movement Volumes</u> <u>Major Street Direction</u>

|         | NB | SB | EB  | WB  |
|---------|----|----|-----|-----|
| Left    | 49 | 0  | 0   | 59  |
| Through | 0  | 0  | 132 | 385 |
| Right   | 28 | 0  | 82  | 0   |
| Total   | 77 | 0  | 214 | 444 |

North/South
x East/West

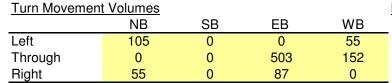


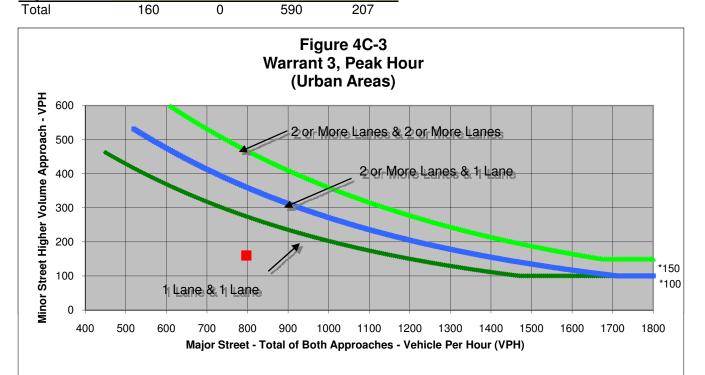
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street   | Warrant Met        |
|--------------------------|--------------|----------------|--------------------|
|                          | Elverta Road | Rio Linda Blvd | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1              | NO                 |
| Traffic Volume (VPH) *   | 658          | 77             | <u></u>            |




Elverta Road Rio Linda Blvd Sheet No 2 of


Project Scenario Elverta Specific Plan EIS
Existing Conditions

Peak Hour PM

Major Street Direction

North/South East/West

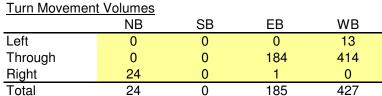


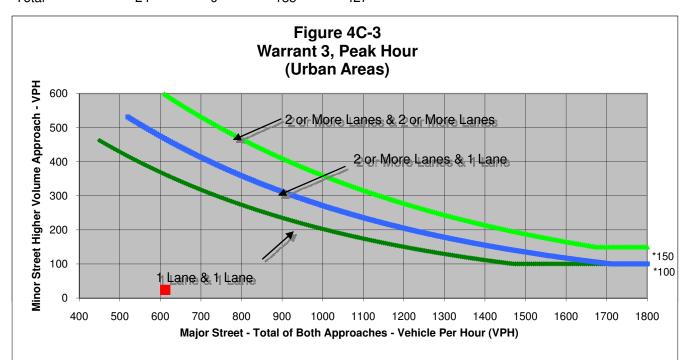


\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street   | Warrant Met |
|--------------------------|--------------|----------------|-------------|
|                          | Elverta Road | Rio Linda Blvd | warrant wet |
| Number of Approach Lanes | 1            | 1              | NO          |
| Traffic Volume (VPH) *   | 797          | 160            | <u></u>     |





Elverta Road 9th Street Sheet No 1 of 2

Project Elverta Specific Plan EIS
Scenario Existing Conditions
Peak Hour AM

Major Street Direction

North/South
x East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

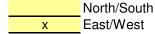
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

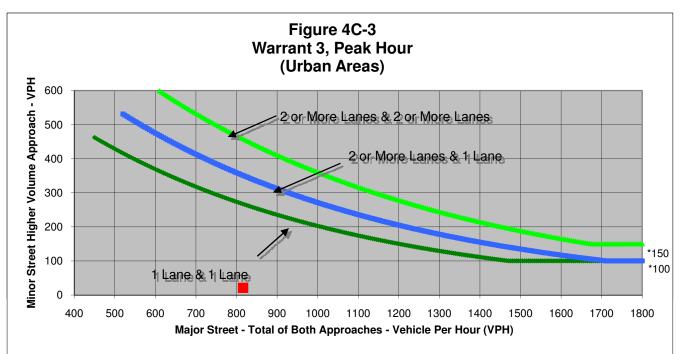
|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 612          | 24           | <u> </u>           |



Elverta Road 9th Street Sheet No 2

of


Project Scenario Elverta Specific Plan EIS
Existing Conditions


Peak Hour PM

**Turn Movement Volumes** 

|         | NB | SB | EB  | WB  |
|---------|----|----|-----|-----|
| Left    | 2  | 0  | 0   | 23  |
| Through | 0  | 0  | 539 | 249 |
| Right   | 19 | 0  | 5   | 0   |
| Total   | 21 | 0  | 544 | 272 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>wairant wet</u> |
| Number of Approach Lanes | 1            | 1            | <u>NO</u>          |
| Traffic Volume (VPH) *   | 816          | 21           | <u> </u>           |

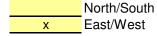


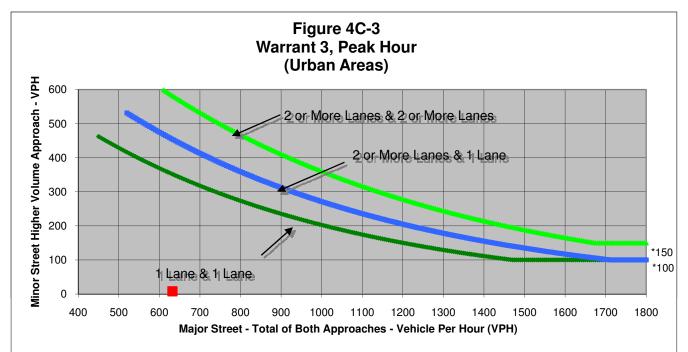
Elverta Road
Palladay Road

Sheet No 1

of

2


Project Scenario Elverta Specific Plan EIS
Existing Conditions


Peak Hour AM

**Turn Movement Volumes** 

|         | NB | SB | EB  | WB  |
|---------|----|----|-----|-----|
| Left    | 0  | 2  | 3   | 0   |
| Through | 0  | 0  | 205 | 421 |
| Right   | 0  | 6  | 0   | 3   |
| Total   | 0  | 8  | 208 | 424 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street  | Warrant Met        |
|--------------------------|--------------|---------------|--------------------|
|                          | Elverta Road | Palladay Road | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1             | NO                 |
| Traffic Volume (VPH) *   | 632          | 8             | <u></u>            |

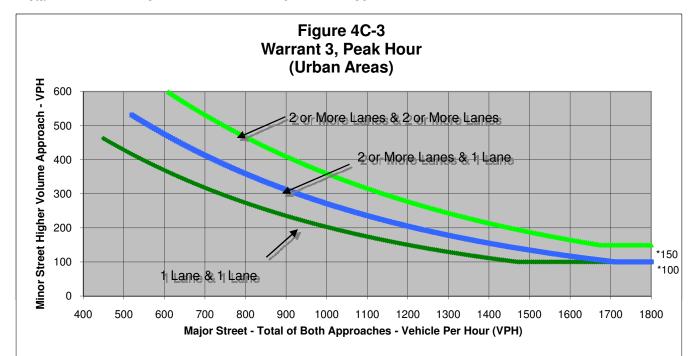


Dry Creek Road U Street Sheet No

of

2

Project Scenario Elverta Specific Plan EIS
Existing Conditions


Peak Hour AM

ANA

Major Street Direction

| Turn Movemer | nt Volumes |    |    |    |
|--------------|------------|----|----|----|
|              | NB         | SB | EB | WB |
| Left         | 18         | 0  | 0  | 16 |
| Through      | 0          | 1  | 19 | 18 |
| Right        | 10         | 0  | 45 | 1  |
| Total        | 28         | 1  | 64 | 35 |

x North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

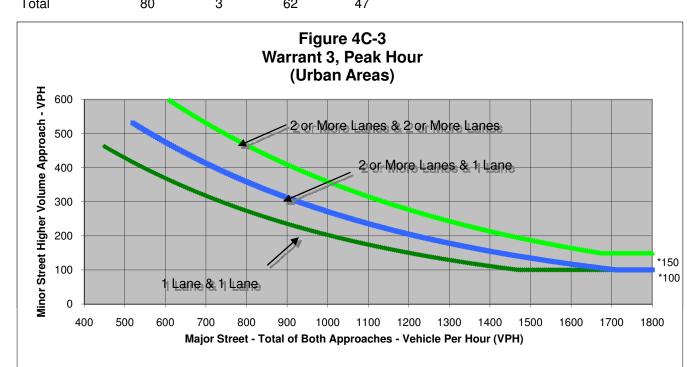
|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 29             | 64           | <u></u>            |



Dry Creek Road **U** Street

Sheet No

of


Project Scenario Elverta Specific Plan EIS **Existing Conditions** 

Peak Hour PM

Major Street Direction

| Turn Movemen | t Volumes |    |    |    |
|--------------|-----------|----|----|----|
|              | NB        | SB | EB | WB |
| Left         | 53        | 1  | 0  | 20 |
| Through      | 2         | 0  | 31 | 26 |
| Right        | 25        | 2  | 31 | 1  |
| Total        | 80        | 3  | 62 | 47 |

North/South East/West



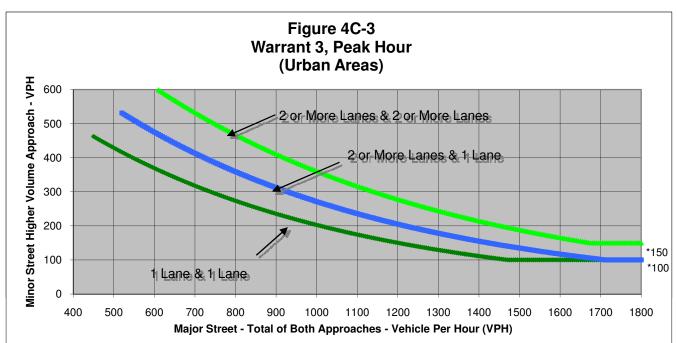
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1              | 1            | <u>NO</u>          |
| Traffic Volume (VPH) *   | 83             | 62           | <u> </u>           |



Dry Creek Road Q Street Sheet No 1 of 2


Project Elverta Specific Plan EIS
Scenario Existing Conditions
Peak Hour AM

**Major Street Direction** 

x North/South East/West



|         | NB  | SB | EB  | WB  |
|---------|-----|----|-----|-----|
| Left    | 47  | 10 | 2   | 40  |
| Through | 28  | 63 | 51  | 58  |
| Right   | 26  | 5  | 53  | 7   |
| Total   | 101 | 78 | 106 | 105 |



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met |
|--------------------------|----------------|--------------|-------------|
|                          | Dry Creek Road | Q Street     | warrant wet |
| Number of Approach Lanes | 1              | 1            | <u>NO</u>   |
| Traffic Volume (VPH) *   | 179            | 106          | <u></u>     |

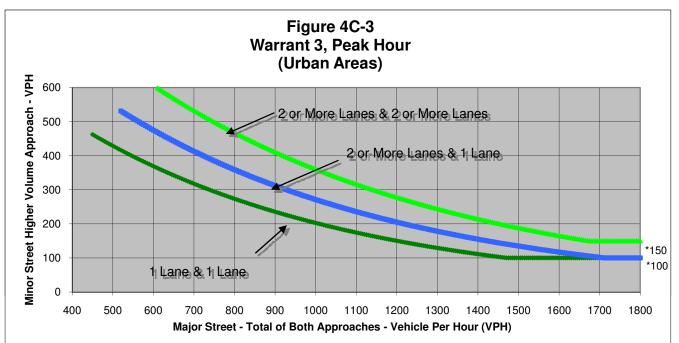


Dry Creek Road Q Street Sheet No 2

of

2

Project Scenario Elverta Specific Plan EIS
Existing Conditions


Peak Hour PM

**Turn Movement Volumes** 

|         | NB  | SB | EB  | WB  |
|---------|-----|----|-----|-----|
| Left    | 63  | 4  | 4   | 45  |
| Through | 69  | 52 | 68  | 76  |
| Right   | 60  | 2  | 44  | 17  |
| Total   | 192 | 58 | 116 | 138 |

Major Street Direction

x North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

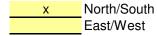
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

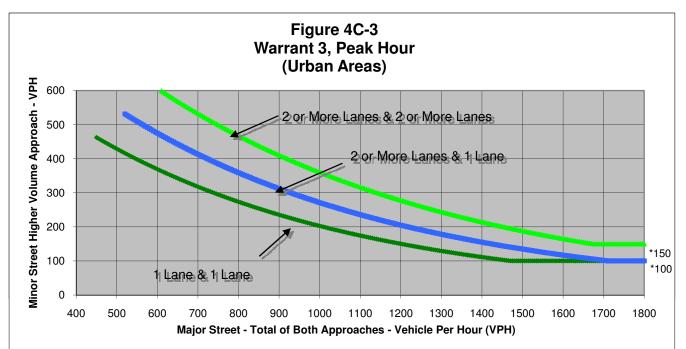
|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | Q Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 250            | 138          | <u> </u>           |



16th Street **U** Street

Sheet No of


Project Scenario


Elverta Specific Plan EIS **Existing Conditions** Peak Hour AM

**Turn Movement Volumes** 

|         | NB | SB | EB | WB |
|---------|----|----|----|----|
| Left    | 1  | 5  | 29 | 6  |
| Through | 9  | 30 | 2  | 3  |
| Right   | 7  | 34 | 3  | 5  |
| Total   | 17 | 69 | 34 | 14 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

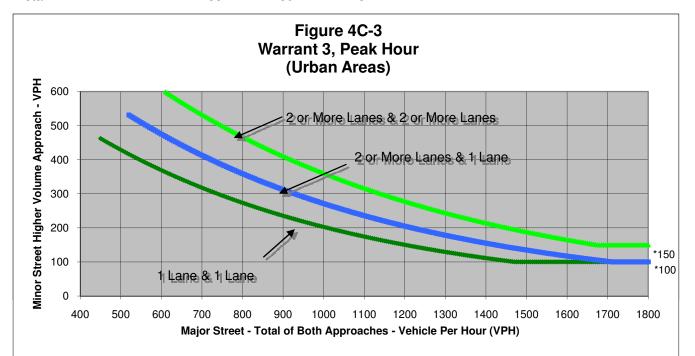
|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | U Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 86           | 34           | <u> </u>           |



16th Street **U** Street

Sheet No

Project Scenario Elverta Specific Plan EIS **Existing Conditions** 


of

Peak Hour PM

Major Street Direction

| Turn Movemen | t Volumes |    |    |    |
|--------------|-----------|----|----|----|
|              | NB        | SB | EB | WB |
| Left         | 2         | 8  | 49 | 7  |
| Through      | 31        | 34 | 5  | 2  |
| Right        | 8         | 46 | 5  | 4  |
| Total        | 41        | 88 | 59 | 13 |

North/South East/West

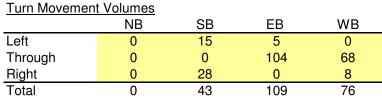


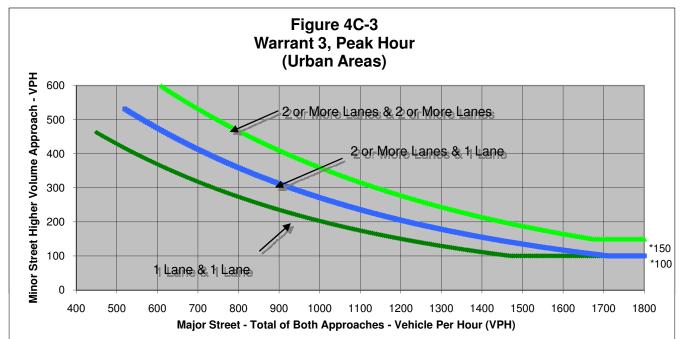
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1            | 1            | <u>NO</u>          |
| Traffic Volume (VPH) *   | 129          | 59           | <u> </u>           |




16th Street Q Street Sheet No 1 of


Project Scenario Elverta Specific Plan EIS
Existing Conditions

Peak Hour AM

**Major Street Direction** 

|   | North/South |
|---|-------------|
| Χ | East/West   |





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | Q Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1            | 1            | <u>NO</u>          |
| Traffic Volume (VPH) *   | 185          | 43           | <u></u>            |



0

0

Major Street Minor Street

Left

Right

Through

300

200

100

**Turn Movement Volumes** 

16th Street Q Street

SB

17

0

26

EB

23

123

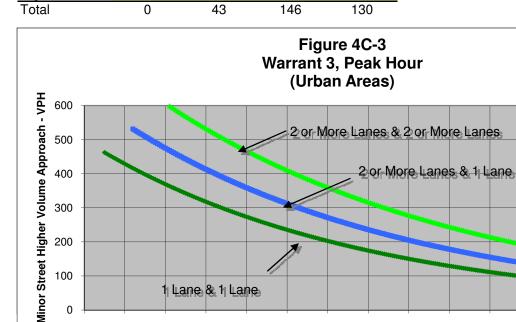
0

Sheet No

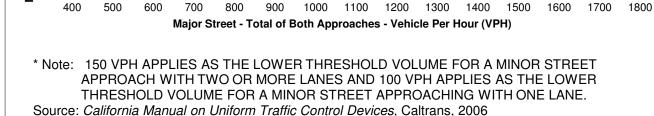
of

\*150

\*100


Project Scenario Elverta Specific Plan EIS **Existing Conditions** 

Peak Hour PM


Major Street Direction

| WB  |  |
|-----|--|
| 0   |  |
| 112 |  |
| 1Ω  |  |

North/South East/West



Lane & 1 Lane



900

|                          | Major Street | Minor Street | Warrant Met |
|--------------------------|--------------|--------------|-------------|
|                          | 16th Street  | Q Street     |             |
| Number of Approach Lanes | 1            | 1            | NO          |
| Traffic Volume (VPH) *   | 276          | 43           | <u></u>     |

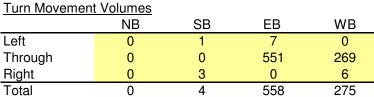


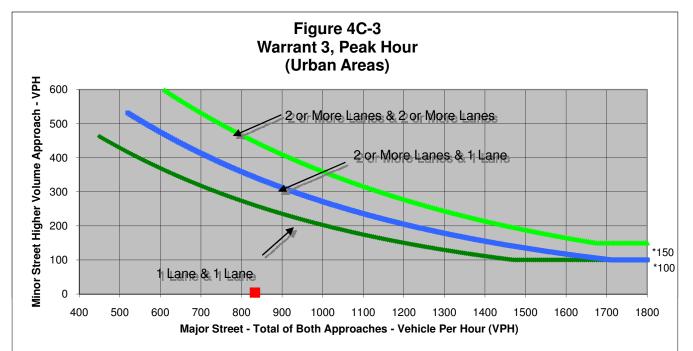
Elverta Road
Palladay Road

Sheet No

2

of


2


Project Scenario Elverta Specific Plan EIS
Existing Conditions

Peak Hour PM

Major Street Direction

North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street  | Warrant Met        |
|--------------------------|--------------|---------------|--------------------|
|                          | Elverta Road | Palladay Road | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1             | NO                 |
| Traffic Volume (VPH) *   | 833          | 4             | <u></u>            |

## Appendix B Existing Plus Project Conditions

| Table A SACMET Base Year Model Validation Results |              |                       |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------|--------------|-----------------------|--|--|--|--|--|--|--|--|--|
| Statistic                                         | Target Value | Daily Base Year Model |  |  |  |  |  |  |  |  |  |
| Model / Count Ratio                               | 0.90 - 1.10  | 0.93                  |  |  |  |  |  |  |  |  |  |
| % of Links Within Caltrans                        |              |                       |  |  |  |  |  |  |  |  |  |
| Maximum Deviations                                | >75%         | 75%                   |  |  |  |  |  |  |  |  |  |
| % Root Mean Square Error                          | <40%         | 30%                   |  |  |  |  |  |  |  |  |  |
| Correlation Coefficient                           | >0.88        | 0.95                  |  |  |  |  |  |  |  |  |  |
| Source: Fehr & Peers, 2010.                       |              |                       |  |  |  |  |  |  |  |  |  |

## **Appendix B-1: Intersection Operations**

Existing Plus Preferred Alternative Conditions

Existing Plus Approved Specific Plan Conditions

Existing Plus Minimal Impact Conditions

Existing Plus No Federal Action Conditions

|                           | ၨ        | <b>→</b> | •     | •     | <b>←</b> | •         | •      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ          | 4    |
|---------------------------|----------|----------|-------|-------|----------|-----------|--------|----------|-------------|-------------|------------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR         | SBL         | SBT        | SBR  |
| Lane Configurations       |          | ર્ન      | 7     | 7     | ર્ન      | 7         | Ţ      | <b>^</b> | 7           | *           | <b>†</b> † | 7    |
| Ideal Flow (vphpl)        | 1900     | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900        | 1900        | 1900       | 1900 |
| Total Lost time (s)       |          | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0         | 4.0         | 4.0        | 4.0  |
| Lane Util. Factor         |          | 1.00     | 1.00  | 0.95  | 0.95     | 1.00      | 1.00   | 0.95     | 1.00        | 1.00        | 0.95       | 1.00 |
| Frt                       |          | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85        | 1.00        | 1.00       | 0.85 |
| Flt Protected             |          | 0.99     | 1.00  | 0.95  | 0.95     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95        | 1.00       | 1.00 |
| Satd. Flow (prot)         |          | 1693     | 1583  | 1633  | 1641     | 1583      | 1467   | 2935     | 1357        | 1641        | 3374       | 1583 |
| Flt Permitted             |          | 0.99     | 1.00  | 0.95  | 0.95     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95        | 1.00       | 1.00 |
| Satd. Flow (perm)         |          | 1693     | 1583  | 1633  | 1641     | 1583      | 1467   | 2935     | 1357        | 1641        | 3374       | 1583 |
| Volume (vph)              | 2        | 5        | 7     | 572   | 13       | 8         | 13     | 735      | 154         | 30          | 1841       | 3    |
| Peak-hour factor, PHF     | 0.61     | 0.61     | 0.61  | 0.87  | 0.87     | 0.87      | 0.95   | 0.95     | 0.95        | 0.86        | 0.86       | 0.86 |
| Adj. Flow (vph)           | 3        | 8        | 11    | 657   | 15       | 9         | 14     | 774      | 162         | 35          | 2141       | 3    |
| RTOR Reduction (vph)      | 0        | 0        | 10    | 0     | 0        | 7         | 0      | 0        | 64          | 0           | 0          | 0    |
| Lane Group Flow (vph)     | 0        | 11       | 1     | 329   | 343      | 2         | 14     | 774      | 98          | 35          | 2141       | 3    |
| Heavy Vehicles (%)        | 2%       | 14%      | 2%    | 5%    | 5%       | 2%        | 23%    | 23%      | 19%         | 10%         | 7%         | 2%   |
| Turn Type                 | Split    |          | Perm  | Split |          | Perm      | Prot   |          | Perm        | Prot        |            | Perm |
| Protected Phases          | 7        | 7        |       | 8     | 8        |           | 5      | 2        |             | 1           | 6          |      |
| Permitted Phases          |          |          | 7     |       |          | 8         |        |          | 2           |             |            | 6    |
| Actuated Green, G (s)     |          | 4.5      | 4.5   | 20.2  | 20.2     | 20.2      | 2.6    | 71.6     | 71.6        | 4.8         | 73.8       | 73.8 |
| Effective Green, g (s)    |          | 6.5      | 6.5   | 22.2  | 22.2     | 22.2      | 2.1    | 74.7     | 74.7        | 4.3         | 76.9       | 76.9 |
| Actuated g/C Ratio        |          | 0.05     | 0.05  | 0.18  | 0.18     | 0.18      | 0.02   | 0.60     | 0.60        | 0.03        | 0.62       | 0.62 |
| Clearance Time (s)        |          | 6.0      | 6.0   | 6.0   | 6.0      | 6.0       | 3.5    | 7.1      | 7.1         | 3.5         | 7.1        | 7.1  |
| Vehicle Extension (s)     |          | 1.0      | 1.0   | 1.0   | 1.0      | 1.0       | 2.0    | 2.0      | 2.0         | 2.0         | 2.0        | 2.0  |
| Lane Grp Cap (vph)        |          | 89       | 83    | 293   | 295      | 284       | 25     | 1772     | 819         | 57          | 2097       | 984  |
| v/s Ratio Prot            |          | c0.01    |       | 0.20  | c0.21    |           | 0.01   | 0.26     |             | c0.02       | c0.63      |      |
| v/s Ratio Perm            |          |          | 0.00  |       |          | 0.00      |        |          | 0.07        |             |            | 0.00 |
| v/c Ratio                 |          | 0.12     | 0.01  | 1.12  | 1.16     | 0.01      | 0.56   | 0.44     | 0.12        | 0.61        | 1.02       | 0.00 |
| Uniform Delay, d1         |          | 55.9     | 55.5  | 50.8  | 50.8     | 41.7      | 60.3   | 13.2     | 10.5        | 58.9        | 23.4       | 8.9  |
| Progression Factor        |          | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00        | 1.00       | 1.00 |
| Incremental Delay, d2     |          | 0.2      | 0.0   | 89.8  | 103.9    | 0.0       | 15.9   | 0.1      | 0.0         | 13.0        | 25.1       | 0.0  |
| Delay (s)                 |          | 56.1     | 55.6  | 140.6 | 154.7    | 41.7      | 76.3   | 13.2     | 10.5        | 71.9        | 48.5       | 8.9  |
| Level of Service          |          | Е        | E     | F     | F        | D         | E      | В        | В           | E           | D          | Α    |
| Approach Delay (s)        |          | 55.8     |       |       | 146.4    |           |        | 13.7     |             |             | 48.9       |      |
| Approach LOS              |          | Е        |       |       | F        |           |        | В        |             |             | D          |      |
| Intersection Summary      |          |          |       |       |          |           |        |          |             |             |            |      |
| HCM Average Control D     | elay     |          | 57.5  | H     | HCM Lev  | vel of Se | ervice |          | Е           |             |            |      |
| HCM Volume to Capacit     | •        |          | 0.96  |       |          |           |        |          |             |             |            |      |
| Actuated Cycle Length (   |          |          | 123.7 |       |          | ost time  |        |          | 12.0        |             |            |      |
| Intersection Capacity Uti | lization |          | 80.4% | I     | CU Leve  | el of Ser | vice   |          | D           |             |            |      |
| Analysis Period (min)     |          |          | 15    |       |          |           |        |          |             |             |            |      |

|                              | ۶        | <b>→</b> | •     | •     | •        | •         | 4      | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ        | 4     |
|------------------------------|----------|----------|-------|-------|----------|-----------|--------|----------|----------|-------------|----------|-------|
| Movement                     | EBL      | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR      | SBL         | SBT      | SBR   |
| Lane Configurations          |          | 4        | 7     | ሻ     | ર્ન      | 7         | ሻ      | <b>^</b> | 7        | ሻ           | <b>^</b> | 7     |
| Ideal Flow (vphpl)           | 1900     | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900     | 1900        | 1900     | 1900  |
| Total Lost time (s)          |          | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0      | 4.0         | 4.0      | 4.0   |
| Lane Util. Factor            |          | 1.00     | 1.00  | 0.95  | 0.95     | 1.00      | 1.00   | 0.95     | 1.00     | 1.00        | 0.95     | 1.00  |
| Frt                          |          | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85     | 1.00        | 1.00     | 0.85  |
| Flt Protected                |          | 0.97     | 1.00  | 0.95  | 0.95     | 1.00      | 0.95   | 1.00     | 1.00     | 0.95        | 1.00     | 1.00  |
| Satd. Flow (prot)            |          | 1487     | 1335  | 1681  | 1686     | 1380      | 1492   | 2959     | 1482     | 1687        | 3406     | 1292  |
| Flt Permitted                |          | 0.97     | 1.00  | 0.95  | 0.95     | 1.00      | 0.95   | 1.00     | 1.00     | 0.95        | 1.00     | 1.00  |
| Satd. Flow (perm)            |          | 1487     | 1335  | 1681  | 1686     | 1380      | 1492   | 2959     | 1482     | 1687        | 3406     | 1292  |
| Volume (vph)                 | 11       | 5        | 14    | 1035  | 16       | 56        | 39     | 835      | 257      | 36          | 2350     | 34    |
| Peak-hour factor, PHF        | 0.67     | 0.67     | 0.67  | 0.93  | 0.93     | 0.93      | 0.96   | 0.96     | 0.96     | 0.92        | 0.92     | 0.92  |
| Adj. Flow (vph)              | 16       | 7        | 21    | 1113  | 17       | 60        | 41     | 870      | 268      | 39          | 2554     | 37    |
| RTOR Reduction (vph)         | 0        | 0        | 20    | 0     | 0        | 23        | 0      | 0        | 81       | 0           | 0        | 5     |
| Lane Group Flow (vph)        | 0        | 23       | 1     | 561   | 569      | 37        | 41     | 870      | 187      | 39          | 2554     | 32    |
| Heavy Vehicles (%)           | 25%      | 20%      | 21%   | 2%    | 6%       | 17%       | 21%    | 22%      | 9%       | 7%          | 6%       | 25%   |
| Turn Type                    | Split    |          | Perm  | Split |          | Perm      | Prot   |          | Perm     | Prot        |          | Perm  |
| Protected Phases             | 7        | 7        |       | 8     | 8        |           | 5      | 2        |          | 1           | 6        |       |
| Permitted Phases             |          |          | 7     |       |          | 8         |        |          | 2        |             |          | 6     |
| Actuated Green, G (s)        |          | 6.5      | 6.5   | 21.0  | 21.0     | 21.0      | 8.3    | 122.8    | 122.8    | 7.7         | 122.2    | 122.2 |
| Effective Green, g (s)       |          | 8.5      | 8.5   | 23.0  | 23.0     | 23.0      | 7.8    | 125.9    | 125.9    | 7.2         | 125.3    | 125.3 |
| Actuated g/C Ratio           |          | 0.05     | 0.05  | 0.13  | 0.13     | 0.13      | 0.04   | 0.70     | 0.70     | 0.04        | 0.69     | 0.69  |
| Clearance Time (s)           |          | 6.0      | 6.0   | 6.0   | 6.0      | 6.0       | 3.5    | 7.1      | 7.1      | 3.5         | 7.1      | 7.1   |
| Vehicle Extension (s)        |          | 1.0      | 1.0   | 1.0   | 1.0      | 1.0       | 2.2    | 2.0      | 2.0      | 2.2         | 2.0      | 2.0   |
| Lane Grp Cap (vph)           |          | 70       | 63    | 214   | 215      | 176       | 64     | 2063     | 1033     | 67          | 2363     | 896   |
| v/s Ratio Prot               |          | c0.02    |       | 0.33  | c0.34    |           | c0.03  | 0.29     |          | 0.02        | c0.75    |       |
| v/s Ratio Perm               |          |          | 0.00  |       |          | 0.03      |        |          | 0.13     |             |          | 0.02  |
| v/c Ratio                    |          | 0.33     | 0.02  | 2.62  | 2.65     | 0.21      | 0.64   | 0.42     | 0.18     | 0.58        | 1.08     | 0.04  |
| Uniform Delay, d1            |          | 83.3     | 82.1  | 78.8  | 78.8     | 70.7      | 85.0   | 11.7     | 9.5      | 85.2        | 27.6     | 8.7   |
| Progression Factor           |          | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00     | 1.00        | 1.00     | 1.00  |
| Incremental Delay, d2        |          | 1.0      | 0.0   | 743.0 | 754.2    | 0.2       | 16.2   | 0.6      | 0.4      | 8.9         | 44.7     | 0.1   |
| Delay (s)                    |          | 84.3     | 82.1  | 821.8 | 833.0    | 70.9      | 101.2  | 12.4     | 9.9      | 94.1        | 72.3     | 8.8   |
| Level of Service             |          | F        | F     | F     | F        | Е         | F      | В        | Α        | F           | Е        | Α     |
| Approach Delay (s)           |          | 83.2     |       |       | 789.3    |           |        | 14.9     |          |             | 71.7     |       |
| Approach LOS                 |          | F        |       |       | F        |           |        | В        |          |             | Е        |       |
| Intersection Summary         |          |          |       |       |          |           |        |          |          |             |          |       |
| HCM Average Control D        | elay     |          | 227.9 | F     | HCM Lev  | vel of So | ervice |          | F        |             |          |       |
| <b>HCM Volume to Capacit</b> |          |          | 1.24  |       |          |           |        |          |          |             |          |       |
| Actuated Cycle Length (s     | ,        |          | 180.6 |       | Sum of l |           |        |          | 16.0     |             |          |       |
| Intersection Capacity Uti    | lization | 1        | 07.4% | I     | CU Leve  | el of Sei | vice   |          | G        |             |          |       |
| Analysis Period (min)        |          |          | 15    |       |          |           |        |          |          |             |          |       |

|                                         | ۶         | <b>→</b> | <b>+</b>     | •    | <b>\</b> | 4            |   |
|-----------------------------------------|-----------|----------|--------------|------|----------|--------------|---|
| Movement                                | EBL       | EBT      | WBT          | WBR  | SBL      | SBR          |   |
| Lane Configurations                     |           | <b>†</b> | ĵ»           |      | 7        | 7            |   |
| Sign Control                            |           | Free     | Free         |      | Stop     |              |   |
| Grade                                   |           | 0%       | 0%           |      | 0%       |              |   |
| Volume (veh/h)                          | 0         | 2        | 7            | 952  | 115      | 1            |   |
| Peak Hour Factor                        | 0.50      | 0.50     | 0.85         | 0.85 | 0.78     | 0.78         |   |
| Hourly flow rate (vph)                  | 0         | 4        | 8            | 1120 | 147      | 1            |   |
| Pedestrians                             |           |          |              |      |          |              |   |
| Lane Width (ft)                         |           |          |              |      |          |              |   |
| Walking Speed (ft/s)                    |           |          |              |      |          |              |   |
| Percent Blockage                        |           |          |              |      |          |              |   |
| Right turn flare (veh)                  |           |          |              |      |          |              |   |
| Median type                             |           |          |              |      | None     |              |   |
| Median storage veh)                     |           |          |              |      |          |              |   |
| Upstream signal (ft)                    |           |          | 960          |      |          |              |   |
| pX, platoon unblocked                   |           |          |              |      |          |              |   |
| vC, conflicting volume                  | 8         |          |              |      | 572      | 568          |   |
| vC1, stage 1 conf vol                   |           |          |              |      |          |              |   |
| vC2, stage 2 conf vol                   |           |          |              |      |          |              |   |
| vCu, unblocked vol                      | 8         |          |              |      | 572      | 568          |   |
| tC, single (s)                          | 4.1       |          |              |      | 6.4      | 6.2          |   |
| tC, 2 stage (s)                         |           |          |              |      |          |              |   |
| tF (s)                                  | 2.2       |          |              |      | 3.5      | 3.3          |   |
| p0 queue free %                         | 100       |          |              |      | 69       | 100          |   |
| cM capacity (veh/h)                     | 1612      |          |              |      | 482      | 522          |   |
| Direction, Lane #                       | EB 1      | WB 1     | SB 1         | SB 2 |          |              |   |
| Volume Total                            | 4         | 1128     | 147          | 1    |          |              |   |
| Volume Left                             | 0         | 0        | 147          | 0    |          |              |   |
| Volume Right                            | 0         | 1120     | 0            | 1    |          |              |   |
| cSH                                     | 1700      | 1700     | 482          | 522  |          |              |   |
| Volume to Capacity                      | 0.00      | 0.66     | 0.31         | 0.00 |          |              |   |
| Queue Length 95th (ft)                  | 0         | 0        | 32           | 0    |          |              |   |
| Control Delay (s)                       | 0.0       | 0.0      | 15.7         | 11.9 |          |              |   |
| Lane LOS                                |           |          | С            | В    |          |              |   |
| Approach Delay (s)                      | 0.0       | 0.0      | 15.7         |      |          |              |   |
| Approach LOS                            | 0.0       | 0.0      | С            |      |          |              |   |
|                                         |           |          |              |      |          |              |   |
| Intersection Summary                    |           |          | 1.0          |      |          |              |   |
| Average Delay Intersection Capacity Uti | ilization |          | 1.8<br>72.3% | 1/   | CILLAVA  | l of Service | , |
|                                         | mzauon    |          |              | 10   | CO Leve  | i oi Service | 7 |
| Analysis Period (min)                   |           |          | 15           |      |          |              |   |
|                                         |           |          |              |      |          |              |   |

|                                         | <b>→</b>  | •    | •     | <b>←</b> | 4       | <i>&gt;</i>  |                |
|-----------------------------------------|-----------|------|-------|----------|---------|--------------|----------------|
| Movement                                | EBT       | EBR  | WBL   | WBT      | NBL     | NBR          |                |
| Lane Configurations                     | ₽         |      |       | <b></b>  | ሻ       | 7            |                |
| Sign Control                            | Free      |      |       | Free     | Stop    |              |                |
| Grade                                   | 0%        |      |       | 0%       | 0%      |              |                |
| Volume (veh/h)                          | 116       | 1    | 0     | 952      | 7       | 299          |                |
| Peak Hour Factor                        | 0.79      | 0.79 | 0.84  | 0.84     | 0.92    | 0.92         |                |
| Hourly flow rate (vph)                  | 147       | 1    | 0     | 1133     | 8       | 325          |                |
| Pedestrians                             |           |      |       |          |         |              |                |
| Lane Width (ft)                         |           |      |       |          |         |              |                |
| Walking Speed (ft/s)                    |           |      |       |          |         |              |                |
| Percent Blockage                        |           |      |       |          |         |              |                |
| Right turn flare (veh)                  |           |      |       |          |         |              |                |
| Median type                             |           |      |       |          | None    |              |                |
| Median storage veh)                     |           |      |       |          |         |              |                |
| Upstream signal (ft)                    |           |      |       |          |         |              |                |
| pX, platoon unblocked                   |           |      |       |          |         |              |                |
| vC, conflicting volume                  |           |      | 147   |          | 1281    | 147          |                |
| vC1, stage 1 conf vol                   |           |      |       |          |         |              |                |
| vC2, stage 2 conf vol                   |           |      |       |          |         |              |                |
| vCu, unblocked vol                      |           |      | 147   |          | 1281    | 147          |                |
| tC, single (s)                          |           |      | 4.1   |          | 6.4     | 6.2          |                |
| tC, 2 stage (s)                         |           |      |       |          |         |              |                |
| tF (s)                                  |           |      | 2.2   |          | 3.5     | 3.3          |                |
| p0 queue free %                         |           |      | 100   |          | 96      | 64           |                |
| cM capacity (veh/h)                     |           |      | 1435  |          | 183     | 899          |                |
| Direction, Lane #                       | EB 1      | WB 1 | NB 1  | NB 2     |         |              |                |
| Volume Total                            | 148       | 1133 | 8     | 325      |         |              |                |
| Volume Left                             | 0         | 0    | 8     | 0        |         |              |                |
| Volume Right                            | 1         | 0    | 0     | 325      |         |              |                |
| cSH                                     | 1700      | 1700 | 183   | 899      |         |              |                |
| Volume to Capacity                      | 0.09      | 0.67 | 0.04  | 0.36     |         |              |                |
| Queue Length 95th (ft)                  | 0         | 0    | 3     | 41       |         |              |                |
| Control Delay (s)                       | 0.0       | 0.0  | 25.6  | 11.2     |         |              |                |
| Lane LOS                                |           |      | D     | В        |         |              |                |
| Approach Delay (s)                      | 0.0       | 0.0  | 11.6  |          |         |              |                |
| Approach LOS                            |           |      | В     |          |         |              |                |
| Intersection Summary                    |           |      |       |          |         |              |                |
|                                         |           |      | 2.4   |          |         |              |                |
| Average Delay Intersection Capacity Uti | ilization |      | 60.1% | 1/       |         | el of Servic |                |
| Analysis Period (min)                   | ıııZatıON |      | 15    | 10       | JU Leve | a or servic  | , <del>C</del> |
| Analysis Fellou (IIIIII)                |           |      | 15    |          |         |              |                |
|                                         |           |      |       |          |         |              |                |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •           | 4    | <b>†</b> | /    | <b>&gt;</b> | ļ    | 4    |
|---------------------------|----------|----------|-------|-------|----------|-------------|------|----------|------|-------------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR         | NBL  | NBT      | NBR  | SBL         | SBT  | SBR  |
| Lane Configurations       |          | 4        |       |       | 4        |             |      | 4        |      |             | 4    |      |
| Sign Control              |          | Stop     |       |       | Stop     |             |      | Stop     |      |             | Stop |      |
| Volume (vph)              | 4        | 284      | 4     | 106   | 1102     | 4           | 1    | 13       | 21   | 3           | 35   | 4    |
| Peak Hour Factor          | 0.87     | 0.87     | 0.87  | 0.93  | 0.93     | 0.93        | 0.75 | 0.75     | 0.75 | 0.83        | 0.83 | 0.83 |
| Hourly flow rate (vph)    | 5        | 326      | 5     | 114   | 1185     | 4           | 1    | 17       | 28   | 4           | 42   | 5    |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |             |      |          |      |             |      |      |
| Volume Total (vph)        | 336      | 1303     | 47    | 51    |          |             |      |          |      |             |      |      |
| Volume Left (vph)         | 5        | 114      | 1     | 4     |          |             |      |          |      |             |      |      |
| Volume Right (vph)        | 5        | 4        | 28    | 5     |          |             |      |          |      |             |      |      |
| Hadj (s)                  | 0.08     | 0.06     | -0.32 | -0.01 |          |             |      |          |      |             |      |      |
| Departure Headway (s)     | 5.2      | 4.7      | 6.2   | 6.5   |          |             |      |          |      |             |      |      |
| Degree Utilization, x     | 0.48     | 1.71     | 0.08  | 0.09  |          |             |      |          |      |             |      |      |
| Capacity (veh/h)          | 688      | 767      | 546   | 519   |          |             |      |          |      |             |      |      |
| Control Delay (s)         | 12.9     | 338.9    | 9.7   | 10.1  |          |             |      |          |      |             |      |      |
| Approach Delay (s)        | 12.9     | 338.9    | 9.7   | 10.1  |          |             |      |          |      |             |      |      |
| Approach LOS              | В        | F        | Α     | В     |          |             |      |          |      |             |      |      |
| Intersection Summary      |          |          |       |       |          |             |      |          |      |             |      |      |
| Delay                     |          |          | 257.4 |       |          |             |      |          |      |             |      |      |
| HCM Level of Service      |          |          | F     |       |          |             |      |          |      |             |      |      |
| Intersection Capacity Uti | lization |          | 93.0% | 10    | CU Leve  | el of Servi | ice  |          | F    |             |      |      |
| Analysis Period (min)     |          |          | 15    |       |          |             |      |          |      |             |      |      |
|                           |          |          |       |       |          |             |      |          |      |             |      |      |

|                             | ٠         | <b>→</b> | <b>←</b> | •    | <b>&gt;</b> | 1            |   |
|-----------------------------|-----------|----------|----------|------|-------------|--------------|---|
| Movement                    | EBL       | EBT      | WBT      | WBR  | SBL         | SBR          |   |
| Lane Configurations         |           | 4        | ĵ»       |      | ¥           |              |   |
| Sign Control                |           | Free     | Free     |      | Stop        |              |   |
| Grade                       |           | 0%       | 0%       |      | 0%          |              |   |
| Volume (veh/h)              | 31        | 416      | 644      | 6    | 24          | 121          |   |
| Peak Hour Factor            | 0.96      | 0.96     | 0.89     | 0.89 | 0.80        | 0.80         |   |
| Hourly flow rate (vph)      | 32        | 433      | 724      | 7    | 30          | 151          |   |
| Pedestrians                 |           |          |          |      |             |              |   |
| Lane Width (ft)             |           |          |          |      |             |              |   |
| Walking Speed (ft/s)        |           |          |          |      |             |              |   |
| Percent Blockage            |           |          |          |      |             |              |   |
| Right turn flare (veh)      |           |          |          |      |             |              |   |
| Median type                 |           |          |          |      | None        |              |   |
| Median storage veh)         |           |          |          |      |             |              |   |
| Upstream signal (ft)        |           |          |          |      |             |              |   |
| pX, platoon unblocked       |           |          |          |      |             |              |   |
| vC, conflicting volume      | 730       |          |          |      | 1225        | 727          |   |
| vC1, stage 1 conf vol       |           |          |          |      |             |              |   |
| vC2, stage 2 conf vol       |           |          |          |      |             |              |   |
| vCu, unblocked vol          | 730       |          |          |      | 1225        | 727          |   |
| tC, single (s)              | 4.1       |          |          |      | 6.4         | 6.2          |   |
| tC, 2 stage (s)             |           |          |          |      |             |              |   |
| tF (s)                      | 2.2       |          |          |      | 3.5         | 3.3          |   |
| p0 queue free %             | 96        |          |          |      | 84          | 64           |   |
| cM capacity (veh/h)         | 869       |          |          |      | 190         | 424          |   |
| Direction, Lane #           | EB 1      | WB 1     | SB 1     |      |             |              |   |
| Volume Total                | 466       | 730      | 181      |      |             |              |   |
| Volume Left                 | 32        | 0        | 30       |      |             |              |   |
| Volume Right                | 0         | 7        | 151      |      |             |              |   |
| cSH                         | 869       | 1700     | 352      |      |             |              |   |
| Volume to Capacity          | 0.04      | 0.43     | 0.51     |      |             |              |   |
| Queue Length 95th (ft)      | 3         | 0        | 70       |      |             |              |   |
| Control Delay (s)           | 1.1       | 0.0      | 25.6     |      |             |              |   |
| Lane LOS                    | Α         |          | D        |      |             |              |   |
| Approach Delay (s)          | 1.1       | 0.0      | 25.6     |      |             |              |   |
| Approach LOS                |           |          | D        |      |             |              |   |
| Intersection Summary        |           |          |          |      |             |              |   |
| Average Delay               |           |          | 3.7      |      |             |              |   |
| Intersection Capacity Ut    | ilization |          | 62.9%    | 10   | CU Leve     | el of Servic | е |
| Analysis Period (min)       | =         |          | 15       |      |             |              |   |
| a., 5.15 1 51.15 4 (171111) |           |          |          |      |             |              |   |

|                          | ၨ         | <b>→</b> | •     | •         | <b>—</b> | •         | •    | †    | ~    | <b>/</b> | ţ    | -√   |
|--------------------------|-----------|----------|-------|-----------|----------|-----------|------|------|------|----------|------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL       | WBT      | WBR       | NBL  | NBT  | NBR  | SBL      | SBT  | SBR  |
| Lane Configurations      |           | 4        |       |           | 4        |           |      | 4    |      |          | 4    |      |
| Sign Control             |           | Free     |       |           | Free     |           |      | Stop |      |          | Stop |      |
| Grade                    |           | 0%       |       |           | 0%       |           |      | 0%   |      |          | 0%   |      |
| Volume (veh/h)           | 4         | 303      | 1     | 3         | 1162     | 34        | 0    | 1    | 5    | 9        | 1    | 50   |
| Peak Hour Factor         | 0.91      | 0.91     | 0.91  | 0.93      | 0.93     | 0.93      | 0.63 | 0.63 | 0.63 | 0.85     | 0.85 | 0.85 |
| Hourly flow rate (vph)   | 4         | 333      | 1     | 3         | 1249     | 37        | 0    | 2    | 8    | 11       | 1    | 59   |
| Pedestrians              |           |          |       |           |          |           |      |      |      |          |      |      |
| Lane Width (ft)          |           |          |       |           |          |           |      |      |      |          |      |      |
| Walking Speed (ft/s)     |           |          |       |           |          |           |      |      |      |          |      |      |
| Percent Blockage         |           |          |       |           |          |           |      |      |      |          |      |      |
| Right turn flare (veh)   |           |          |       |           |          |           |      |      |      |          |      |      |
| Median type              |           |          |       |           |          |           |      | None |      |          | None |      |
| Median storage veh)      |           |          |       |           |          |           |      |      |      |          |      |      |
| Upstream signal (ft)     |           |          |       |           |          |           |      |      |      |          |      |      |
| pX, platoon unblocked    |           |          |       |           |          |           |      |      |      |          |      |      |
| vC, conflicting volume   | 1286      |          |       | 334       |          |           | 1676 | 1635 | 334  | 1625     | 1617 | 1268 |
| vC1, stage 1 conf vol    |           |          |       |           |          |           |      |      |      |          |      |      |
| vC2, stage 2 conf vol    |           |          |       |           |          |           |      |      |      |          |      |      |
| vCu, unblocked vol       | 1286      |          |       | 334       |          |           | 1676 | 1635 | 334  | 1625     | 1617 | 1268 |
| tC, single (s)           | 4.1       |          |       | 4.3       |          |           | 7.1  | 6.5  | 6.5  | 7.1      | 6.8  | 6.2  |
| tC, 2 stage (s)          |           |          |       |           |          |           |      |      |      |          |      |      |
| tF (s)                   | 2.2       |          |       | 2.4       |          |           | 3.5  | 4.0  | 3.5  | 3.5      | 4.2  | 3.3  |
| p0 queue free %          | 99        |          |       | 100       |          |           | 100  | 98   | 99   | 87       | 99   | 71   |
| cM capacity (veh/h)      | 539       |          |       | 1107      |          |           | 53   | 100  | 659  | 79       | 91   | 206  |
| Direction, Lane #        | EB 1      | WB 1     | NB 1  | SB 1      |          |           |      |      |      |          |      |      |
| Volume Total             | 338       | 1289     |       | 71        |          |           |      |      |      |          |      |      |
| Volume Left              | 4         |          | 10    | 11        |          |           |      |      |      |          |      |      |
|                          | 1         | 37       | 0     | 59        |          |           |      |      |      |          |      |      |
| Volume Right cSH         | -         |          |       |           |          |           |      |      |      |          |      |      |
|                          | 539       | 1107     | 341   | 163       |          |           |      |      |      |          |      |      |
| Volume to Capacity       | 0.01      | 0.00     | 0.03  | 0.43      |          |           |      |      |      |          |      |      |
| Queue Length 95th (ft)   | 1         | 0        | 2     | 49        |          |           |      |      |      |          |      |      |
| Control Delay (s)        | 0.3       | 0.1      | 15.9  | 42.8<br>F |          |           |      |      |      |          |      |      |
| Lane LOS                 | A         | A        | C     |           |          |           |      |      |      |          |      |      |
| Approach Delay (s)       | 0.3       | 0.1      | 15.9  | 42.8      |          |           |      |      |      |          |      |      |
| Approach LOS             |           |          | С     | E         |          |           |      |      |      |          |      |      |
| Intersection Summary     |           |          |       |           |          |           |      |      |      |          |      |      |
| Average Delay            |           |          | 2.0   |           |          |           |      |      |      |          |      | _    |
| Intersection Capacity Ut | ilization |          | 81.9% | ŀ         | CU Leve  | el of Ser | vice |      | D    |          |      |      |
| Analysis Period (min)    |           |          | 15    |           |          |           |      |      |      |          |      |      |
|                          |           |          |       |           |          |           |      |      |      |          |      |      |

|                          | ۶         | <b>→</b> | •     | •    | •       | •          | •    | <b>†</b> | /    | <b>&gt;</b> | <b>↓</b> | 1    |
|--------------------------|-----------|----------|-------|------|---------|------------|------|----------|------|-------------|----------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL  | WBT     | WBR        | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations      |           | 4        |       |      | ર્ન     | 7          |      | 4        |      |             | 4        |      |
| Sign Control             |           | Stop     |       |      | Stop    |            |      | Stop     |      |             | Stop     |      |
| Volume (vph)             | 9         | 299      | 7     | 5    | 1117    | 102        | 16   | 27       | 9    | 109         | 25       | 64   |
| Peak Hour Factor         | 0.87      | 0.87     | 0.87  | 0.93 | 0.93    | 0.93       | 0.81 | 0.81     | 0.81 | 0.86        | 0.86     | 0.86 |
| Hourly flow rate (vph)   | 10        | 344      | 8     | 5    | 1201    | 110        | 20   | 33       | 11   | 127         | 29       | 74   |
| Direction, Lane #        | EB 1      | WB 1     | WB 2  | NB 1 | SB 1    |            |      |          |      |             |          |      |
| Volume Total (vph)       | 362       | 1206     | 110   | 64   | 230     |            |      |          |      |             |          |      |
| Volume Left (vph)        | 10        | 5        | 0     | 20   | 127     |            |      |          |      |             |          |      |
| Volume Right (vph)       | 8         | 0        | 110   | 11   | 74      |            |      |          |      |             |          |      |
| Hadj (s)                 | 0.09      | 0.03     | -0.50 | 0.07 | -0.02   |            |      |          |      |             |          |      |
| Departure Headway (s)    | 6.1       | 5.7      | 3.2   | 7.5  | 6.8     |            |      |          |      |             |          |      |
| Degree Utilization, x    | 0.61      | 1.90     | 0.10  | 0.13 | 0.43    |            |      |          |      |             |          |      |
| Capacity (veh/h)         | 574       | 639      | 1121  | 426  | 507     |            |      |          |      |             |          |      |
| Control Delay (s)        | 18.3      | 427.5    | 6.5   | 11.6 | 14.8    |            |      |          |      |             |          |      |
| Approach Delay (s)       | 18.3      | 392.4    |       | 11.6 | 14.8    |            |      |          |      |             |          |      |
| Approach LOS             | С         | F        |       | В    | В       |            |      |          |      |             |          |      |
| Intersection Summary     |           |          |       |      |         |            |      |          |      |             |          |      |
| Delay                    |           |          | 267.3 |      |         |            |      |          |      |             |          |      |
| HCM Level of Service     |           |          | F     |      |         |            |      |          |      |             |          |      |
| Intersection Capacity Ut | ilization |          | 85.5% | 10   | CU Leve | el of Serv | ice  |          | Е    |             |          |      |
| Analysis Period (min)    |           |          | 15    |      |         |            |      |          |      |             |          |      |
|                          |           |          |       |      |         |            |      |          |      |             |          |      |

|                           | -         | •     | •     | <b>←</b> | •       | <b>/</b>      |   |
|---------------------------|-----------|-------|-------|----------|---------|---------------|---|
| Movement                  | EBT       | EBR   | WBL   | WBT      | NBL     | NBR           |   |
| Lane Configurations       | f)        |       | _     | 4        | ۲       | 7             |   |
| Sign Control              | Stop      |       |       | Stop     | Stop    |               |   |
| Volume (vph)              | 355       | 82    | 59    | 1164     | 49      | 28            |   |
| Peak Hour Factor          | 0.89      | 0.89  | 0.93  | 0.93     | 0.71    | 0.71          |   |
| Hourly flow rate (vph)    | 399       | 92    | 63    | 1252     | 69      | 39            |   |
| Direction, Lane #         | EB 1      | WB1   | NB 1  | NB 2     |         |               |   |
| Volume Total (vph)        | 491       | 1315  | 69    | 39       |         |               |   |
| Volume Left (vph)         | 0         | 63    | 69    | 0        |         |               |   |
| Volume Right (vph)        | 92        | 0     | 0     | 39       |         |               |   |
| Hadj (s)                  | -0.02     | 0.05  | 0.57  | -0.58    |         |               |   |
| Departure Headway (s)     | 5.2       | 5.0   | 7.8   | 6.6      |         |               |   |
| Degree Utilization, x     | 0.70      | 1.83  | 0.15  | 0.07     |         |               |   |
| Capacity (veh/h)          | 685       | 727   | 441   | 513      |         |               |   |
| Control Delay (s)         | 19.4      | 390.5 | 11.0  | 9.0      |         |               |   |
| Approach Delay (s)        | 19.4      | 390.5 | 10.2  |          |         |               |   |
| Approach LOS              | С         | F     | В     |          |         |               |   |
| Intersection Summary      |           |       |       |          |         |               |   |
| Delay                     |           |       | 273.8 |          |         |               |   |
| HCM Level of Service      |           |       | F     |          |         |               |   |
| Intersection Capacity Uti | ilization | 1     | 01.5% | 10       | CU Leve | el of Service | е |
| Analysis Period (min)     |           |       | 15    |          |         |               |   |
|                           |           |       |       |          |         |               |   |

|                           | -        | •    | •     | •        | 4       | <i>&gt;</i>   |    |
|---------------------------|----------|------|-------|----------|---------|---------------|----|
| Movement                  | EBT      | EBR  | WBL   | WBT      | NBL     | NBR           |    |
| Lane Configurations       | ħ⊅       |      | ች     | <b>^</b> | ¥       |               |    |
| Sign Control              | Free     |      |       | Free     | Stop    |               |    |
| Grade                     | 0%       |      |       | 0%       | 0%      |               |    |
| Volume (veh/h)            | 407      | 1    | 162   | 1193     | 0       | 66            |    |
| Peak Hour Factor          | 0.87     | 0.87 | 0.94  | 0.94     | 0.60    | 0.60          |    |
| Hourly flow rate (vph)    | 468      | 1    | 172   | 1269     | 0       | 110           |    |
| Pedestrians               |          |      |       |          |         |               |    |
| Lane Width (ft)           |          |      |       |          |         |               |    |
| Walking Speed (ft/s)      |          |      |       |          |         |               |    |
| Percent Blockage          |          |      |       |          |         |               |    |
| Right turn flare (veh)    |          |      |       |          |         |               |    |
| Median type               |          |      |       |          | None    |               |    |
| Median storage veh)       |          |      |       |          |         |               |    |
| Upstream signal (ft)      |          |      |       | 714      |         |               |    |
| pX, platoon unblocked     |          |      |       |          | 0.70    |               |    |
| vC, conflicting volume    |          |      | 469   |          | 1448    | 234           |    |
| vC1, stage 1 conf vol     |          |      |       |          |         |               |    |
| vC2, stage 2 conf vol     |          |      |       |          |         |               |    |
| vCu, unblocked vol        |          |      | 469   |          | 1215    | 234           |    |
| tC, single (s)            |          |      | 4.4   |          | 6.8     | 7.1           |    |
| tC, 2 stage (s)           |          |      |       |          |         |               |    |
| tF (s)                    |          |      | 2.4   |          | 3.5     | 3.4           |    |
| p0 queue free %           |          |      | 83    |          | 100     | 85            |    |
| cM capacity (veh/h)       |          |      | 1003  |          | 101     | 749           |    |
| Direction, Lane #         | EB 1     | EB 2 | WB 1  | WB 2     | WB3     | NB 1          |    |
| Volume Total              | 312      | 157  | 172   | 635      | 635     | 110           |    |
| Volume Left               | 0        | 0    | 172   | 0        | 0       | 0             |    |
| Volume Right              | 0        | 1    | 0     | 0        | 0       | 110           |    |
| cSH                       | 1700     | 1700 | 1003  | 1700     | 1700    | 749           |    |
| Volume to Capacity        | 0.18     | 0.09 | 0.17  | 0.37     | 0.37    | 0.15          |    |
| Queue Length 95th (ft)    | 0        | 0    | 15    | 0        | 0       | 13            |    |
| Control Delay (s)         | 0.0      | 0.0  | 9.3   | 0.0      | 0.0     | 10.6          |    |
| Lane LOS                  |          |      | Α     |          |         | В             |    |
| Approach Delay (s)        | 0.0      |      | 1.1   |          |         | 10.6          |    |
| Approach LOS              |          |      |       |          |         | В             |    |
| Intersection Summary      |          |      |       |          |         |               |    |
| Average Delay             |          |      | 1.4   |          |         |               |    |
| Intersection Capacity Uti | lization |      | 43.7% | ŀ        | CU Leve | el of Service | се |
| Analysis Period (min)     |          |      | 15    |          |         |               |    |
|                           |          |      |       |          |         |               |    |

|                          | ᄼ         | -        | <b>←</b>   | •    | -         | 4             |   |      |  |
|--------------------------|-----------|----------|------------|------|-----------|---------------|---|------|--|
| Movement                 | EBL       | EBT      | WBT        | WBR  | SBL       | SBR           |   |      |  |
| Lane Configurations      | ች         | <b>^</b> | <b>↑</b> ↑ |      | ች         | 7             |   |      |  |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900       | 1900 | 1900      | 1900          |   |      |  |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0        |      | 4.0       | 4.0           |   |      |  |
| Lane Util. Factor        | 1.00      | 0.95     | 0.95       |      | 1.00      | 1.00          |   |      |  |
| Frt                      | 1.00      | 1.00     | 0.99       |      | 1.00      | 0.85          |   |      |  |
| Flt Protected            | 0.95      | 1.00     | 1.00       |      | 0.95      | 1.00          |   |      |  |
| Satd. Flow (prot)        | 1444      | 3471     | 3413       |      | 1770      | 1292          |   |      |  |
| Flt Permitted            | 0.95      | 1.00     | 1.00       |      | 0.95      | 1.00          |   |      |  |
| Satd. Flow (perm)        | 1444      | 3471     | 3413       |      | 1770      | 1292          |   |      |  |
| Volume (vph)             | 62        | 440      | 1137       | 122  | 410       | 214           |   |      |  |
| Peak-hour factor, PHF    | 0.92      | 0.92     | 0.93       | 0.93 | 0.92      | 0.92          |   |      |  |
| Adj. Flow (vph)          | 67        | 478      | 1223       | 131  | 446       | 233           |   |      |  |
| RTOR Reduction (vph)     | 0         | 0        | 8          | 0    | 0         | 129           |   |      |  |
| Lane Group Flow (vph)    | 67        | 478      | 1346       | 0    | 446       | 104           |   |      |  |
| Heavy Vehicles (%)       | 25%       | 4%       | 2%         | 25%  | 2%        | 25%           |   |      |  |
| Turn Type                | Prot      |          |            |      |           | Perm          |   |      |  |
| Protected Phases         | 7         | 4        | 8          |      | 6         |               |   |      |  |
| Permitted Phases         |           |          |            |      |           | 6             |   |      |  |
| Actuated Green, G (s)    | 5.5       | 46.5     | 37.0       |      | 24.5      | 24.5          |   |      |  |
| Effective Green, g (s)   | 5.5       | 46.5     | 37.0       |      | 24.5      | 24.5          |   |      |  |
| Actuated g/C Ratio       | 0.07      | 0.59     | 0.47       |      | 0.31      | 0.31          |   |      |  |
| Clearance Time (s)       | 4.0       | 4.0      | 4.0        |      | 4.0       | 4.0           |   |      |  |
| Vehicle Extension (s)    | 3.0       | 3.0      | 3.0        |      | 3.0       | 3.0           |   |      |  |
| Lane Grp Cap (vph)       | 101       | 2043     | 1598       |      | 549       | 401           |   |      |  |
| v/s Ratio Prot           | c0.05     | 0.14     | c0.39      |      | c0.25     | -             |   |      |  |
| v/s Ratio Perm           |           |          |            |      |           | 0.08          |   |      |  |
| v/c Ratio                | 0.66      | 0.23     | 0.84       |      | 0.81      | 0.26          |   |      |  |
| Uniform Delay, d1        | 35.8      | 7.8      | 18.4       |      | 25.1      | 20.4          |   |      |  |
| Progression Factor       | 1.00      | 1.00     | 1.00       |      | 1.00      | 1.00          |   |      |  |
| Incremental Delay, d2    | 15.2      | 0.1      | 4.2        |      | 8.9       | 0.3           |   |      |  |
| Delay (s)                | 51.0      | 7.8      | 22.7       |      | 34.1      | 20.8          |   |      |  |
| Level of Service         | D         | Α        | С          |      | С         | С             |   |      |  |
| Approach Delay (s)       |           | 13.1     | 22.7       |      | 29.5      |               |   |      |  |
| Approach LOS             |           | В        | С          |      | С         |               |   |      |  |
| Intersection Summary     |           |          |            |      |           |               |   |      |  |
| HCM Average Control D    | elay      |          | 22.5       | F    | ICM Lev   | vel of Servic | е | С    |  |
| HCM Volume to Capacit    |           |          | 0.82       |      |           |               |   |      |  |
| Actuated Cycle Length (  |           |          | 79.0       | S    | Sum of lo | ost time (s)  |   | 12.0 |  |
| Intersection Capacity Ut | ilization |          | 71.5%      | 10   | CU Leve   | el of Service |   | С    |  |
| Analysis Period (min)    |           |          | 15         |      |           |               |   |      |  |
| c Critical Lane Group    |           |          |            |      |           |               |   |      |  |

|                           | ۶        | <b>→</b> | •     | •    | <b>←</b> | •          | •    | <b>†</b> | *    | <b>&gt;</b> | ļ    | 4                                      |
|---------------------------|----------|----------|-------|------|----------|------------|------|----------|------|-------------|------|----------------------------------------|
| Movement                  | EBL      | EBT      | EBR   | WBL  | WBT      | WBR        | NBL  | NBT      | NBR  | SBL         | SBT  | SBR                                    |
| Lane Configurations       |          | 4        |       |      | 44       |            |      | 4        |      |             | 4    |                                        |
| Sign Control              |          | Stop     |       |      | Stop     |            |      | Stop     |      |             | Stop |                                        |
| Volume (vph)              | 2        | 19       | 45    | 80   | 18       | 1          | 18   | 173      | 29   | 0           | 607  | 7                                      |
| Peak Hour Factor          | 0.73     | 0.73     | 0.73  | 0.86 | 0.86     | 0.86       | 0.87 | 0.87     | 0.87 | 0.92        | 0.92 | 0.92                                   |
| Hourly flow rate (vph)    | 3        | 26       | 62    | 93   | 21       | 1          | 21   | 199      | 33   | 0           | 660  | 8                                      |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1 |          |            |      |          |      |             |      |                                        |
| Volume Total (vph)        | 90       | 115      | 253   | 667  |          |            |      |          |      |             |      | ······································ |
| Volume Left (vph)         | 3        | 93       | 21    | 0    |          |            |      |          |      |             |      |                                        |
| Volume Right (vph)        | 62       | 1        | 33    | 8    |          |            |      |          |      |             |      |                                        |
| Hadj (s)                  | -0.37    | 0.22     | -0.02 | 0.03 |          |            |      |          |      |             |      |                                        |
| Departure Headway (s)     | 6.2      | 6.7      | 5.5   | 5.0  |          |            |      |          |      |             |      |                                        |
| Degree Utilization, x     | 0.16     | 0.21     | 0.39  | 0.93 |          |            |      |          |      |             |      |                                        |
| Capacity (veh/h)          | 543      | 506      | 632   | 713  |          |            |      |          |      |             |      |                                        |
| Control Delay (s)         | 10.3     | 11.5     | 12.0  | 40.3 |          |            |      |          |      |             |      |                                        |
| Approach Delay (s)        | 10.3     | 11.5     | 12.0  | 40.3 |          |            |      |          |      |             |      |                                        |
| Approach LOS              | В        | В        | В     | Е    |          |            |      |          |      |             |      |                                        |
| Intersection Summary      |          |          |       |      |          |            |      |          |      |             |      |                                        |
| Delay                     |          |          | 28.6  |      |          |            |      |          |      |             |      |                                        |
| HCM Level of Service      |          |          | D     |      |          |            |      |          |      |             |      |                                        |
| Intersection Capacity Uti | lization |          | 51.1% | 10   | CU Leve  | el of Serv | ice  |          | Α    |             |      |                                        |
| Analysis Period (min)     |          |          | 15    |      |          |            |      |          |      |             |      |                                        |
|                           |          |          |       |      |          |            |      |          |      |             |      |                                        |

|                           | ۶        | <b>→</b> | •     | •     | •       | •          | •    | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ    | 4    |
|---------------------------|----------|----------|-------|-------|---------|------------|------|----------|----------|-------------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT     | WBR        | NBL  | NBT      | NBR      | SBL         | SBT  | SBR  |
| Lane Configurations       |          | 4        |       |       | 4       |            |      | 4        |          |             | 4    |      |
| Sign Control              |          | Stop     |       |       | Stop    |            |      | Stop     |          |             | Stop |      |
| Volume (vph)              | 6        | 56       | 53    | 132   | 77      | 15         | 47   | 208      | 54       | 36          | 696  | 17   |
| Peak Hour Factor          | 0.85     | 0.85     | 0.85  | 0.88  | 0.88    | 0.88       | 0.87 | 0.87     | 0.87     | 0.92        | 0.92 | 0.92 |
| Hourly flow rate (vph)    | 7        | 66       | 62    | 150   | 88      | 17         | 54   | 239      | 62       | 39          | 757  | 18   |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |         |            |      |          |          |             |      |      |
| Volume Total (vph)        | 135      | 255      | 355   | 814   |         |            |      |          |          |             |      |      |
| Volume Left (vph)         | 7        | 150      | 54    | 39    |         |            |      |          |          |             |      |      |
| Volume Right (vph)        | 62       | 17       | 62    | 18    |         |            |      |          |          |             |      |      |
| Hadj (s)                  | -0.18    | 0.12     | -0.01 | 0.03  |         |            |      |          |          |             |      |      |
| Departure Headway (s)     | 7.4      | 7.2      | 6.5   | 6.2   |         |            |      |          |          |             |      |      |
| Degree Utilization, x     | 0.28     | 0.51     | 0.64  | 1.40  |         |            |      |          |          |             |      |      |
| Capacity (veh/h)          | 434      | 472      | 529   | 581   |         |            |      |          |          |             |      |      |
| Control Delay (s)         | 13.3     | 17.6     | 20.6  | 209.2 |         |            |      |          |          |             |      |      |
| Approach Delay (s)        | 13.3     | 17.6     | 20.6  | 209.2 |         |            |      |          |          |             |      |      |
| Approach LOS              | В        | С        | С     | F     |         |            |      |          |          |             |      |      |
| Intersection Summary      |          |          |       |       |         |            |      |          |          |             |      |      |
| Delay                     |          |          | 118.0 |       |         |            |      |          |          |             |      |      |
| HCM Level of Service      |          |          | F     |       |         |            |      |          |          |             |      |      |
| Intersection Capacity Uti | lization |          | 68.8% | l l   | CU Leve | el of Serv | ice  |          | С        |             |      |      |
| Analysis Period (min)     |          |          | 15    |       |         |            |      |          |          |             |      |      |
|                           |          |          |       |       |         |            |      |          |          |             |      |      |

|                          | ۶         | <b>→</b> | •     | •    | <b>←</b>   | •         | •      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ţ          | 4    |
|--------------------------|-----------|----------|-------|------|------------|-----------|--------|----------|-------------|-------------|------------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL  | WBT        | WBR       | NBL    | NBT      | NBR         | SBL         | SBT        | SBR  |
| Lane Configurations      | 44        | <b>^</b> | 7     | 44   | <b>∱</b> } |           | ሻ      | <b>1</b> | 7           | ሻ           | <b>↑</b> ↑ |      |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900 | 1900       | 1900      | 1900   | 1900     | 1900        | 1900        | 1900       | 1900 |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   | 4.0  | 4.0        |           | 4.0    | 4.0      | 4.0         | 4.0         | 4.0        |      |
| Lane Util. Factor        | 0.97      | 0.95     | 1.00  | 0.97 | 0.95       |           | 1.00   | 1.00     | 1.00        | 1.00        | 0.95       |      |
| Frt                      | 1.00      | 1.00     | 0.85  | 1.00 | 0.98       |           | 1.00   | 1.00     | 0.85        | 1.00        | 0.98       |      |
| Flt Protected            | 0.95      | 1.00     | 1.00  | 0.95 | 1.00       |           | 0.95   | 1.00     | 1.00        | 0.95        | 1.00       |      |
| Satd. Flow (prot)        | 3433      | 3343     | 1538  | 3400 | 3360       |           | 1736   | 1863     | 1538        | 1752        | 3462       |      |
| Flt Permitted            | 0.95      | 1.00     | 1.00  | 0.95 | 1.00       |           | 0.95   | 1.00     | 1.00        | 0.95        | 1.00       |      |
| Satd. Flow (perm)        | 3433      | 3343     | 1538  | 3400 | 3360       |           | 1736   | 1863     | 1538        | 1752        | 3462       |      |
| Volume (vph)             | 142       | 383      | 209   | 109  | 521        | 93        | 92     | 259      | 86          | 152         | 751        | 128  |
| Peak-hour factor, PHF    | 0.72      | 0.72     | 0.72  | 0.90 | 0.90       | 0.90      | 0.87   | 0.87     | 0.87        | 0.93        | 0.93       | 0.93 |
| Adj. Flow (vph)          | 197       | 532      | 290   | 121  | 579        | 103       | 106    | 298      | 99          | 163         | 808        | 138  |
| RTOR Reduction (vph)     | 0         | 0        | 207   | 0    | 7          | 0         | 0      | 0        | 65          | 0           | 7          | 0    |
| Lane Group Flow (vph)    | 197       | 532      | 83    | 121  | 675        | 0         | 106    | 298      | 34          | 163         | 939        | 0    |
| Heavy Vehicles (%)       | 2%        | 8%       | 5%    | 3%   | 5%         | 5%        | 4%     | 2%       | 5%          | 3%          | 2%         | 2%   |
| Turn Type                | Prot      |          | Perm  | Prot |            |           | Prot   |          | Perm        | Prot        |            |      |
| Protected Phases         | 1         | 6        |       | 5    | 2          |           | 3      | 8        |             | 7           | 4          |      |
| Permitted Phases         |           |          | 6     |      |            |           |        |          | 8           |             |            |      |
| Actuated Green, G (s)    | 7.0       | 23.7     | 23.7  | 5.4  | 22.4       |           | 7.5    | 25.8     | 25.8        | 10.1        | 28.2       |      |
| Effective Green, g (s)   | 7.8       | 24.8     | 24.8  | 6.9  | 23.9       |           | 9.0    | 26.9     | 26.9        | 11.6        | 29.5       |      |
| Actuated g/C Ratio       | 0.09      | 0.29     | 0.29  | 0.08 | 0.28       |           | 0.10   | 0.31     | 0.31        | 0.13        | 0.34       |      |
| Clearance Time (s)       | 4.8       | 5.1      | 5.1   | 5.5  | 5.5        |           | 5.5    | 5.1      | 5.1         | 5.5         | 5.3        |      |
| Vehicle Extension (s)    | 1.0       | 1.0      | 1.0   | 1.0  | 1.0        |           | 1.0    | 1.0      | 1.0         | 1.0         | 1.0        |      |
| Lane Grp Cap (vph)       | 311       | 962      | 442   | 272  | 932        |           | 181    | 581      | 480         | 236         | 1185       |      |
| v/s Ratio Prot           | c0.06     | 0.16     |       | 0.04 | c0.20      |           | 0.06   | 0.16     |             | c0.09       | c0.27      |      |
| v/s Ratio Perm           |           |          | 0.05  |      |            |           |        |          | 0.02        |             |            |      |
| v/c Ratio                | 0.63      | 0.55     | 0.19  | 0.44 | 0.72       |           | 0.59   | 0.51     | 0.07        | 0.69        | 0.79       |      |
| Uniform Delay, d1        | 37.8      | 26.0     | 23.1  | 37.8 | 28.2       |           | 36.8   | 24.3     | 20.9        | 35.6        | 25.6       |      |
| Progression Factor       | 1.00      | 1.00     | 1.00  | 1.00 | 1.00       |           | 1.00   | 1.00     | 1.00        | 1.00        | 1.00       |      |
| Incremental Delay, d2    | 3.1       | 0.4      | 0.1   | 0.4  | 2.4        |           | 3.1    | 0.3      | 0.0         | 6.8         | 3.5        |      |
| Delay (s)                | 40.9      | 26.4     | 23.2  | 38.2 | 30.6       |           | 39.9   | 24.6     | 20.9        | 42.4        | 29.1       |      |
| Level of Service         | D         | С        | С     | D    | С          |           | D      | С        | С           | D           | С          |      |
| Approach Delay (s)       |           | 28.3     |       |      | 31.7       |           |        | 27.1     |             |             | 31.0       |      |
| Approach LOS             |           | С        |       |      | С          |           |        | С        |             |             | С          |      |
| Intersection Summary     |           |          |       |      |            |           |        |          |             |             |            |      |
| HCM Average Control D    | •         |          | 29.8  | H    | HCM Lev    | vel of Se | ervice |          | С           |             |            |      |
| HCM Volume to Capacit    | •         |          | 0.75  |      |            |           |        |          |             |             |            |      |
| Actuated Cycle Length (  |           |          | 86.2  |      |            | ost time  | ` '    |          | 16.0        |             |            |      |
| Intersection Capacity Ut | ilization |          | 64.7% | Į.   | CU Leve    | el of Ser | vice   |          | С           |             |            |      |
| Analysis Period (min)    |           |          | 15    |      |            |           |        |          |             |             |            |      |

|                              | ۶         | <b>→</b>   | •     | •     | <b>←</b>   | •         | 4      | <b>†</b> | /    | <b>&gt;</b> | ļ        | 4    |
|------------------------------|-----------|------------|-------|-------|------------|-----------|--------|----------|------|-------------|----------|------|
| Movement                     | EBL       | EBT        | EBR   | WBL   | WBT        | WBR       | NBL    | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations          | ሻ         | <b>↑</b> ↑ |       | ሻ     | <b>↑</b> ↑ |           | ሻ      | f)       |      | ሻ           | <b>^</b> |      |
| Ideal Flow (vphpl)           | 1900      | 1900       | 1900  | 1900  | 1900       | 1900      | 1900   | 1900     | 1900 | 1900        | 1900     | 1900 |
| Total Lost time (s)          | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0      |      | 4.0         | 4.0      |      |
| Lane Util. Factor            | 1.00      | 0.95       |       | 1.00  | 0.95       |           | 1.00   | 1.00     |      | 1.00        | 1.00     |      |
| Frt                          | 1.00      | 0.98       |       | 1.00  | 0.98       |           | 1.00   | 0.87     |      | 1.00        | 0.92     |      |
| Flt Protected                | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00     |      | 0.95        | 1.00     |      |
| Satd. Flow (prot)            | 1597      | 3413       |       | 1656  | 3454       |           | 1770   | 1595     |      | 1444        | 1709     |      |
| Flt Permitted                | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00     |      | 0.95        | 1.00     |      |
| Satd. Flow (perm)            | 1597      | 3413       |       | 1656  | 3454       |           | 1770   | 1595     |      | 1444        | 1709     |      |
| Volume (vph)                 | 55        | 814        | 118   | 224   | 731        | 84        | 176    | 49       | 281  | 322         | 156      | 190  |
| Peak-hour factor, PHF        | 0.93      | 0.93       | 0.93  | 0.93  | 0.93       | 0.93      | 0.93   | 0.93     | 0.93 | 0.92        | 0.92     | 0.92 |
| Adj. Flow (vph)              | 59        | 875        | 127   | 241   | 786        | 90        | 189    | 53       | 302  | 350         | 170      | 207  |
| RTOR Reduction (vph)         | 0         | 11         | 0     | 0     | 8          | 0         | 0      | 215      | 0    | 0           | 45       | 0    |
| Lane Group Flow (vph)        | 59        | 991        | 0     | 241   | 868        | 0         | 189    | 140      | 0    | 350         | 332      | 0    |
| Heavy Vehicles (%)           | 13%       | 4%         | 2%    | 9%    | 3%         | 2%        | 2%     | 9%       | 3%   | 25%         | 2%       | 2%   |
| Turn Type                    | Prot      |            |       | Prot  |            |           | Prot   |          |      | Prot        |          |      |
| Protected Phases             | 7         | 4          |       | 3     | 8          |           | 5      | 2        |      | 1           | 6        |      |
| Permitted Phases             |           |            |       |       |            |           |        |          |      |             |          |      |
| Actuated Green, G (s)        | 6.7       | 29.9       |       | 14.0  | 37.2       |           | 13.0   | 12.3     |      | 24.1        | 23.4     |      |
| Effective Green, g (s)       | 6.7       | 29.9       |       | 14.0  | 37.2       |           | 13.0   | 12.3     |      | 24.1        | 23.4     |      |
| Actuated g/C Ratio           | 0.07      | 0.31       |       | 0.15  | 0.39       |           | 0.13   | 0.13     |      | 0.25        | 0.24     |      |
| Clearance Time (s)           | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0      |      | 4.0         | 4.0      |      |
| Vehicle Extension (s)        | 3.0       | 3.0        |       | 3.0   | 3.0        |           | 3.0    | 3.0      |      | 3.0         | 3.0      |      |
| Lane Grp Cap (vph)           | 111       | 1060       |       | 241   | 1334       |           | 239    | 204      |      | 361         | 415      |      |
| v/s Ratio Prot               | 0.04      | c0.29      |       | c0.15 | 0.25       |           | 0.11   | 0.09     |      | c0.24       | c0.19    |      |
| v/s Ratio Perm               |           |            |       |       |            |           |        |          |      |             |          |      |
| v/c Ratio                    | 0.53      | 0.93       |       | 1.00  | 0.65       |           | 0.79   | 0.68     |      | 0.97        | 0.80     |      |
| Uniform Delay, d1            | 43.3      | 32.3       |       | 41.1  | 24.2       |           | 40.3   | 40.1     |      | 35.7        | 34.2     |      |
| Progression Factor           | 1.00      | 1.00       |       | 1.00  | 1.00       |           | 1.00   | 1.00     |      | 1.00        | 1.00     |      |
| Incremental Delay, d2        | 4.8       | 14.5       |       | 58.0  | 1.1        |           | 16.2   | 9.1      |      | 38.8        | 10.3     |      |
| Delay (s)                    | 48.1      | 46.7       |       | 99.1  | 25.4       |           | 56.5   | 49.3     |      | 74.5        | 44.5     |      |
| Level of Service             | D         | D          |       | F     | С          |           | Е      | D        |      | Е           | D        |      |
| Approach Delay (s)           |           | 46.8       |       |       | 41.3       |           |        | 51.8     |      |             | 59.0     |      |
| Approach LOS                 |           | D          |       |       | D          |           |        | D        |      |             | Е        |      |
| Intersection Summary         |           |            |       |       |            |           |        |          |      |             |          |      |
| <b>HCM Average Control D</b> | elay      |            | 48.4  | H     | ICM Le     | vel of Se | ervice |          | D    |             |          |      |
| HCM Volume to Capacit        | y ratio   |            | 0.91  |       |            |           |        |          |      |             |          |      |
| Actuated Cycle Length (      | s)        |            | 96.3  | S     | Sum of I   | ost time  | (s)    |          | 12.0 |             |          |      |
| Intersection Capacity Uti    | ilization |            | 89.8% | [(    | CU Leve    | el of Ser | vice   |          | Е    |             |          |      |
| Analysis Period (min)        |           |            | 15    |       |            |           |        |          |      |             |          |      |
| c Critical Lane Group        |           |            |       |       |            |           |        |          |      |             |          |      |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •          | •      | <b>†</b> | *    | <b>/</b> | ļ    | 4                                      |
|---------------------------|----------|----------|-------|-------|----------|------------|--------|----------|------|----------|------|----------------------------------------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR        | NBL    | NBT      | NBR  | SBL      | SBT  | SBR                                    |
| Lane Configurations       |          | 4        |       |       | 44       |            |        | 4        |      |          | 4    |                                        |
| Sign Control              |          | Stop     |       |       | Stop     |            |        | Stop     |      |          | Stop |                                        |
| Volume (vph)              | 48       | 2        | 3     | 6     | 3        | 5          | 1      | 86       | 7    | 5        | 290  | 98                                     |
| Peak Hour Factor          | 0.88     | 0.88     | 0.88  | 0.67  | 0.67     | 0.67       | 0.92   | 0.92     | 0.92 | 0.87     | 0.87 | 0.87                                   |
| Hourly flow rate (vph)    | 55       | 2        | 3     | 9     | 4        | 7          | 1      | 93       | 8    | 6        | 333  | 113                                    |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |            |        |          |      |          |      |                                        |
| Volume Total (vph)        | 60       | 21       | 102   | 452   |          |            |        |          |      |          |      | ······································ |
| Volume Left (vph)         | 55       | 9        | 1     | 6     |          |            |        |          |      |          |      |                                        |
| Volume Right (vph)        | 3        | 7        | 8     | 113   |          |            |        |          |      |          |      |                                        |
| Hadj (s)                  | 0.20     | -0.09    | 0.13  | -0.08 |          |            |        |          |      |          |      |                                        |
| Departure Headway (s)     | 5.4      | 5.1      | 4.7   | 4.2   |          |            |        |          |      |          |      |                                        |
| Degree Utilization, x     | 0.09     | 0.03     | 0.13  | 0.52  |          |            |        |          |      |          |      |                                        |
| Capacity (veh/h)          | 605      | 619      | 730   | 844   |          |            |        |          |      |          |      |                                        |
| Control Delay (s)         | 8.9      | 8.3      | 8.4   | 11.6  |          |            |        |          |      |          |      |                                        |
| Approach Delay (s)        | 8.9      | 8.3      | 8.4   | 11.6  |          |            |        |          |      |          |      |                                        |
| Approach LOS              | Α        | Α        | Α     | В     |          |            |        |          |      |          |      |                                        |
| Intersection Summary      |          |          |       |       |          |            |        |          |      |          |      |                                        |
| Delay                     |          |          | 10.7  |       |          |            |        |          |      |          |      |                                        |
| HCM Level of Service      |          |          | В     |       |          |            |        |          |      |          |      |                                        |
| Intersection Capacity Uti | lization |          | 36.6% | - 10  | CU Leve  | el of Serv | vice . |          | Α    |          |      |                                        |
| Analysis Period (min)     |          |          | 15    |       |          |            |        |          |      |          |      |                                        |
|                           |          |          |       |       |          |            |        |          |      |          |      |                                        |

|                           | ۶         | <b>→</b> | <b>←</b> | •    | <b>/</b> | 4          |  |
|---------------------------|-----------|----------|----------|------|----------|------------|--|
| Movement                  | EBL       | EBT      | WBT      | WBR  | SBL      | SBR        |  |
| Lane Configurations       |           | 4        | <b>^</b> |      | W        |            |  |
| Sign Control              |           | Free     | Free     |      | Stop     |            |  |
| Grade                     |           | 0%       | 0%       |      | 0%       |            |  |
| Volume (veh/h)            | 38        | 130      | 76       | 52   | 163      | 139        |  |
| Peak Hour Factor          | 0.72      | 0.72     | 0.85     | 0.85 | 0.92     | 0.92       |  |
| Hourly flow rate (vph)    | 53        | 181      | 89       | 61   | 177      | 151        |  |
| Pedestrians               |           |          |          |      |          |            |  |
| Lane Width (ft)           |           |          |          |      |          |            |  |
| Walking Speed (ft/s)      |           |          |          |      |          |            |  |
| Percent Blockage          |           |          |          |      |          |            |  |
| Right turn flare (veh)    |           |          |          |      |          |            |  |
| Median type               |           |          |          |      | None     |            |  |
| Median storage veh)       |           |          |          |      |          |            |  |
| Upstream signal (ft)      |           |          |          |      |          |            |  |
| pX, platoon unblocked     |           |          |          |      |          |            |  |
| vC, conflicting volume    | 151       |          |          |      | 406      | 120        |  |
| vC1, stage 1 conf vol     |           |          |          |      |          |            |  |
| vC2, stage 2 conf vol     |           |          |          |      |          |            |  |
| vCu, unblocked vol        | 151       |          |          |      | 406      | 120        |  |
| tC, single (s)            | 4.3       |          |          |      | 6.5      | 6.2        |  |
| tC, 2 stage (s)           |           |          |          |      |          |            |  |
| tF (s)                    | 2.4       |          |          |      | 3.6      | 3.3        |  |
| p0 queue free %           | 96        |          |          |      | 69       | 84         |  |
| cM capacity (veh/h)       | 1328      |          |          |      | 568      | 926        |  |
| Direction, Lane #         | EB 1      | WB 1     | SB 1     |      |          |            |  |
|                           |           |          |          |      |          |            |  |
| Volume Total              | 233       | 151      | 328      |      |          |            |  |
| Volume Left               | 53        | 0        | 177      |      |          |            |  |
| Volume Right              | 0         | 61       | 151      |      |          |            |  |
| cSH                       | 1328      | 1700     | 691      |      |          |            |  |
| Volume to Capacity        | 0.04      | 0.09     | 0.48     |      |          |            |  |
| Queue Length 95th (ft)    | 3         | 0        | 64       |      |          |            |  |
| Control Delay (s)         | 2.0       | 0.0      | 14.8     |      |          |            |  |
| Lane LOS                  | Α         |          | В        |      |          |            |  |
| Approach Delay (s)        | 2.0       | 0.0      | 14.8     |      |          |            |  |
| Approach LOS              |           |          | В        |      |          |            |  |
| Intersection Summary      |           |          |          |      |          |            |  |
| Average Delay             |           |          | 7.5      |      |          |            |  |
| Intersection Capacity Uti | ilization |          | 43.7%    | 10   | CU Leve  | of Service |  |
| Analysis Period (min)     |           |          | 15       |      |          |            |  |
|                           |           |          |          |      |          |            |  |

|                              | ₾                            | -        | •     | •     | ←        | 1         | -      |      |  |
|------------------------------|------------------------------|----------|-------|-------|----------|-----------|--------|------|--|
| Movement                     | EBU                          | EBT      | EBR   | WBL   | WBT      | NBL       | NBR    |      |  |
| Lane Configurations          | Ð                            | <b>^</b> | 7     | ች     | <b>^</b> | ች         | 7      |      |  |
| Ideal Flow (vphpl)           | 1900                         | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   |      |  |
| Total Lost time (s)          | 4.0                          | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    |      |  |
| Lane Util. Factor            | 1.00                         | 0.95     | 1.00  | 1.00  | 0.95     | 1.00      | 1.00   |      |  |
| Frt                          | 1.00                         | 1.00     | 0.85  | 1.00  | 1.00     | 1.00      | 0.85   |      |  |
| Flt Protected                | 0.95                         | 1.00     | 1.00  | 0.95  | 1.00     | 0.95      | 1.00   |      |  |
| Satd. Flow (prot)            | 1770                         | 3471     | 1553  | 1736  | 3539     | 1583      | 1495   |      |  |
| Flt Permitted                | 0.95                         | 1.00     | 1.00  | 0.95  | 1.00     | 0.95      | 1.00   |      |  |
| Satd. Flow (perm)            | 1770                         | 3471     | 1553  | 1736  | 3539     | 1583      | 1495   |      |  |
| Volume (vph)                 | 1                            | 548      | 51    | 347   | 697      | 50        | 104    |      |  |
| Peak-hour factor, PHF        | 0.86                         | 0.86     | 0.86  | 0.91  | 0.91     | 0.76      | 0.76   |      |  |
| Adj. Flow (vph)              | 1                            | 637      | 59    | 381   | 766      | 66        | 137    |      |  |
| RTOR Reduction (vph)         | 0                            | 0        | 36    | 0     | 0        | 0         | 122    |      |  |
| Lane Group Flow (vph)        | 1                            | 637      | 23    | 381   | 766      | 66        | 15     |      |  |
| Heavy Vehicles (%)           | 2%                           | 4%       | 4%    | 4%    | 2%       | 14%       | 8%     |      |  |
| Turn Type                    | Prot                         |          | Perm  | Prot  |          |           | Perm   |      |  |
| Protected Phases             | 1                            | 6        |       | 4 5   | 2        | 3         |        |      |  |
| Permitted Phases             |                              |          | 6     |       |          |           | 3      |      |  |
| Actuated Green, G (s)        | 0.4                          | 26.4     | 26.4  | 23.0  | 42.1     | 6.4       | 6.4    |      |  |
| Effective Green, g (s)       | 1.1                          | 27.5     | 27.5  | 23.0  | 43.2     | 7.8       | 7.8    |      |  |
| Actuated g/C Ratio           | 0.02                         | 0.39     | 0.39  | 0.33  | 0.61     | 0.11      | 0.11   |      |  |
| Clearance Time (s)           | 4.7                          | 5.1      | 5.1   |       | 5.1      | 5.4       | 5.4    |      |  |
| Vehicle Extension (s)        | 1.0                          | 4.9      | 4.9   |       | 4.9      | 1.0       | 1.0    |      |  |
| Lane Grp Cap (vph)           | 28                           | 1358     | 608   | 568   | 2175     | 176       | 166    |      |  |
| v/s Ratio Prot               | 0.00                         | c0.18    |       | c0.22 | 0.22     | c0.04     |        |      |  |
| v/s Ratio Perm               |                              |          | 0.01  |       |          |           | 0.01   |      |  |
| v/c Ratio                    | 0.04                         | 0.47     | 0.04  | 0.67  | 0.35     | 0.38      | 0.09   |      |  |
| Uniform Delay, d1            | 34.1                         | 16.0     | 13.2  | 20.4  | 6.7      | 29.0      | 28.1   |      |  |
| Progression Factor           | 1.00                         | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   |      |  |
| Incremental Delay, d2        | 0.2                          | 0.5      | 0.1   | 2.5   | 0.2      | 0.5       | 0.1    |      |  |
| Delay (s)                    | 34.3                         | 16.5     | 13.3  | 22.8  | 6.9      | 29.5      | 28.2   |      |  |
| Level of Service             | С                            | В        | В     | С     | Α        | С         | С      |      |  |
| Approach Delay (s)           |                              | 16.2     |       |       | 12.2     | 28.6      |        |      |  |
| Approach LOS                 |                              | В        |       |       | В        | С         |        |      |  |
| Intersection Summary         |                              |          |       |       |          |           |        |      |  |
| HCM Average Control D        | M Average Control Delay 15.2 |          |       |       |          | vel of Se | ervice | В    |  |
| <b>HCM Volume to Capacit</b> |                              |          | 0.54  |       |          |           |        |      |  |
| Actuated Cycle Length (      |                              |          | 70.3  | 5     | Sum of I | ost time  | (s)    | 12.0 |  |
| Intersection Capacity Uti    | •                            |          | 47.7% |       |          | el of Ser | . ,    | Α    |  |
| Analysis Period (min)        |                              |          | 15    |       |          |           |        |      |  |
| o Critical Lana Croup        |                              |          |       |       |          |           |        |      |  |

|                          | $\rightarrow$ | •    | •     | •     | 4       | <b>/</b>      |      |
|--------------------------|---------------|------|-------|-------|---------|---------------|------|
| Movement                 | EBT           | EBR  | WBL   | WBT   | NBL     | NBR           |      |
| Lane Configurations      | 1>            |      |       | 4     | W       |               |      |
| Ideal Flow (vphpl)       | 1900          | 1900 | 1900  | 1900  | 1900    | 1900          |      |
| Total Lost time (s)      | 4.0           |      |       | 4.0   | 4.0     |               |      |
| Lane Util. Factor        | 1.00          |      |       | 1.00  | 1.00    |               |      |
| Frt                      | 0.98          |      |       | 1.00  | 0.94    |               |      |
| Flt Protected            | 1.00          |      |       | 0.99  | 0.97    |               |      |
| Satd. Flow (prot)        | 1799          |      |       | 1847  | 1677    |               |      |
| Flt Permitted            | 1.00          |      |       | 0.99  | 0.97    |               |      |
| Satd. Flow (perm)        | 1799          |      |       | 1847  | 1677    |               |      |
| Volume (vph)             | 1539          | 236  | 170   | 837   | 66      | 51            |      |
| Peak-hour factor, PHF    | 0.93          | 0.93 | 0.93  | 0.93  | 0.76    | 0.76          |      |
| Adj. Flow (vph)          | 1655          | 254  | 183   | 900   | 87      | 67            |      |
| RTOR Reduction (vph)     | 4             | 0    | 0     | 0     | 19      | 0             |      |
| Lane Group Flow (vph)    | 1905          | 0    | 0     | 1083  | 135     | 0             |      |
| Heavy Vehicles (%)       | 4%            | 2%   | 2%    | 2%    | 2%      | 6%            |      |
| Turn Type                |               |      | Split |       |         |               |      |
| Protected Phases         | 2             |      | 1     | 1     | 3       |               |      |
| Permitted Phases         |               |      |       |       |         |               |      |
| Actuated Green, G (s)    | 50.3          |      |       | 50.3  | 14.1    |               |      |
| Effective Green, g (s)   | 51.3          |      |       | 51.1  | 13.6    |               |      |
| Actuated g/C Ratio       | 0.38          |      |       | 0.38  | 0.10    |               |      |
| Clearance Time (s)       | 5.0           |      |       | 4.8   | 3.5     |               |      |
| Vehicle Extension (s)    | 6.8           |      |       | 6.3   | 2.0     |               |      |
| Lane Grp Cap (vph)       | 690           |      |       | 705   | 170     |               |      |
| v/s Ratio Prot           | c1.06         |      |       | c0.59 | c0.08   |               |      |
| v/s Ratio Perm           |               |      |       |       |         |               |      |
| v/c Ratio                | 2.76          |      |       | 1.54  | 0.79    |               |      |
| Uniform Delay, d1        | 41.3          |      |       | 41.4  | 58.7    |               |      |
| Progression Factor       | 1.00          |      |       | 1.00  | 1.00    |               |      |
| Incremental Delay, d2    | 796.7         |      |       | 248.4 | 20.8    |               |      |
| Delay (s)                | 837.9         |      |       | 289.7 | 79.5    |               |      |
| Level of Service         | F             |      |       | F     | Е       |               |      |
| Approach Delay (s)       | 837.9         |      |       | 289.7 | 79.5    |               |      |
| Approach LOS             | F             |      |       | F     | Е       |               |      |
| Intersection Summary     |               |      |       |       |         |               |      |
| HCM Average Control D    | elay          |      | 612.1 | H     | ICM Lev | el of Service | F    |
| HCM Volume to Capaci     |               |      | 1.99  |       |         |               |      |
| Actuated Cycle Length (  | ` '           |      | 133.8 |       |         | ost time (s)  | 17.8 |
| Intersection Capacity Ut | ilization     | 1    | 65.6% | [(    | CU Leve | el of Service | F    |
| Analysis Period (min)    |               |      | 15    |       |         |               |      |
| c Critical Lane Group    |               |      |       |       |         |               |      |

|                              | -         | •    | •     | ←       | •       | <b>/</b>      |    |
|------------------------------|-----------|------|-------|---------|---------|---------------|----|
| Movement                     | EBT       | EBR  | WBL   | WBT     | NBL     | NBR           |    |
| Lane Configurations          | <b></b>   | 7    | ሻ     | <b></b> | ች       | 7             |    |
| Ideal Flow (vphpl)           | 1900      | 1900 | 1900  | 1900    | 1900    | 1900          |    |
| Total Lost time (s)          | 4.0       | 4.0  | 4.0   | 4.0     | 4.0     | 4.0           |    |
| Lane Util. Factor            | 1.00      | 1.00 | 1.00  | 1.00    | 1.00    | 1.00          |    |
| Frt                          | 1.00      | 0.85 | 1.00  | 1.00    | 1.00    | 0.85          |    |
| Flt Protected                | 1.00      | 1.00 | 0.95  | 1.00    | 0.95    | 1.00          |    |
| Satd. Flow (prot)            | 1863      | 1583 | 1770  | 1863    | 1770    | 1583          |    |
| Flt Permitted                | 1.00      | 1.00 | 0.95  | 1.00    | 0.95    | 1.00          |    |
| Satd. Flow (perm)            | 1863      | 1583 | 1770  | 1863    | 1770    | 1583          |    |
| Volume (vph)                 | 189       | 39   | 454   | 730     | 35      | 348           |    |
| Peak-hour factor, PHF        | 0.93      | 0.93 | 0.97  | 0.97    | 0.87    | 0.87          |    |
| Adj. Flow (vph)              | 203       | 42   | 468   | 753     | 40      | 400           |    |
| RTOR Reduction (vph)         | 0         | 16   | 0     | 0       | 0       | 311           |    |
| Lane Group Flow (vph)        | 203       | 26   | 468   | 753     | 40      | 89            |    |
| Turn Type                    |           | Perm | Prot  |         | r       | om+ov         |    |
| Protected Phases             | 2         |      | 1     | 6       | 4       | 1             |    |
| Permitted Phases             |           | 2    |       |         |         | 4             |    |
| Actuated Green, G (s)        | 43.5      | 43.5 | 12.0  | 59.1    | 4.5     | 16.5          |    |
| Effective Green, g (s)       | 45.5      | 45.5 | 11.6  | 61.1    | 4.8     | 16.4          |    |
| Actuated g/C Ratio           | 0.62      | 0.62 | 0.16  | 0.83    | 0.06    | 0.22          |    |
| Clearance Time (s)           | 6.0       | 6.0  | 3.6   | 6.0     | 4.3     | 3.6           |    |
| Vehicle Extension (s)        | 2.0       | 2.0  | 1.0   | 2.0     | 1.0     | 1.0           |    |
| Lane Grp Cap (vph)           | 1147      | 975  | 278   | 1540    | 115     | 437           |    |
| v/s Ratio Prot               | 0.11      |      | c0.26 | c0.40   | c0.02   | 0.03          |    |
| v/s Ratio Perm               |           | 0.02 |       |         |         | 0.02          |    |
| v/c Ratio                    | 0.18      | 0.03 | 1.68  | 0.49    | 0.35    | 0.20          |    |
| Uniform Delay, d1            | 6.1       | 5.5  | 31.2  | 1.9     | 33.1    | 23.4          |    |
| Progression Factor           | 1.00      | 1.00 | 1.00  | 1.00    | 1.00    | 1.00          |    |
| Incremental Delay, d2        | 0.3       | 0.1  | 322.8 | 1.1     | 0.7     | 0.1           |    |
| Delay (s)                    | 6.5       | 5.6  | 353.9 | 3.0     | 33.7    | 23.5          |    |
| Level of Service             | Α         | Α    | F     | Α       | С       | С             |    |
| Approach Delay (s)           | 6.3       |      |       | 137.5   | 24.4    |               |    |
| Approach LOS                 | Α         |      |       | F       | С       |               |    |
| Intersection Summary         |           |      |       |         |         |               |    |
| HCM Average Control D        | •         |      | 94.5  | F       | ICM Lev | el of Servi   | ce |
| <b>HCM Volume to Capacit</b> |           |      | 0.68  |         |         |               |    |
| Actuated Cycle Length (      |           |      | 73.9  |         |         | ost time (s)  |    |
| Intersection Capacity Ut     | ilization |      | 48.4% | [0      | CU Leve | el of Service | е  |
| Analysis Period (min)        |           |      | 15    |         |         |               |    |
| c Critical Lane Group        |           |      |       |         |         |               |    |

|                          | ۶         | <b>→</b> | •     | •     | <b>←</b> | •         | 4      | †    | <i>&gt;</i> | <b>/</b> | ţ     | 4    |
|--------------------------|-----------|----------|-------|-------|----------|-----------|--------|------|-------------|----------|-------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT  | NBR         | SBL      | SBT   | SBR  |
| Lane Configurations      | 77        | <b>^</b> | 7     | 77    | <b>^</b> | 7         | ሻሻ     | ተተተ  | 7           | 77       | ተተተ   | 7    |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900 | 1900        | 1900     | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0  | 4.0         | 4.0      | 4.0   | 4.0  |
| Lane Util. Factor        | 0.97      | 0.95     | 1.00  | 0.97  | 0.95     | 1.00      | 0.97   | 0.91 | 1.00        | 0.97     | 0.91  | 1.00 |
| Frt                      | 1.00      | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00 | 0.85        | 1.00     | 1.00  | 0.85 |
| Flt Protected            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00 | 1.00        | 0.95     | 1.00  | 1.00 |
| Satd. Flow (prot)        | 3433      | 3539     | 1583  | 3433  | 3539     | 1583      | 3433   | 5085 | 1583        | 3433     | 5085  | 1583 |
| Flt Permitted            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00 | 1.00        | 0.95     | 1.00  | 1.00 |
| Satd. Flow (perm)        | 3433      | 3539     | 1583  | 3433  | 3539     | 1583      | 3433   | 5085 | 1583        | 3433     | 5085  | 1583 |
| Volume (vph)             | 442       | 198      | 964   | 429   | 409      | 348       | 403    | 463  | 84          | 110      | 991   | 350  |
| Peak-hour factor, PHF    | 0.93      | 0.93     | 0.93  | 0.95  | 0.95     | 0.95      | 0.93   | 0.93 | 0.93        | 0.95     | 0.95  | 0.95 |
| Adj. Flow (vph)          | 475       | 213      | 1037  | 452   | 431      | 366       | 433    | 498  | 90          | 116      | 1043  | 368  |
| RTOR Reduction (vph)     | 0         | 0        | 152   | 0     | 0        | 220       | 0      | 0    | 56          | 0        | 0     | 188  |
| Lane Group Flow (vph)    | 475       | 213      | 885   | 452   | 431      | 146       | 433    | 498  | 34          | 116      | 1043  | 180  |
| Turn Type                | Prot      |          | Perm  | Prot  |          | Perm      | Prot   |      | Perm        | Prot     |       | Perm |
| Protected Phases         | 7         | 4        |       | 3     | 8        |           | 5      | 2    |             | 1        | 6     |      |
| Permitted Phases         |           |          | 4     |       |          | 8         |        |      | 2           |          |       | 6    |
| Actuated Green, G (s)    | 25.0      | 70.1     | 70.1  | 25.0  | 70.0     | 70.0      | 25.0   | 75.2 | 75.2        | 10.2     | 60.0  | 60.0 |
| Effective Green, g (s)   | 26.5      | 71.7     | 71.7  | 26.5  | 71.7     | 71.7      | 26.5   | 76.7 | 76.7        | 11.7     | 61.9  | 61.9 |
| Actuated g/C Ratio       | 0.13      | 0.35     | 0.35  | 0.13  | 0.35     | 0.35      | 0.13   | 0.38 | 0.38        | 0.06     | 0.31  | 0.31 |
| Clearance Time (s)       | 5.5       | 5.6      | 5.6   | 5.5   | 5.7      | 5.7       | 5.5    | 5.5  | 5.5         | 5.5      | 5.9   | 5.9  |
| Vehicle Extension (s)    | 1.0       | 5.0      | 5.0   | 1.0   | 5.9      | 5.9       | 1.0    | 5.4  | 5.4         | 1.0      | 5.4   | 5.4  |
| Lane Grp Cap (vph)       | 449       | 1252     | 560   | 449   | 1252     | 560       | 449    | 1925 | 599         | 198      | 1554  | 484  |
| v/s Ratio Prot           | c0.14     | 0.06     |       | 0.13  | 0.12     |           | c0.13  | 0.10 |             | 0.03     | c0.21 |      |
| v/s Ratio Perm           |           |          | c0.56 |       |          | 0.09      |        |      | 0.02        |          |       | 0.11 |
| v/c Ratio                | 1.06      | 0.17     | 1.58  | 1.01  | 0.34     | 0.26      | 0.96   | 0.26 | 0.06        | 0.59     | 0.67  | 0.37 |
| Uniform Delay, d1        | 88.0      | 45.0     | 65.4  | 88.0  | 48.2     | 46.6      | 87.6   | 43.4 | 40.0        | 93.1     | 61.5  | 55.1 |
| Progression Factor       | 1.00      | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00 | 1.00        | 1.00     | 1.00  | 1.00 |
| Incremental Delay, d2    | 58.6      | 0.1      | 269.8 | 44.1  | 0.5      | 0.7       | 33.0   | 0.2  | 0.1         | 2.8      | 1.6   | 1.1  |
| Delay (s)                | 146.7     | 45.1     | 335.2 | 132.2 | 48.6     | 47.3      | 120.5  | 43.5 | 40.1        | 95.9     | 63.1  | 56.3 |
| Level of Service         | F         | D        | F     | F     | D        | D         | F      | D    | D           | F        | Е     | E    |
| Approach Delay (s)       |           | 247.5    |       |       | 78.5     |           |        | 75.9 |             |          | 63.9  |      |
| Approach LOS             |           | F        |       |       | E        |           |        | E    |             |          | E     |      |
| Intersection Summary     |           |          |       |       |          |           |        |      |             |          |       |      |
| HCM Average Control D    | •         |          | 126.8 | F     | HCM Le   | vel of Se | ervice |      | F           |          |       |      |
| HCM Volume to Capacit    |           |          | 1.12  |       |          |           |        |      |             |          |       |      |
| Actuated Cycle Length (  |           |          | 202.6 |       | Sum of I |           |        |      | 16.0        |          |       |      |
| Intersection Capacity Ut | ilization | 1        | 01.1% | 10    | CU Leve  | el of Sei | vice   |      | G           |          |       |      |
| Analysis Period (min)    |           |          | 15    |       |          |           |        |      |             |          |       |      |
| c Critical Lane Group    |           |          |       |       |          |           |        |      |             |          |       |      |

|                              | ٠         | <b>→</b> | •     | •     | <b>←</b> | •         | •      | †    | <i>&gt;</i> | <b>/</b> | ţ               | 4    |
|------------------------------|-----------|----------|-------|-------|----------|-----------|--------|------|-------------|----------|-----------------|------|
| Movement                     | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT  | NBR         | SBL      | SBT             | SBR  |
| Lane Configurations          | 44        | <b>^</b> | 7     | 77    | <b>^</b> | 7         | 44     | ተተተ  | 7           | 1,1      | ተተ <sub>ጉ</sub> |      |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900 | 1900        | 1900     | 1900            | 1900 |
| Total Lost time (s)          | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0  | 4.0         | 4.0      | 4.0             |      |
| Lane Util. Factor            | 0.97      | 0.95     | 1.00  | 0.97  | 0.95     | 1.00      | 0.97   | 0.91 | 1.00        | 0.97     | 0.91            |      |
| Frt                          | 1.00      | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00 | 0.85        | 1.00     | 0.98            |      |
| Flt Protected                | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00 | 1.00        | 0.95     | 1.00            |      |
| Satd. Flow (prot)            | 3433      | 3539     | 1583  | 3433  | 3539     | 1583      | 3433   | 5085 | 1583        | 3433     | 4975            |      |
| Flt Permitted                | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00 | 1.00        | 0.95     | 1.00            |      |
| Satd. Flow (perm)            | 3433      | 3539     | 1583  | 3433  | 3539     | 1583      | 3433   | 5085 | 1583        | 3433     | 4975            |      |
| Volume (vph)                 | 164       | 374      | 322   | 266   | 609      | 64        | 222    | 535  | 46          | 129      | 1648            | 277  |
| Peak-hour factor, PHF        | 0.92      | 0.92     | 0.92  | 0.93  | 0.93     | 0.93      | 0.92   | 0.92 | 0.92        | 0.95     | 0.95            | 0.95 |
| Adj. Flow (vph)              | 178       | 407      | 350   | 286   | 655      | 69        | 241    | 582  | 50          | 136      | 1735            | 292  |
| RTOR Reduction (vph)         | 0         | 0        | 186   | 0     | 0        | 42        | 0      | 0    | 25          | 0        | 9               | 0    |
| Lane Group Flow (vph)        | 178       | 407      | 164   | 286   | 655      | 27        | 241    | 582  | 25          | 136      | 2018            | 0    |
| Turn Type                    | Prot      |          | Perm  | Prot  |          | Perm      | Prot   |      | Perm        | Prot     |                 |      |
| Protected Phases             | 7         | 4        |       | 3     | 8        |           | 5      | 2    |             | 1        | 6               |      |
| Permitted Phases             |           |          | 4     |       |          | 8         |        |      | 2           |          |                 |      |
| Actuated Green, G (s)        | 11.4      | 32.2     | 32.2  | 16.3  | 37.3     | 37.3      | 14.2   | 75.4 | 75.4        | 9.5      | 70.7            |      |
| Effective Green, g (s)       | 12.9      | 33.9     | 33.9  | 17.8  | 38.8     | 38.8      | 15.7   | 77.0 | 77.0        | 11.0     | 72.3            |      |
| Actuated g/C Ratio           | 0.08      | 0.22     | 0.22  | 0.11  | 0.25     | 0.25      | 0.10   | 0.49 | 0.49        | 0.07     | 0.46            |      |
| Clearance Time (s)           | 5.5       | 5.7      | 5.7   | 5.5   | 5.5      | 5.5       | 5.5    | 5.6  | 5.6         | 5.5      | 5.6             |      |
| Vehicle Extension (s)        | 1.0       | 4.9      | 4.9   | 1.0   | 4.9      | 4.9       | 1.0    | 4.9  | 4.9         | 1.0      | 4.9             |      |
| Lane Grp Cap (vph)           | 284       | 771      | 345   | 392   | 882      | 394       | 346    | 2515 | 783         | 243      | 2310            |      |
| v/s Ratio Prot               | 0.05      | 0.11     |       | c0.08 | c0.19    |           | c0.07  | 0.11 |             | 0.04     | c0.41           |      |
| v/s Ratio Perm               |           |          | 0.10  |       |          | 0.02      |        |      | 0.02        |          |                 |      |
| v/c Ratio                    | 0.63      | 0.53     | 0.47  | 0.73  | 0.74     | 0.07      | 0.70   | 0.23 | 0.03        | 0.56     | 0.87            |      |
| Uniform Delay, d1            | 69.1      | 53.8     | 53.1  | 66.6  | 53.8     | 44.6      | 67.7   | 22.5 | 20.2        | 70.0     | 37.6            |      |
| Progression Factor           | 1.00      | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00 | 1.00        | 1.00     | 1.00            |      |
| Incremental Delay, d2        | 3.1       | 1.2      | 2.1   | 5.7   | 4.0      | 0.1       | 4.9    | 0.1  | 0.0         | 1.6      | 4.3             |      |
| Delay (s)                    | 72.2      | 55.0     | 55.2  | 72.3  | 57.9     | 44.8      | 72.6   | 22.6 | 20.2        | 71.6     | 41.9            |      |
| Level of Service             | E         | E        | E     | E     | E        | D         | E      | С    | С           | E        | D               |      |
| Approach Delay (s)           |           | 58.4     |       |       | 61.1     |           |        | 36.2 |             |          | 43.8            |      |
| Approach LOS                 |           | Е        |       |       | Е        |           |        | D    |             |          | D               |      |
| Intersection Summary         |           |          |       |       |          |           |        |      |             |          |                 |      |
| HCM Average Control D        |           |          | 48.7  | H     | ICM Le   | vel of Se | ervice |      | D           |          |                 |      |
| <b>HCM Volume to Capacit</b> |           |          | 0.79  |       |          |           |        |      |             |          |                 |      |
| Actuated Cycle Length (      |           |          | 155.7 |       | Sum of I |           |        |      | 12.0        |          |                 |      |
| Intersection Capacity Uti    | ilization |          | 79.2% | ŀ     | CU Leve  | el of Sei | vice   |      | D           |          |                 |      |
| Analysis Period (min)        |           |          | 15    |       |          |           |        |      |             |          |                 |      |
| c Critical Lane Group        |           |          |       |       |          |           |        |      |             |          |                 |      |

|                          | ۶         | <b>→</b> | •     | •    | <b>←</b> | •         | 4      | †        | <b>/</b> | <b>/</b> | ţ        | 4    |
|--------------------------|-----------|----------|-------|------|----------|-----------|--------|----------|----------|----------|----------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL    | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations      | 7         | <b>^</b> | 7     | Ţ    | <b>^</b> | 7         | 44     | <b>^</b> | 7        | ሻ        | <b>^</b> | 7    |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900 | 1900     | 1900      | 1900   | 1900     | 1900     | 1900     | 1900     | 1900 |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   | 4.0  | 4.0      | 4.0       | 4.0    | 4.0      | 4.0      | 4.0      | 4.0      | 4.0  |
| Lane Util. Factor        | 1.00      | 0.95     | 1.00  | 1.00 | 0.95     | 1.00      | 0.97   | 0.95     | 1.00     | 1.00     | 0.95     | 1.00 |
| Frt                      | 1.00      | 1.00     | 0.85  | 1.00 | 1.00     | 0.85      | 1.00   | 1.00     | 0.85     | 1.00     | 1.00     | 0.85 |
| Flt Protected            | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00     | 0.95     | 1.00     | 1.00 |
| Satd. Flow (prot)        | 1770      | 3539     | 1583  | 1770 | 3539     | 1583      | 3433   | 3539     | 1583     | 1770     | 3539     | 1583 |
| Flt Permitted            | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00     | 0.95     | 1.00     | 1.00 |
| Satd. Flow (perm)        | 1770      | 3539     | 1583  | 1770 | 3539     | 1583      | 3433   | 3539     | 1583     | 1770     | 3539     | 1583 |
| Volume (vph)             | 155       | 208      | 592   | 85   | 118      | 48        | 219    | 686      | 43       | 57       | 1202     | 116  |
| Peak-hour factor, PHF    | 0.91      | 0.91     | 0.91  | 0.74 | 0.74     | 0.74      | 0.88   | 0.88     | 0.88     | 0.99     | 0.99     | 0.99 |
| Adj. Flow (vph)          | 170       | 229      | 651   | 115  | 159      | 65        | 249    | 780      | 49       | 58       | 1214     | 117  |
| RTOR Reduction (vph)     | 0         | 0        | 181   | 0    | 0        | 49        | 0      | 0        | 28       | 0        | 0        | 58   |
| Lane Group Flow (vph)    | 170       | 229      | 470   | 115  | 159      | 16        | 249    | 780      | 21       | 58       | 1214     | 59   |
| Turn Type                | Prot      |          | Perm  | Prot |          | Perm      | Prot   |          | Perm     | Prot     |          | Perm |
| Protected Phases         | 7         | 4        |       | 3    | 8        |           | 5      | 2        |          | 1        | 6        |      |
| Permitted Phases         |           |          | 4     |      |          | 8         |        |          | 2        |          |          | 6    |
| Actuated Green, G (s)    | 15.4      | 33.0     | 33.0  | 10.7 | 29.3     | 29.3      | 12.5   | 49.0     | 49.0     | 7.3      | 43.8     | 43.8 |
| Effective Green, g (s)   | 15.4      | 35.0     | 35.0  | 10.7 | 30.3     | 30.3      | 12.5   | 51.0     | 51.0     | 7.3      | 45.8     | 45.8 |
| Actuated g/C Ratio       | 0.13      | 0.29     | 0.29  | 0.09 | 0.25     | 0.25      | 0.10   | 0.42     | 0.42     | 0.06     | 0.38     | 0.38 |
| Clearance Time (s)       | 4.0       | 6.0      | 6.0   | 4.0  | 5.0      | 5.0       | 4.0    | 6.0      | 6.0      | 4.0      | 6.0      | 6.0  |
| Vehicle Extension (s)    | 2.0       | 4.5      | 4.5   | 2.0  | 5.0      | 5.0       | 2.0    | 3.4      | 3.4      | 2.0      | 4.1      | 4.1  |
| Lane Grp Cap (vph)       | 227       | 1032     | 462   | 158  | 894      | 400       | 358    | 1504     | 673      | 108      | 1351     | 604  |
| v/s Ratio Prot           | c0.10     | 0.06     |       | 0.06 | 0.04     |           | c0.07  | 0.22     |          | 0.03     | c0.34    |      |
| v/s Ratio Perm           |           |          | c0.30 |      |          | 0.01      |        |          | 0.01     |          |          | 0.04 |
| v/c Ratio                | 0.75      | 0.22     | 1.02  | 0.73 | 0.18     | 0.04      | 0.70   | 0.52     | 0.03     | 0.54     | 0.90     | 0.10 |
| Uniform Delay, d1        | 50.4      | 32.2     | 42.5  | 53.2 | 35.1     | 33.9      | 51.9   | 25.4     | 20.1     | 54.7     | 34.9     | 23.8 |
| Progression Factor       | 1.00      | 1.00     | 1.00  | 1.00 | 1.00     | 1.00      | 1.00   | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |
| Incremental Delay, d2    | 11.2      | 0.2      | 46.1  | 13.2 | 0.2      | 0.1       | 4.7    | 1.3      | 0.1      | 2.6      | 9.7      | 0.3  |
| Delay (s)                | 61.6      | 32.4     | 88.6  | 66.4 | 35.3     | 34.0      | 56.6   | 26.7     | 20.2     | 57.3     | 44.6     | 24.2 |
| Level of Service         | Е         | С        | F     | Е    | D        | С         | Е      | С        | С        | E        | D        | С    |
| Approach Delay (s)       |           | 72.0     |       |      | 45.6     |           |        | 33.3     |          |          | 43.4     |      |
| Approach LOS             |           | Е        |       |      | D        |           |        | С        |          |          | D        |      |
| Intersection Summary     |           |          |       |      |          |           |        |          |          |          |          |      |
| HCM Average Control D    | -         |          | 48.6  | F    | ICM Le   | vel of S  | ervice |          | D        |          |          |      |
| HCM Volume to Capacit    | ty ratio  |          | 0.88  |      |          |           |        |          |          |          |          |      |
| Actuated Cycle Length (  |           |          | 120.0 |      | Sum of I |           |        |          | 12.0     |          |          |      |
| Intersection Capacity Ut | ilization |          | 84.6% | [0   | CU Leve  | el of Sei | vice   |          | Е        |          |          |      |
| Analysis Period (min)    |           |          | 15    |      |          |           |        |          |          |          |          |      |
| c Critical Lane Group    |           |          |       |      |          |           |        |          |          |          |          |      |

|                              | ۶        | <b>→</b> | •     | •     | •        | •         | 4      | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ        | 4    |
|------------------------------|----------|----------|-------|-------|----------|-----------|--------|----------|----------|-------------|----------|------|
| Movement                     | EBL      | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR      | SBL         | SBT      | SBR  |
| Lane Configurations          |          | ર્ન      | 7     | ,     | ર્ન      | 7         | , j    | <b>^</b> | 7        | ¥           | <b>†</b> | 7    |
| Ideal Flow (vphpl)           | 1900     | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900     | 1900        | 1900     | 1900 |
| Total Lost time (s)          |          | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0      | 4.0         | 4.0      | 4.0  |
| Lane Util. Factor            |          | 1.00     | 1.00  | 0.95  | 0.95     | 1.00      | 1.00   | 0.95     | 1.00     | 1.00        | 0.95     | 1.00 |
| Frt                          |          | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85     | 1.00        | 1.00     | 0.85 |
| Flt Protected                |          | 0.98     | 1.00  | 0.95  | 0.96     | 1.00      | 0.95   | 1.00     | 1.00     | 0.95        | 1.00     | 1.00 |
| Satd. Flow (prot)            |          | 1700     | 1292  | 1603  | 1594     | 1583      | 1770   | 3438     | 1538     | 1687        | 3195     | 1583 |
| Flt Permitted                |          | 0.98     | 1.00  | 0.95  | 0.96     | 1.00      | 0.95   | 1.00     | 1.00     | 0.95        | 1.00     | 1.00 |
| Satd. Flow (perm)            |          | 1700     | 1292  | 1603  | 1594     | 1583      | 1770   | 3438     | 1538     | 1687        | 3195     | 1583 |
| Volume (vph)                 | 10       | 13       | 16    | 178   | 10       | 38        | 7      | 1943     | 564      | 44          | 1045     | 1    |
| Peak-hour factor, PHF        | 0.76     | 0.76     | 0.76  | 0.83  | 0.83     | 0.83      | 0.95   | 0.95     | 0.95     | 0.93        | 0.93     | 0.93 |
| Adj. Flow (vph)              | 13       | 17       | 21    | 214   | 12       | 46        | 7      | 2045     | 594      | 47          | 1124     | 1    |
| RTOR Reduction (vph)         | 0        | 0        | 20    | 0     | 0        | 41        | 0      | 0        | 101      | 0           | 0        | 0    |
| Lane Group Flow (vph)        | 0        | 30       | 1     | 117   | 109      | 5         | 7      | 2045     | 493      | 47          | 1124     | 1    |
| Heavy Vehicles (%)           | 2%       | 15%      | 25%   | 7%    | 20%      | 2%        | 2%     | 5%       | 5%       | 7%          | 13%      | 2%   |
| Turn Type                    | Split    |          | Perm  | Split |          | Perm      | Prot   |          | Perm     | Prot        |          | Perm |
| Protected Phases             | 7        | 7        |       | 8     | 8        |           | 5      | 2        |          | 1           | 6        |      |
| Permitted Phases             |          |          | 7     |       |          | 8         |        |          | 2        |             |          | 6    |
| Actuated Green, G (s)        |          | 5.0      | 5.0   | 11.7  | 11.7     | 11.7      | 1.0    | 76.9     | 76.9     | 6.6         | 82.5     | 82.5 |
| Effective Green, g (s)       |          | 7.0      | 7.0   | 13.7  | 13.7     | 13.7      | 0.5    | 80.0     | 80.0     | 6.1         | 85.6     | 85.6 |
| Actuated g/C Ratio           |          | 0.06     | 0.06  | 0.11  | 0.11     | 0.11      | 0.00   | 0.65     | 0.65     | 0.05        | 0.70     | 0.70 |
| Clearance Time (s)           |          | 6.0      | 6.0   | 6.0   | 6.0      | 6.0       | 3.5    | 7.1      | 7.1      | 3.5         | 7.1      | 7.1  |
| Vehicle Extension (s)        |          | 1.0      | 1.0   | 1.0   | 1.0      | 1.0       | 2.0    | 2.0      | 2.0      | 2.0         | 2.0      | 2.0  |
| Lane Grp Cap (vph)           |          | 97       | 74    | 179   | 178      | 177       | 7      | 2240     | 1002     | 84          | 2227     | 1103 |
| v/s Ratio Prot               |          | c0.02    |       | c0.07 | 0.07     |           | 0.00   | c0.59    |          | c0.03       | 0.35     |      |
| v/s Ratio Perm               |          |          | 0.00  |       |          | 0.00      |        |          | 0.32     |             |          | 0.00 |
| v/c Ratio                    |          | 0.31     | 0.02  | 0.65  | 0.61     | 0.03      | 1.00   | 0.91     | 0.49     | 0.56        | 0.50     | 0.00 |
| Uniform Delay, d1            |          | 55.6     | 54.6  | 52.3  | 52.0     | 48.6      | 61.1   | 18.4     | 11.0     | 57.0        | 8.7      | 5.6  |
| Progression Factor           |          | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00     | 1.00        | 1.00     | 1.00 |
| Incremental Delay, d2        |          | 0.7      | 0.0   | 6.4   | 4.3      | 0.0       | 340.2  | 6.1      | 0.1      | 4.5         | 0.1      | 0.0  |
| Delay (s)                    |          | 56.2     | 54.7  | 58.7  | 56.4     | 48.6      | 401.3  | 24.5     | 11.1     | 61.6        | 8.8      | 5.6  |
| Level of Service             |          | E        | D     | Е     | Е        | D         | F      | С        | В        | Е           | Α        | Α    |
| Approach Delay (s)           |          | 55.6     |       |       | 56.0     |           |        | 22.5     |          |             | 10.9     |      |
| Approach LOS                 |          | Е        |       |       | Е        |           |        | С        |          |             | В        |      |
| Intersection Summary         |          |          |       |       |          |           |        |          |          |             |          |      |
| HCM Average Control D        | elay     |          | 21.8  | F     | ICM Lev  | vel of So | ervice |          | С        |             |          |      |
| <b>HCM Volume to Capacit</b> |          |          | 0.82  |       |          |           |        |          |          |             |          |      |
| Actuated Cycle Length (s     | ,        |          | 122.8 |       | Sum of l |           |        |          | 16.0     |             |          |      |
| Intersection Capacity Uti    | lization |          | 72.2% | I     | CU Leve  | el of Sei | rvice  |          | С        |             |          |      |
| Analysis Period (min)        |          |          | 15    |       |          |           |        |          |          |             |          |      |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •         | 1      | <b>†</b> | /     | -     | ţ        | 4     |
|---------------------------|----------|----------|-------|-------|----------|-----------|--------|----------|-------|-------|----------|-------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR   | SBL   | SBT      | SBR   |
| Lane Configurations       |          | ર્ન      | 7     | Ţ     | ર્ન      | 7         | 7      | <b>^</b> | 7     | Ţ     | <b>^</b> | 7     |
| Ideal Flow (vphpl)        | 1900     | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900  | 1900  | 1900     | 1900  |
| Total Lost time (s)       |          | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   |
| Lane Util. Factor         |          | 1.00     | 1.00  | 0.95  | 0.95     | 1.00      | 1.00   | 0.95     | 1.00  | 1.00  | 0.95     | 1.00  |
| Frt                       |          | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85  | 1.00  | 1.00     | 0.85  |
| Flt Protected             |          | 0.98     | 1.00  | 0.95  | 0.95     | 1.00      | 0.95   | 1.00     | 1.00  | 0.95  | 1.00     | 1.00  |
| Satd. Flow (prot)         |          | 1714     | 1468  | 1665  | 1666     | 1524      | 1543   | 3406     | 1568  | 1612  | 3195     | 1324  |
| Flt Permitted             |          | 0.98     | 1.00  | 0.95  | 0.95     | 1.00      | 0.95   | 1.00     | 1.00  | 0.95  | 1.00     | 1.00  |
| Satd. Flow (perm)         |          | 1714     | 1468  | 1665  | 1666     | 1524      | 1543   | 3406     | 1568  | 1612  | 3195     | 1324  |
| Volume (vph)              | 15       | 25       | 59    | 503   | 7        | 56        | 12     | 2443     | 1209  | 70    | 1160     | 9     |
| Peak-hour factor, PHF     | 0.88     | 0.88     | 0.88  | 0.92  | 0.92     | 0.92      | 0.97   | 0.97     | 0.97  | 0.90  | 0.90     | 0.90  |
| Adj. Flow (vph)           | 17       | 28       | 67    | 547   | 8        | 61        | 12     | 2519     | 1246  | 78    | 1289     | 10    |
| RTOR Reduction (vph)      | 0        | 0        | 63    | 0     | 0        | 50        | 0      | 0        | 185   | 0     | 0        | 3     |
| Lane Group Flow (vph)     | 0        | 45       | 4     | 284   | 271      | 11        | 12     | 2519     | 1061  | 78    | 1289     | 7     |
| Heavy Vehicles (%)        | 20%      | 2%       | 10%   | 3%    | 14%      | 6%        | 17%    | 6%       | 3%    | 12%   | 13%      | 22%   |
| Turn Type                 | Split    |          | Perm  | Split |          | Perm      | Prot   |          | Perm  | Prot  |          | Perm  |
| Protected Phases          | 7        | 7        |       | 8     | 8        |           | 5      | 2        |       | 1     | 6        |       |
| Permitted Phases          |          |          | 7     |       |          | 8         |        |          | 2     |       |          | 6     |
| Actuated Green, G (s)     |          | 8.5      | 8.5   | 21.0  | 21.0     | 21.0      | 3.0    | 116.8    | 116.8 | 11.7  | 125.5    | 125.5 |
| Effective Green, g (s)    |          | 10.5     | 10.5  | 23.0  | 23.0     | 23.0      | 2.5    | 119.9    | 119.9 | 11.2  | 128.6    | 128.6 |
| Actuated g/C Ratio        |          | 0.06     | 0.06  | 0.13  | 0.13     | 0.13      | 0.01   | 0.66     | 0.66  | 0.06  | 0.71     | 0.71  |
| Clearance Time (s)        |          | 6.0      | 6.0   | 6.0   | 6.0      | 6.0       | 3.5    | 7.1      | 7.1   | 3.5   | 7.1      | 7.1   |
| Vehicle Extension (s)     |          | 1.0      | 1.0   | 1.0   | 1.0      | 1.0       | 2.2    | 2.0      | 2.0   | 2.2   | 2.0      | 2.0   |
| Lane Grp Cap (vph)        |          | 100      | 85    | 212   | 212      | 194       | 21     | 2261     | 1041  | 100   | 2275     | 943   |
| v/s Ratio Prot            |          | c0.03    |       | c0.17 | 0.16     |           | 0.01   | c0.74    |       | c0.05 | 0.40     |       |
| v/s Ratio Perm            |          |          | 0.00  |       |          | 0.01      |        |          | 0.68  |       |          | 0.01  |
| v/c Ratio                 |          | 0.45     | 0.05  | 1.34  | 1.28     | 0.06      | 0.57   | 1.11     | 1.02  | 0.78  | 0.57     | 0.01  |
| Uniform Delay, d1         |          | 82.3     | 80.3  | 78.8  | 78.8     | 69.3      | 88.5   | 30.3     | 30.3  | 83.5  | 12.5     | 7.5   |
| Progression Factor        |          | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  |
| Incremental Delay, d2     |          | 1.2      | 0.1   | 181.1 | 156.5    | 0.0       | 23.7   | 58.2     | 32.8  | 29.9  | 1.0      | 0.0   |
| Delay (s)                 |          | 83.4     | 80.4  | 259.9 | 235.3    | 69.3      | 112.2  | 88.6     | 63.1  | 113.4 | 13.6     | 7.5   |
| Level of Service          |          | F        | F     | F     | F        | Е         | F      | F        | Е     | F     | В        | Α     |
| Approach Delay (s)        |          | 81.6     |       |       | 230.2    |           |        | 80.2     |       |       | 19.2     |       |
| Approach LOS              |          | F        |       |       | F        |           |        | F        |       |       | В        |       |
| Intersection Summary      |          |          |       |       |          |           |        |          |       |       |          |       |
| HCM Average Control Do    |          |          | 81.7  | F     | HCM Lev  | vel of S  | ervice |          | F     |       |          |       |
| HCM Volume to Capacity    |          |          | 1.08  |       |          |           |        |          |       |       |          |       |
| Actuated Cycle Length (s  |          |          | 180.6 |       | Sum of l |           |        |          | 16.0  |       |          |       |
| Intersection Capacity Uti | lization |          | 95.0% | Į(    | CU Leve  | el of Sei | vice   |          | F     |       |          |       |
| Analysis Period (min)     |          |          | 15    |       |          |           |        |          |       |       |          |       |

|                           | ۶        | <b>→</b> | <b>←</b> | •    | <b>&gt;</b> | ✓          |   |
|---------------------------|----------|----------|----------|------|-------------|------------|---|
| Movement                  | EBL      | EBT      | WBT      | WBR  | SBL         | SBR        |   |
| Lane Configurations       |          | <b>*</b> | 1→       |      | ሻ           | 7          |   |
| Sign Control              |          | Free     | Free     |      | Stop        |            |   |
| Grade                     |          | 0%       | 0%       |      | 0%          |            |   |
| Volume (veh/h)            | 0        | 7        | 13       | 416  | 90          | 2          |   |
| Peak Hour Factor          | 0.54     | 0.54     | 0.83     | 0.83 | 0.88        | 0.88       |   |
| Hourly flow rate (vph)    | 0        | 13       | 16       | 501  | 102         | 2          |   |
| Pedestrians               |          |          |          |      |             |            |   |
| Lane Width (ft)           |          |          |          |      |             |            |   |
| Walking Speed (ft/s)      |          |          |          |      |             |            |   |
| Percent Blockage          |          |          |          |      |             |            |   |
| Right turn flare (veh)    |          |          |          |      |             |            |   |
| Median type               |          |          |          |      | None        |            |   |
| Median storage veh)       |          |          |          |      |             |            |   |
| Upstream signal (ft)      |          |          | 960      |      |             |            |   |
| pX, platoon unblocked     |          |          |          |      |             |            |   |
| vC, conflicting volume    | 517      |          |          |      | 279         | 266        |   |
| vC1, stage 1 conf vol     |          |          |          |      |             |            |   |
| vC2, stage 2 conf vol     |          |          |          |      |             |            |   |
| vCu, unblocked vol        | 517      |          |          |      | 279         | 266        |   |
| tC, single (s)            | 4.1      |          |          |      | 6.4         | 6.2        |   |
| tC, 2 stage (s)           |          |          |          |      |             |            |   |
| tF (s)                    | 2.2      |          |          |      | 3.5         | 3.3        |   |
| p0 queue free %           | 100      |          |          |      | 86          | 100        |   |
| cM capacity (veh/h)       | 1049     |          |          |      | 711         | 772        |   |
| Direction, Lane #         | EB 1     | WB 1     | SB 1     | SB 2 |             |            |   |
| Volume Total              | 13       | 517      | 102      | 2    |             |            |   |
| Volume Left               | 0        | 0        | 102      | 0    |             |            |   |
| Volume Right              | 0        | 501      | 0        | 2    |             |            |   |
| cSH                       | 1700     | 1700     | 711      | 772  |             |            |   |
| Volume to Capacity        | 0.01     | 0.30     | 0.14     | 0.00 |             |            |   |
| Queue Length 95th (ft)    | 0        | 0        | 13       | 0    |             |            |   |
| Control Delay (s)         | 0.0      | 0.0      | 10.9     | 9.7  |             |            |   |
| Lane LOS                  |          |          | В        | Α    |             |            |   |
| Approach Delay (s)        | 0.0      | 0.0      | 10.9     |      |             |            |   |
| Approach LOS              |          |          | В        |      |             |            |   |
| Intersection Summary      |          |          |          |      |             |            |   |
| Average Delay             |          |          | 1.8      |      |             |            |   |
| Intersection Capacity Uti | lization |          | 38.1%    | IC   | CU Leve     | of Service | е |
| Analysis Period (min)     |          |          | 15       |      |             |            |   |
|                           |          |          |          |      |             |            |   |

|                           | <b>→</b> | •    | •     | ←       | 4       | <i>&gt;</i>   |   |   |
|---------------------------|----------|------|-------|---------|---------|---------------|---|---|
| Movement                  | EBT      | EBR  | WBL   | WBT     | NBL     | NBR           |   |   |
| Lane Configurations       | 1>       |      |       | <b></b> | ሻ       | 7             |   |   |
| Sign Control              | Free     |      |       | Free    | Stop    |               |   |   |
| Grade                     | 0%       |      |       | 0%      | 0%      |               |   |   |
| Volume (veh/h)            | 94       | 3    | 0     | 410     | 19      | 1166          |   |   |
| Peak Hour Factor          | 0.84     | 0.84 | 0.88  | 0.88    | 0.90    | 0.90          |   |   |
| Hourly flow rate (vph)    | 112      | 4    | 0     | 466     | 21      | 1296          |   |   |
| Pedestrians               |          |      |       |         |         |               |   |   |
| Lane Width (ft)           |          |      |       |         |         |               |   |   |
| Walking Speed (ft/s)      |          |      |       |         |         |               |   |   |
| Percent Blockage          |          |      |       |         |         |               |   |   |
| Right turn flare (veh)    |          |      |       |         |         |               |   |   |
| Median type               |          |      |       |         | None    |               |   |   |
| Median storage veh)       |          |      |       |         |         |               |   |   |
| Upstream signal (ft)      |          |      |       |         |         |               |   |   |
| pX, platoon unblocked     |          |      |       |         |         |               |   |   |
| vC, conflicting volume    |          |      | 115   |         | 580     | 114           |   |   |
| vC1, stage 1 conf vol     |          |      |       |         |         |               |   |   |
| vC2, stage 2 conf vol     |          |      |       |         |         |               |   |   |
| vCu, unblocked vol        |          |      | 115   |         | 580     | 114           |   |   |
| tC, single (s)            |          |      | 4.1   |         | 6.4     | 6.2           |   |   |
| tC, 2 stage (s)           |          |      |       |         |         |               |   |   |
| tF (s)                    |          |      | 2.2   |         | 3.5     | 3.3           |   |   |
| p0 queue free %           |          |      | 100   |         | 96      | 0             |   |   |
| cM capacity (veh/h)       |          |      | 1473  |         | 477     | 939           |   |   |
| Direction, Lane #         | EB 1     | WB 1 | NB 1  | NB 2    |         |               |   |   |
| Volume Total              | 115      | 466  | 21    | 1296    |         |               |   |   |
| Volume Left               | 0        | 0    | 21    | 0       |         |               |   |   |
| Volume Right              | 4        | 0    | 0     | 1296    |         |               |   |   |
| cSH                       | 1700     | 1700 | 477   | 939     |         |               |   |   |
| Volume to Capacity        | 0.07     | 0.27 | 0.04  | 1.38    |         |               |   |   |
| Queue Length 95th (ft)    | 0        | 0    | 3     | 1341    |         |               |   |   |
| Control Delay (s)         | 0.0      | 0.0  | 12.9  | 192.6   |         |               |   |   |
| Lane LOS                  |          |      | В     | F       |         |               |   |   |
| Approach Delay (s)        | 0.0      | 0.0  | 189.8 |         |         |               |   |   |
| Approach LOS              |          |      | F     |         |         |               |   |   |
|                           |          |      |       |         |         |               |   | _ |
| Intersection Summary      |          |      | 101.0 |         |         |               |   |   |
| Average Delay             | lization |      | 131.6 | 17      | 2111    | d of Comite   | _ |   |
| Intersection Capacity Uti | iization |      | 84.0% | 10      | JU Leve | el of Service | H |   |
| Analysis Period (min)     |          |      | 15    |         |         |               |   |   |
|                           |          |      |       |         |         |               |   |   |

|                          | ۶         | <b>→</b> | •     | •    | <b>←</b> | •          | 4    | †    | /    | <b>/</b> | ţ    | 4    |
|--------------------------|-----------|----------|-------|------|----------|------------|------|------|------|----------|------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL  | WBT      | WBR        | NBL  | NBT  | NBR  | SBL      | SBT  | SBR  |
| Lane Configurations      |           | 4        |       |      | 4        |            |      | 4    |      |          | 4    |      |
| Sign Control             |           | Stop     |       |      | Stop     |            |      | Stop |      |          | Stop |      |
| Volume (vph)             | 22        | 1397     | 0     | 34   | 562      | 0          | 4    | 60   | 96   | 4        | 25   | 2    |
| Peak Hour Factor         | 0.93      | 0.93     | 0.93  | 0.92 | 0.92     | 0.92       | 0.97 | 0.97 | 0.97 | 0.70     | 0.70 | 0.70 |
| Hourly flow rate (vph)   | 24        | 1502     | 0     | 37   | 611      | 0          | 4    | 62   | 99   | 6        | 36   | 3    |
| Direction, Lane #        | EB 1      | WB 1     | NB 1  | SB 1 |          |            |      |      |      |          |      |      |
| Volume Total (vph)       | 1526      | 648      | 165   | 44   |          |            |      |      |      |          |      |      |
| Volume Left (vph)        | 24        | 37       | 4     | 6    |          |            |      |      |      |          |      |      |
| Volume Right (vph)       | 0         | 0        | 99    | 3    |          |            |      |      |      |          |      |      |
| Hadj (s)                 | 0.04      | 0.09     | -0.32 | 0.02 |          |            |      |      |      |          |      |      |
| Departure Headway (s)    | 5.7       | 5.7      | 6.9   | 7.8  |          |            |      |      |      |          |      |      |
| Degree Utilization, x    | 2.41      | 1.03     | 0.32  | 0.10 |          |            |      |      |      |          |      |      |
| Capacity (veh/h)         | 637       | 631      | 512   | 438  |          |            |      |      |      |          |      |      |
| Control Delay (s)        | 652.7     | 68.5     | 13.1  | 11.7 |          |            |      |      |      |          |      |      |
| Approach Delay (s)       | 652.7     | 68.5     | 13.1  | 11.7 |          |            |      |      |      |          |      |      |
| Approach LOS             | F         | F        | В     | В    |          |            |      |      |      |          |      |      |
| Intersection Summary     |           |          |       |      |          |            |      |      |      |          |      |      |
| Delay                    |           |          | 437.7 |      |          |            |      |      |      |          |      |      |
| HCM Level of Service     |           |          | F     |      |          |            |      |      |      |          |      |      |
| Intersection Capacity Ut | ilization |          | 96.6% | - 10 | CU Leve  | el of Serv | /ice |      | F    |          |      |      |
| Analysis Period (min)    |           |          | 15    |      |          |            |      |      |      |          |      |      |
|                          |           |          |       |      |          |            |      |      |      |          |      |      |

|                          | •         | <b>→</b> | <b>←</b>   | 4    | <b>\</b> | 1             |   |
|--------------------------|-----------|----------|------------|------|----------|---------------|---|
| Movement                 | EBL       | EBT      | WBT        | WBR  | SBL      | SBR           | J |
| Lane Configurations      |           | 4        | <b>f</b> a |      | ¥        |               |   |
| Sign Control             |           | Free     | Free       |      | Stop     |               |   |
| Grade                    |           | 0%       | 0%         |      | 0%       |               |   |
| Volume (veh/h)           | 119       | 968      | 546        | 34   | 11       | 54            |   |
| Peak Hour Factor         | 0.92      | 0.92     | 0.91       | 0.91 | 0.76     | 0.76          |   |
| Hourly flow rate (vph)   | 129       | 1052     | 600        | 37   | 14       | 71            |   |
| Pedestrians              |           |          |            |      |          |               |   |
| Lane Width (ft)          |           |          |            |      |          |               |   |
| Walking Speed (ft/s)     |           |          |            |      |          |               |   |
| Percent Blockage         |           |          |            |      |          |               |   |
| Right turn flare (veh)   |           |          |            |      |          |               |   |
| Median type              |           |          |            |      | None     |               |   |
| Median storage veh)      |           |          |            |      |          |               |   |
| Upstream signal (ft)     |           |          |            |      |          |               |   |
| pX, platoon unblocked    |           |          |            |      |          |               |   |
| vC, conflicting volume   | 637       |          |            |      | 1930     | 619           |   |
| vC1, stage 1 conf vol    |           |          |            |      |          |               |   |
| vC2, stage 2 conf vol    |           |          |            |      |          |               |   |
| vCu, unblocked vol       | 637       |          |            |      | 1930     | 619           |   |
| tC, single (s)           | 4.1       |          |            |      | 6.4      | 6.2           |   |
| tC, 2 stage (s)          |           |          |            |      |          |               |   |
| tF (s)                   | 2.2       |          |            |      | 3.5      | 3.3           |   |
| p0 queue free %          | 86        |          |            |      | 77       | 85            |   |
| cM capacity (veh/h)      | 946       |          |            |      | 63       | 489           |   |
| Direction, Lane #        | EB 1      | WB 1     | SB 1       |      |          |               |   |
| Volume Total             | 1182      | 637      | 86         |      |          |               |   |
| Volume Left              | 129       | 0        | 14         |      |          |               |   |
| Volume Right             | 0         | 37       | 71         |      |          |               |   |
| cSH                      | 946       | 1700     | 228        |      |          |               |   |
| Volume to Capacity       | 0.14      | 0.37     | 0.38       |      |          |               |   |
| Queue Length 95th (ft)   | 12        | 0.07     | 41         |      |          |               |   |
| Control Delay (s)        | 4.0       | 0.0      | 30.0       |      |          |               |   |
| Lane LOS                 | A         | 0.0      | D          |      |          |               |   |
| Approach Delay (s)       | 4.0       | 0.0      | 30.0       |      |          |               |   |
| Approach LOS             | 7.0       | 0.0      | D          |      |          |               |   |
|                          |           |          |            |      |          |               |   |
| Intersection Summary     |           |          |            |      |          |               |   |
| Average Delay            |           |          | 3.9        |      |          |               |   |
| Intersection Capacity Ut | ilization | 1        | 02.3%      | 10   | CU Leve  | el of Service | ! |
| Analysis Period (min)    |           |          | 15         |      |          |               |   |
|                          |           |          |            |      |          |               |   |

|                           | •        | <b>→</b> | *     | •     | <b>←</b> | 4         | 4    | †    | ~    | <b>/</b> | <b>+</b> | 4    |
|---------------------------|----------|----------|-------|-------|----------|-----------|------|------|------|----------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR       | NBL  | NBT  | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |       | 44       |           |      | 4    |      |          | 4        |      |
| Sign Control              |          | Free     |       |       | Free     |           |      | Stop |      |          | Stop     |      |
| Grade                     |          | 0%       |       |       | 0%       |           |      | 0%   |      |          | 0%       |      |
| Volume (veh/h)            | 33       | 1461     | 3     | 2     | 584      | 24        | 1    | 1    | 5    | 39       | 2        | 11   |
| Peak Hour Factor          | 0.93     | 0.93     | 0.93  | 0.92  | 0.92     | 0.92      | 0.45 | 0.45 | 0.45 | 0.71     | 0.71     | 0.71 |
| Hourly flow rate (vph)    | 35       | 1571     | 3     | 2     | 635      | 26        | 2    | 2    | 11   | 55       | 3        | 15   |
| Pedestrians               |          |          |       |       |          |           |      |      |      |          |          |      |
| Lane Width (ft)           |          |          |       |       |          |           |      |      |      |          |          |      |
| Walking Speed (ft/s)      |          |          |       |       |          |           |      |      |      |          |          |      |
| Percent Blockage          |          |          |       |       |          |           |      |      |      |          |          |      |
| Right turn flare (veh)    |          |          |       |       |          |           |      |      |      |          |          |      |
| Median type               |          |          |       |       |          |           |      | None |      |          | None     |      |
| Median storage veh)       |          |          |       |       |          |           |      |      |      |          |          |      |
| Upstream signal (ft)      |          |          |       |       |          |           |      |      |      |          |          |      |
| pX, platoon unblocked     |          |          |       |       |          |           |      |      |      |          |          |      |
| vC, conflicting volume    | 661      |          |       | 1574  |          |           | 2313 | 2309 | 1573 | 2308     | 2297     | 648  |
| vC1, stage 1 conf vol     |          |          |       |       |          |           |      |      |      |          |          |      |
| vC2, stage 2 conf vol     |          |          |       |       |          |           |      |      |      |          |          |      |
| vCu, unblocked vol        | 661      |          |       | 1574  |          |           | 2313 | 2309 | 1573 | 2308     | 2297     | 648  |
| tC, single (s)            | 4.2      |          |       | 4.1   |          |           | 7.1  | 6.8  | 6.2  | 7.1      | 6.8      | 6.3  |
| tC, 2 stage (s)           |          |          |       |       |          |           |      |      |      |          |          |      |
| tF (s)                    | 2.3      |          |       | 2.2   |          |           | 3.5  | 4.2  | 3.3  | 3.5      | 4.2      | 3.4  |
| p0 queue free %           | 96       |          |       | 99    |          |           | 90   | 93   | 92   | 0        | 91       | 97   |
| cM capacity (veh/h)       | 909      |          |       | 418   |          |           | 23   | 31   | 136  | 23       | 32       | 458  |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |           |      |      |      |          |          |      |
| Volume Total              | 1610     | 663      | 16    | 73    |          |           |      |      |      |          |          |      |
| Volume Left               | 35       | 2        | 2     | 55    |          |           |      |      |      |          |          |      |
| Volume Right              | 3        | 26       | 11    | 15    |          |           |      |      |      |          |          |      |
| cSH                       | 909      | 418      | 62    | 29    |          |           |      |      |      |          |          |      |
| Volume to Capacity        | 0.04     | 0.01     | 0.25  | 2.56  |          |           |      |      |      |          |          |      |
| Queue Length 95th (ft)    | 3        | 0        | 22    | 218   |          |           |      |      |      |          |          |      |
| Control Delay (s)         | 4.9      | 0.2      | 80.7  | 999.8 |          |           |      |      |      |          |          |      |
| Lane LOS                  | Α        | Α        | F     | F     |          |           |      |      |      |          |          |      |
| Approach Delay (s)        | 4.9      | 0.2      | 80.7  |       |          |           |      |      |      |          |          |      |
| Approach LOS              |          |          | F     | F     |          |           |      |      |      |          |          |      |
| Intersection Summary      |          |          |       |       |          |           |      |      |      |          |          |      |
| Average Delay             |          |          | 34.9  |       |          |           |      |      |      |          |          |      |
| Intersection Capacity Uti | lization | 1        | 17.5% | [0    | CU Leve  | el of Ser | vice |      | Н    |          |          |      |
| Analysis Period (min)     |          |          | 15    |       |          |           |      |      |      |          |          |      |

|                          | ۶         | <b>→</b> | •     | •     | <b>←</b> | •          | 4    | <b>†</b> | /    | <b>\</b> | <b>↓</b> | 4    |
|--------------------------|-----------|----------|-------|-------|----------|------------|------|----------|------|----------|----------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL   | WBT      | WBR        | NBL  | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations      |           | 4        |       |       | ર્ન      | 7          |      | 4        |      |          | 4        |      |
| Sign Control             |           | Stop     |       |       | Stop     |            |      | Stop     |      |          | Stop     |      |
| Volume (vph)             | 157       | 1326     | 15    | 9     | 593      | 143        | 6    | 18       | 8    | 124      | 26       | 10   |
| Peak Hour Factor         | 0.93      | 0.93     | 0.93  | 0.92  | 0.92     | 0.92       | 0.80 | 0.80     | 0.80 | 0.63     | 0.63     | 0.63 |
| Hourly flow rate (vph)   | 169       | 1426     | 16    | 10    | 645      | 155        | 8    | 22       | 10   | 197      | 41       | 16   |
| Direction, Lane #        | EB 1      | WB 1     | WB 2  | NB 1  | SB 1     |            |      |          |      |          |          |      |
| Volume Total (vph)       | 1611      | 654      | 155   | 40    | 254      |            |      |          |      |          |          |      |
| Volume Left (vph)        | 169       | 10       | 0     | 8     | 197      |            |      |          |      |          |          |      |
| Volume Right (vph)       | 16        | 0        | 155   | 10    | 16       |            |      |          |      |          |          |      |
| Hadj (s)                 | 0.05      | 0.09     | -0.57 | -0.08 | 0.18     |            |      |          |      |          |          |      |
| Departure Headway (s)    | 6.2       | 6.2      | 3.2   | 8.3   | 7.4      |            |      |          |      |          |          |      |
| Degree Utilization, x    | 2.76      | 1.13     | 0.14  | 0.09  | 0.52     |            |      |          |      |          |          |      |
| Capacity (veh/h)         | 596       | 585      | 1121  | 412   | 476      |            |      |          |      |          |          |      |
| Control Delay (s)        | 810.7     | 101.1    | 6.7   | 12.1  | 18.2     |            |      |          |      |          |          |      |
| Approach Delay (s)       | 810.7     | 83.0     |       | 12.1  | 18.2     |            |      |          |      |          |          |      |
| Approach LOS             | F         | F        |       | В     | С        |            |      |          |      |          |          |      |
| Intersection Summary     |           |          |       |       |          |            |      |          |      |          |          |      |
| Delay                    |           |          | 507.7 |       |          |            |      |          |      |          |          |      |
| HCM Level of Service     |           |          | F     |       |          |            |      |          |      |          |          |      |
| Intersection Capacity Ut | ilization | 1        | 36.6% | [0    | CU Leve  | el of Serv | /ice |          | Н    |          |          |      |
| Analysis Period (min)    |           |          | 15    |       |          |            |      |          |      |          |          |      |
|                          |           |          |       |       |          |            |      |          |      |          |          |      |

|                          | <b>→</b>  | •     | •     | ←     | 4       | <b>/</b>   |
|--------------------------|-----------|-------|-------|-------|---------|------------|
| Movement                 | EBT       | EBR   | WBL   | WBT   | NBL     | NBR        |
| Lane Configurations      | ĵ»        |       |       | ર્ન   | ሻ       | 7          |
| Sign Control             | Stop      |       |       | Stop  | Stop    |            |
| Volume (vph)             | 1385      | 87    | 55    | 656   | 105     | 55         |
| Peak Hour Factor         | 0.97      | 0.97  | 0.92  | 0.92  | 0.91    | 0.91       |
| Hourly flow rate (vph)   | 1428      | 90    | 60    | 713   | 115     | 60         |
| Direction, Lane #        | EB 1      | WB 1  | NB 1  | NB 2  |         |            |
| Volume Total (vph)       | 1518      | 773   | 115   | 60    |         |            |
| Volume Left (vph)        | 0         | 60    | 115   | 0     |         |            |
| Volume Right (vph)       | 90        | 0     | 0     | 60    |         |            |
| Hadj (s)                 | 0.00      | 0.07  | 0.53  | -0.58 |         |            |
| Departure Headway (s)    | 5.5       | 5.6   | 8.1   | 7.0   |         |            |
| Degree Utilization, x    | 2.31      | 1.19  | 0.26  | 0.12  |         |            |
| Capacity (veh/h)         | 664       | 657   | 438   | 507   |         |            |
| Control Delay (s)        | 607.8     | 121.2 | 12.7  | 9.7   |         |            |
| Approach Delay (s)       | 607.8     | 121.2 | 11.7  |       |         |            |
| Approach LOS             | F         | F     | В     |       |         |            |
| Intersection Summary     |           |       |       |       |         |            |
| Delay                    |           |       | 412.8 |       |         |            |
| HCM Level of Service     |           |       | F     |       |         |            |
| Intersection Capacity Ut | ilization |       | 92.5% | 10    | CU Leve | of Service |
| Analysis Period (min)    |           |       | 15    |       |         |            |
|                          |           |       |       |       |         |            |

|                          | -          | •    | •     | <b>←</b> | •       | ~            |   |
|--------------------------|------------|------|-------|----------|---------|--------------|---|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL     | NBR          |   |
| Lane Configurations      | <b>↑</b> ↑ |      | ች     | <b>^</b> | ¥       |              |   |
| Sign Control             | Free       |      | ·     | Free     | Stop    |              |   |
| Grade                    | 0%         |      |       | 0%       | 0%      |              |   |
| Volume (veh/h)           | 1421       | 5    | 120   | 753      | 2       | 189          |   |
| Peak Hour Factor         | 0.95       | 0.95 | 0.92  | 0.92     | 0.83    | 0.83         |   |
| Hourly flow rate (vph)   | 1496       | 5    | 130   | 818      | 2       | 228          |   |
| Pedestrians              |            |      |       |          |         |              |   |
| Lane Width (ft)          |            |      |       |          |         |              |   |
| Walking Speed (ft/s)     |            |      |       |          |         |              |   |
| Percent Blockage         |            |      |       |          |         |              |   |
| Right turn flare (veh)   |            |      |       |          |         |              |   |
| Median type              |            |      |       |          | None    |              |   |
| Median storage veh)      |            |      |       |          |         |              |   |
| Upstream signal (ft)     |            |      |       | 714      |         |              |   |
| pX, platoon unblocked    |            |      |       |          |         |              |   |
| vC, conflicting volume   |            |      | 1501  |          | 2169    | 751          |   |
| vC1, stage 1 conf vol    |            |      |       |          |         |              |   |
| vC2, stage 2 conf vol    |            |      |       |          |         |              |   |
| vCu, unblocked vol       |            |      | 1501  |          | 2169    | 751          |   |
| tC, single (s)           |            |      | 4.1   |          | 6.8     | 6.9          |   |
| tC, 2 stage (s)          |            |      |       |          |         |              |   |
| tF (s)                   |            |      | 2.2   |          | 3.5     | 3.3          |   |
| p0 queue free %          |            |      | 71    |          | 91      | 36           |   |
| cM capacity (veh/h)      |            |      | 442   |          | 28      | 354          |   |
| Direction, Lane #        | EB 1       | EB 2 | WB 1  | WB 2     | WB3     | NB 1         |   |
| Volume Total             | 997        | 504  | 130   | 409      | 409     | 230          |   |
| Volume Left              | 0          | 0    | 130   | 0        | 0       | 2            |   |
| Volume Right             | 0          | 5    | 0     | 0        | 0       | 228          |   |
| cSH                      | 1700       | 1700 | 442   | 1700     | 1700    | 315          |   |
| Volume to Capacity       | 0.59       | 0.30 | 0.29  | 0.24     | 0.24    | 0.73         |   |
| Queue Length 95th (ft)   | 0          | 0    | 30    | 0        | 0       | 134          |   |
| Control Delay (s)        | 0.0        | 0.0  | 16.5  | 0.0      | 0.0     | 41.9         |   |
| Lane LOS                 |            |      | С     |          |         | E            |   |
| Approach Delay (s)       | 0.0        |      | 2.3   |          |         | 41.9         |   |
| Approach LOS             |            |      |       |          |         | Е            |   |
| Intersection Summary     |            |      |       |          |         |              |   |
| Average Delay            |            |      | 4.4   |          |         |              |   |
| Intersection Capacity Ut | ilization  |      | 67.9% | ŀ        | CU Leve | el of Servic | е |
| Analysis Period (min)    |            |      | 15    |          |         |              |   |
|                          |            |      |       |          |         |              |   |
|                          |            |      |       |          |         |              |   |

|                          | ۶         | -        | ←          | •    | -        | 4              |     |    |
|--------------------------|-----------|----------|------------|------|----------|----------------|-----|----|
| Movement                 | EBL       | EBT      | WBT        | WBR  | SBL      | SBR            |     |    |
| Lane Configurations      | ች         | <b>^</b> | <b>↑</b> ⊅ |      | ች        | 7              |     |    |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900       | 1900 | 1900     | 1900           |     |    |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0        |      | 4.0      | 4.0            |     |    |
| Lane Util. Factor        | 1.00      | 0.95     | 0.95       |      | 1.00     | 1.00           |     |    |
| Frt                      | 1.00      | 1.00     | 0.94       |      | 1.00     | 0.85           |     |    |
| Flt Protected            | 0.95      | 1.00     | 1.00       |      | 0.95     | 1.00           |     |    |
| Satd. Flow (prot)        | 1770      | 3539     | 3320       |      | 1770     | 1583           |     |    |
| Flt Permitted            | 0.95      | 1.00     | 1.00       |      | 0.95     | 1.00           |     |    |
| Satd. Flow (perm)        | 1770      | 3539     | 3320       |      | 1770     | 1583           |     |    |
| Volume (vph)             | 240       | 1376     | 770        | 463  | 259      | 134            |     |    |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.93       | 0.93 | 0.87     | 0.87           |     |    |
| Adj. Flow (vph)          | 247       | 1419     | 828        | 498  | 298      | 154            |     |    |
| RTOR Reduction (vph)     | 0         | 0        | 90         | 0    | 0        | 120            |     |    |
| Lane Group Flow (vph)    | 247       | 1419     | 1236       | 0    | 298      | 34             |     |    |
| Heavy Vehicles (%)       | 2%        | 2%       | 3%         | 2%   | 2%       | 2%             |     |    |
| Turn Type                | Prot      |          |            |      |          | Perm           |     |    |
| Protected Phases         | 7         | 4        | 8          |      | 6        |                |     |    |
| Permitted Phases         |           |          |            |      |          | 6              |     |    |
| Actuated Green, G (s)    | 15.3      | 54.5     | 35.2       |      | 17.7     | 17.7           |     |    |
| Effective Green, g (s)   | 15.3      | 54.5     | 35.2       |      | 17.7     | 17.7           |     |    |
| Actuated g/C Ratio       | 0.19      | 0.68     | 0.44       |      | 0.22     | 0.22           |     |    |
| Clearance Time (s)       | 4.0       | 4.0      | 4.0        |      | 4.0      | 4.0            |     |    |
| Vehicle Extension (s)    | 3.0       | 3.0      | 3.0        |      | 3.0      | 3.0            |     |    |
| Lane Grp Cap (vph)       | 338       | 2405     | 1457       |      | 391      | 349            |     |    |
| v/s Ratio Prot           | c0.14     | 0.40     | c0.37      |      | c0.17    |                |     |    |
| v/s Ratio Perm           |           |          |            |      |          | 0.02           |     |    |
| v/c Ratio                | 0.73      | 0.59     | 0.85       |      | 0.76     | 0.10           |     |    |
| Uniform Delay, d1        | 30.5      | 6.9      | 20.1       |      | 29.3     | 24.9           |     |    |
| Progression Factor       | 1.00      | 1.00     | 1.00       |      | 1.00     | 1.00           |     |    |
| Incremental Delay, d2    | 7.9       | 0.4      | 4.8        |      | 8.5      | 0.1            |     |    |
| Delay (s)                | 38.4      | 7.3      | 24.9       |      | 37.8     | 25.0           |     |    |
| Level of Service         | D         | Α        | С          |      | D        | С              |     |    |
| Approach Delay (s)       |           | 11.9     | 24.9       |      | 33.4     |                |     |    |
| Approach LOS             |           | В        | С          |      | С        |                |     |    |
| Intersection Summary     |           |          |            |      |          |                |     |    |
| HCM Average Control D    | elay      |          | 19.7       | H    | ICM Le   | vel of Service | ce  | В  |
| HCM Volume to Capaci     | ty ratio  |          | 0.80       |      |          |                |     |    |
| Actuated Cycle Length (  | (s)       |          | 80.2       | S    | Sum of l | ost time (s)   | 12. | .0 |
| Intersection Capacity Ut | ilization |          | 73.8%      | 10   | CU Leve  | el of Service  | 9   | D  |
| Analysis Period (min)    |           |          | 15         |      |          |                |     |    |
| o Critical Lana Graup    |           |          |            |      |          |                |     |    |

|                           | ۶        | <b>→</b> | •     | •    | <b>←</b> | •          | 4    | <b>†</b> | /    | <b>&gt;</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|------|----------|------------|------|----------|------|-------------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL  | WBT      | WBR        | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |      | 4        |            |      | 4        |      |             | 4        |      |
| Sign Control              |          | Stop     |       |      | Stop     |            |      | Stop     |      |             | Stop     |      |
| Volume (vph)              | 8        | 31       | 31    | 64   | 26       | 1          | 53   | 688      | 99   | 1           | 392      | 6    |
| Peak Hour Factor          | 0.84     | 0.84     | 0.84  | 0.90 | 0.90     | 0.90       | 0.92 | 0.92     | 0.92 | 0.87        | 0.87     | 0.87 |
| Hourly flow rate (vph)    | 10       | 37       | 37    | 71   | 29       | 1          | 58   | 748      | 108  | 1           | 451      | 7    |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1 |          |            |      |          |      |             |          |      |
| Volume Total (vph)        | 83       | 101      | 913   | 459  |          |            |      |          |      |             |          |      |
| Volume Left (vph)         | 10       | 71       | 58    | 1    |          |            |      |          |      |             |          |      |
| Volume Right (vph)        | 37       | 1        | 108   | 7    |          |            |      |          |      |             |          |      |
| Hadj (s)                  | -0.21    | 0.17     | -0.02 | 0.03 |          |            |      |          |      |             |          |      |
| Departure Headway (s)     | 6.9      | 7.1      | 5.3   | 5.5  |          |            |      |          |      |             |          |      |
| Degree Utilization, x     | 0.16     | 0.20     | 1.34  | 0.71 |          |            |      |          |      |             |          |      |
| Capacity (veh/h)          | 482      | 466      | 686   | 633  |          |            |      |          |      |             |          |      |
| Control Delay (s)         | 11.1     | 11.9     | 177.9 | 20.8 |          |            |      |          |      |             |          |      |
| Approach Delay (s)        | 11.1     | 11.9     | 177.9 | 20.8 |          |            |      |          |      |             |          |      |
| Approach LOS              | В        | В        | F     | С    |          |            |      |          |      |             |          |      |
| Intersection Summary      |          |          |       |      |          |            |      |          |      |             |          |      |
| Delay                     |          |          | 111.9 |      |          |            |      |          |      |             |          |      |
| HCM Level of Service      |          |          | F     |      |          |            |      |          |      |             |          |      |
| Intersection Capacity Uti | lization |          | 87.8% | - [0 | CU Leve  | el of Serv | vice |          | Е    |             |          |      |
| Analysis Period (min)     |          |          | 15    |      |          |            |      |          |      |             |          |      |
|                           |          |          |       |      |          |            |      |          |      |             |          |      |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •         | •    | <b>†</b> | <b>/</b> | <b>/</b> | ļ    | 4    |
|---------------------------|----------|----------|-------|-------|----------|-----------|------|----------|----------|----------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR       | NBL  | NBT      | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations       |          | 4        |       |       | 4        |           |      | 4        |          |          | 4    |      |
| Sign Control              |          | Stop     |       |       | Stop     |           |      | Stop     |          |          | Stop |      |
| Volume (vph)              | 18       | 90       | 44    | 105   | 89       | 46        | 63   | 786      | 164      | 21       | 463  | 10   |
| Peak Hour Factor          | 0.95     | 0.95     | 0.95  | 0.87  | 0.87     | 0.87      | 0.92 | 0.92     | 0.92     | 0.87     | 0.87 | 0.87 |
| Hourly flow rate (vph)    | 19       | 95       | 46    | 121   | 102      | 53        | 68   | 854      | 178      | 24       | 532  | 11   |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |           |      |          |          |          |      |      |
| Volume Total (vph)        | 160      | 276      | 1101  | 568   |          |           |      |          |          |          |      |      |
| Volume Left (vph)         | 19       | 121      | 68    | 24    |          |           |      |          |          |          |      |      |
| Volume Right (vph)        | 46       | 53       | 178   | 11    |          |           |      |          |          |          |      |      |
| Hadj (s)                  | -0.12    | 0.02     | -0.04 | 0.06  |          |           |      |          |          |          |      |      |
| Departure Headway (s)     | 8.4      | 8.0      | 7.0   | 7.1   |          |           |      |          |          |          |      |      |
| Degree Utilization, x     | 0.37     | 0.61     | 2.14  | 1.12  |          |           |      |          |          |          |      |      |
| Capacity (veh/h)          | 401      | 441      | 524   | 511   |          |           |      |          |          |          |      |      |
| Control Delay (s)         | 16.4     | 22.7     | 534.1 | 101.7 |          |           |      |          |          |          |      |      |
| Approach Delay (s)        | 16.4     | 22.7     | 534.1 | 101.7 |          |           |      |          |          |          |      |      |
| Approach LOS              | С        | С        | F     | F     |          |           |      |          |          |          |      |      |
| Intersection Summary      |          |          |       |       |          |           |      |          |          |          |      |      |
| Delay                     |          |          | 311.1 |       |          |           |      |          |          |          |      |      |
| HCM Level of Service      |          |          | F     |       |          |           |      |          |          |          |      |      |
| Intersection Capacity Uti | lization | 1        | 07.1% | [0    | CU Lev   | el of Ser | vice |          | G        |          |      |      |
| Analysis Period (min)     |          |          | 15    |       |          |           |      |          |          |          |      |      |
|                           |          |          |       |       |          |           |      |          |          |          |      |      |

|                          | ᄼ         | <b>→</b>   | •     | •    | <b>←</b>   | •         | •     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ          | 4    |
|--------------------------|-----------|------------|-------|------|------------|-----------|-------|----------|-------------|-------------|------------|------|
| Movement                 | EBL       | EBT        | EBR   | WBL  | WBT        | WBR       | NBL   | NBT      | NBR         | SBL         | SBT        | SBR  |
| Lane Configurations      | 1,1       | <b>†</b> † | 7     | 1,4  | <b>↑</b> ↑ |           | ሻ     | <b>†</b> | 7           | ሻ           | <b>↑</b> ↑ |      |
| Ideal Flow (vphpl)       | 1900      | 1900       | 1900  | 1900 | 1900       | 1900      | 1900  | 1900     | 1900        | 1900        | 1900       | 1900 |
| Total Lost time (s)      | 4.0       | 4.0        | 4.0   | 4.0  | 4.0        |           | 4.0   | 4.0      | 4.0         | 4.0         | 4.0        |      |
| Lane Util. Factor        | 0.97      | 0.95       | 1.00  | 0.97 | 0.95       |           | 1.00  | 1.00     | 1.00        | 1.00        | 0.95       |      |
| Frt                      | 1.00      | 1.00       | 0.85  | 1.00 | 0.96       |           | 1.00  | 1.00     | 0.85        | 1.00        | 0.98       |      |
| Flt Protected            | 0.95      | 1.00       | 1.00  | 0.95 | 1.00       |           | 0.95  | 1.00     | 1.00        | 0.95        | 1.00       |      |
| Satd. Flow (prot)        | 3303      | 3539       | 1583  | 3303 | 3352       |           | 1770  | 1845     | 1583        | 1770        | 3427       |      |
| Flt Permitted            | 0.95      | 1.00       | 1.00  | 0.95 | 1.00       |           | 0.95  | 1.00     | 1.00        | 0.95        | 1.00       |      |
| Satd. Flow (perm)        | 3303      | 3539       | 1583  | 3303 | 3352       |           | 1770  | 1845     | 1583        | 1770        | 3427       |      |
| Volume (vph)             | 153       | 881        | 158   | 110  | 506        | 190       | 107   | 835      | 78          | 126         | 527        | 71   |
| Peak-hour factor, PHF    | 0.92      | 0.92       | 0.92  | 0.94 | 0.94       | 0.94      | 0.93  | 0.93     | 0.93        | 0.92        | 0.92       | 0.92 |
| Adj. Flow (vph)          | 166       | 958        | 172   | 117  | 538        | 202       | 115   | 898      | 84          | 137         | 573        | 77   |
| RTOR Reduction (vph)     | 0         | 0          | 68    | 0    | 20         | 0         | 0     | 0        | 15          | 0           | 4          | 0    |
| Lane Group Flow (vph)    | 166       | 958        | 104   | 117  | 720        | 0         | 115   | 898      | 69          | 137         | 646        | 0    |
| Heavy Vehicles (%)       | 6%        | 2%         | 2%    | 6%   | 3%         | 4%        | 2%    | 3%       | 2%          | 2%          | 3%         | 7%   |
| Turn Type                | Prot      |            | Perm  | Prot |            |           | Prot  |          | Perm        | Prot        |            |      |
| Protected Phases         | 1         | 6          |       | 5    | 2          |           | 3     | 8        |             | 7           | 4          |      |
| Permitted Phases         |           |            | 6     |      |            |           |       |          | 8           |             |            |      |
| Actuated Green, G (s)    | 11.6      | 47.8       | 47.8  | 9.2  | 45.7       |           | 14.0  | 71.3     | 71.3        | 15.9        | 73.0       |      |
| Effective Green, g (s)   | 12.4      | 48.9       | 48.9  | 10.7 | 47.2       |           | 15.5  | 72.4     | 72.4        | 17.4        | 74.3       |      |
| Actuated g/C Ratio       | 0.07      | 0.30       | 0.30  | 0.06 | 0.29       |           | 0.09  | 0.44     | 0.44        | 0.11        | 0.45       |      |
| Clearance Time (s)       | 4.8       | 5.1        | 5.1   | 5.5  | 5.5        |           | 5.5   | 5.1      | 5.1         | 5.5         | 5.3        |      |
| Vehicle Extension (s)    | 1.0       | 1.0        | 1.0   | 1.0  | 1.0        |           | 1.0   | 1.0      | 1.0         | 1.0         | 1.0        |      |
| Lane Grp Cap (vph)       | 248       | 1046       | 468   | 214  | 957        |           | 166   | 808      | 693         | 186         | 1539       |      |
| v/s Ratio Prot           | c0.05     | c0.27      |       | 0.04 | 0.21       |           | 0.06  | c0.49    |             | c0.08       | 0.19       |      |
| v/s Ratio Perm           |           |            | 0.07  |      |            |           |       |          | 0.04        |             |            |      |
| v/c Ratio                | 0.67      | 0.92       | 0.22  | 0.55 | 0.75       |           | 0.69  | 1.11     | 0.10        | 0.74        | 0.42       |      |
| Uniform Delay, d1        | 74.5      | 56.3       | 43.9  | 75.0 | 53.8       |           | 72.6  | 46.5     | 27.3        | 71.8        | 30.9       |      |
| Progression Factor       | 1.00      | 1.00       | 1.00  | 1.00 | 1.00       |           | 1.00  | 1.00     | 1.00        | 1.00        | 1.00       |      |
| Incremental Delay, d2    | 5.2       | 11.9       | 0.1   | 1.5  | 3.0        |           | 9.6   | 66.8     | 0.0         | 12.3        | 0.1        |      |
| Delay (s)                | 79.7      | 68.2       | 44.0  | 76.5 | 56.8       |           | 82.3  | 113.3    | 27.4        | 84.0        | 31.0       |      |
| Level of Service         | Е         | Е          | D     | Е    | E          |           | F     | F        | С           | F           | С          |      |
| Approach Delay (s)       |           | 66.5       |       |      | 59.5       |           |       | 103.5    |             |             | 40.2       |      |
| Approach LOS             |           | Е          |       |      | Е          |           |       | F        |             |             | D          |      |
| Intersection Summary     |           |            |       |      |            |           |       |          |             |             |            |      |
| HCM Average Control D    | elay      |            | 69.9  | F    | ICM Lev    | vel of Se | rvice |          | Е           |             |            |      |
| HCM Volume to Capacit    | •         |            | 0.95  |      |            |           |       |          |             |             |            |      |
| Actuated Cycle Length (  |           |            | 165.4 |      |            | ost time  |       |          | 12.0        |             |            |      |
| Intersection Capacity Ut | ilization |            | 91.9% | 10   | CU Leve    | el of Ser | vice  |          | F           |             |            |      |
| Analysis Period (min)    |           |            | 15    |      |            |           |       |          |             |             |            |      |

|                            | ٠       | <b>→</b>   | •     | •     | <b>←</b>   | •         | •     | <b>†</b> | <i>&gt;</i> | <b>/</b> | ļ     | ✓    |
|----------------------------|---------|------------|-------|-------|------------|-----------|-------|----------|-------------|----------|-------|------|
| Movement                   | EBL     | EBT        | EBR   | WBL   | WBT        | WBR       | NBL   | NBT      | NBR         | SBL      | SBT   | SBR  |
| Lane Configurations        | , J     | <b>↑</b> ↑ |       | ¥     | <b>↑</b> ↑ |           | , j   | ĵ»       |             | ¥        | f)    |      |
| Ideal Flow (vphpl)         | 1900    | 1900       | 1900  | 1900  | 1900       | 1900      | 1900  | 1900     | 1900        | 1900     | 1900  | 1900 |
| Total Lost time (s)        | 4.0     | 4.0        |       | 4.0   | 4.0        |           | 4.0   | 4.0      |             | 4.0      | 4.0   |      |
| Lane Util. Factor          | 1.00    | 0.95       |       | 1.00  | 0.95       |           | 1.00  | 1.00     |             | 1.00     | 1.00  |      |
| Frt                        | 1.00    | 0.98       |       | 1.00  | 0.96       |           | 1.00  | 0.90     |             | 1.00     | 0.92  |      |
| Flt Protected              | 0.95    | 1.00       |       | 0.95  | 1.00       |           | 0.95  | 1.00     |             | 0.95     | 1.00  |      |
| Satd. Flow (prot)          | 1770    | 3452       |       | 1770  | 3238       |           | 1770  | 1641     |             | 1770     | 1603  |      |
| Flt Permitted              | 0.95    | 1.00       |       | 0.95  | 1.00       |           | 0.95  | 1.00     |             | 0.95     | 1.00  |      |
| Satd. Flow (perm)          | 1770    | 3452       |       | 1770  | 3238       |           | 1770  | 1641     |             | 1770     | 1603  |      |
| Volume (vph)               | 222     | 1091       | 214   | 371   | 1001       | 376       | 172   | 182      | 332         | 213      | 114   | 135  |
| Peak-hour factor, PHF      | 0.94    | 0.94       | 0.94  | 0.97  | 0.97       | 0.97      | 0.92  | 0.92     | 0.92        | 0.87     | 0.87  | 0.87 |
| Adj. Flow (vph)            | 236     | 1161       | 228   | 382   | 1032       | 388       | 187   | 198      | 361         | 245      | 131   | 155  |
| RTOR Reduction (vph)       | 0       | 11         | 0     | 0     | 26         | 0         | 0     | 44       | 0           | 0        | 28    | 0    |
| Lane Group Flow (vph)      | 236     | 1378       | 0     | 382   | 1394       | 0         | 187   | 515      | 0           | 245      | 258   | 0    |
| Heavy Vehicles (%)         | 2%      | 2%         | 2%    | 2%    | 2%         | 20%       | 2%    | 2%       | 6%          | 2%       | 17%   | 2%   |
| Turn Type                  | Prot    |            |       | Prot  |            |           | Prot  |          |             | Prot     |       |      |
| Protected Phases           | 7       | 4          |       | 3     | 8          |           | 5     | 2        |             | 1        | 6     |      |
| Permitted Phases           |         |            |       |       |            |           |       |          |             |          |       |      |
| Actuated Green, G (s)      | 17.0    | 50.0       |       | 27.0  | 60.0       |           | 18.6  | 40.0     |             | 17.0     | 38.4  |      |
| Effective Green, g (s)     | 17.0    | 50.0       |       | 27.0  | 60.0       |           | 18.6  | 40.0     |             | 17.0     | 38.4  |      |
| Actuated g/C Ratio         | 0.11    | 0.33       |       | 0.18  | 0.40       |           | 0.12  | 0.27     |             | 0.11     | 0.26  |      |
| Clearance Time (s)         | 4.0     | 4.0        |       | 4.0   | 4.0        |           | 4.0   | 4.0      |             | 4.0      | 4.0   |      |
| Vehicle Extension (s)      | 3.0     | 3.0        |       | 3.0   | 3.0        |           | 3.0   | 3.0      |             | 3.0      | 3.0   |      |
| Lane Grp Cap (vph)         | 201     | 1151       |       | 319   | 1295       |           | 219   | 438      |             | 201      | 410   |      |
| v/s Ratio Prot             | 0.13    | c0.40      |       | c0.22 | 0.43       |           | 0.11  | c0.31    |             | c0.14    | 0.16  |      |
| v/s Ratio Perm             |         |            |       |       |            |           |       |          |             |          |       |      |
| v/c Ratio                  | 1.17    | 1.20       |       | 1.20  | 1.08       |           | 0.85  | 1.18     |             | 1.22     | 0.63  |      |
| Uniform Delay, d1          | 66.5    | 50.0       |       | 61.5  | 45.0       |           | 64.4  | 55.0     |             | 66.5     | 49.5  |      |
| Progression Factor         | 1.00    | 1.00       |       | 1.00  | 1.00       |           | 1.00  | 1.00     |             | 1.00     | 1.00  |      |
| <b>,</b> ,                 | 118.3   | 97.5       |       | 115.3 | 48.4       |           | 26.1  | 100.7    |             | 134.9    | 7.1   |      |
|                            | 184.8   | 147.5      |       | 176.8 | 93.4       |           | 90.5  | 155.7    |             | 201.4    | 56.6  |      |
| Level of Service           | F       | F          |       | F     | F          |           | F     | F        |             | F        | Е     |      |
| Approach Delay (s)         |         | 152.9      |       |       | 111.1      |           |       | 139.4    |             |          | 123.4 |      |
| Approach LOS               |         | F          |       |       | F          |           |       | F        |             |          | F     |      |
| Intersection Summary       |         |            |       |       |            |           |       |          |             |          |       |      |
| HCM Average Control De     |         |            | 131.4 | H     | ICM Lev    | vel of Se | rvice |          | F           |          |       |      |
| HCM Volume to Capacity     |         |            | 1.16  |       |            |           |       |          |             |          |       |      |
| Actuated Cycle Length (s   |         |            | 150.0 |       |            | ost time  | ` '   |          | 12.0        |          |       |      |
| Intersection Capacity Util | ization | 1          | 12.6% | 10    | CU Leve    | el of Ser | vice  |          | Н           |          |       |      |
| Analysis Period (min)      |         |            | 15    |       |            |           |       |          |             |          |       |      |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •           | 1    | <b>†</b> | /    | <b>&gt;</b> | ţ    | 1    |
|---------------------------|----------|----------|-------|-------|----------|-------------|------|----------|------|-------------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR         | NBL  | NBT      | NBR  | SBL         | SBT  | SBR  |
| Lane Configurations       |          | 4        |       |       | 4        |             |      | 4        |      |             | 4    |      |
| Sign Control              |          | Stop     |       |       | Stop     |             |      | Stop     |      |             | Stop |      |
| Volume (vph)              | 123      | 5        | 5     | 7     | 2        | 4           | 2    | 325      | 8    | 8           | 204  | 90   |
| Peak Hour Factor          | 0.87     | 0.87     | 0.87  | 0.75  | 0.75     | 0.75        | 0.87 | 0.87     | 0.87 | 0.92        | 0.92 | 0.92 |
| Hourly flow rate (vph)    | 141      | 6        | 6     | 9     | 3        | 5           | 2    | 374      | 9    | 9           | 222  | 98   |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |             |      |          |      |             |      |      |
| Volume Total (vph)        | 153      | 17       | 385   | 328   |          |             |      |          |      |             |      |      |
| Volume Left (vph)         | 141      | 9        | 2     | 9     |          |             |      |          |      |             |      |      |
| Volume Right (vph)        | 6        | 5        | 9     | 98    |          |             |      |          |      |             |      |      |
| Hadj (s)                  | 0.24     | 0.08     | 0.02  | -0.13 |          |             |      |          |      |             |      |      |
| Departure Headway (s)     | 5.9      | 6.0      | 4.9   | 4.8   |          |             |      |          |      |             |      |      |
| Degree Utilization, x     | 0.25     | 0.03     | 0.52  | 0.44  |          |             |      |          |      |             |      |      |
| Capacity (veh/h)          | 552      | 487      | 716   | 719   |          |             |      |          |      |             |      |      |
| Control Delay (s)         | 10.8     | 9.2      | 13.0  | 11.5  |          |             |      |          |      |             |      |      |
| Approach Delay (s)        | 10.8     | 9.2      | 13.0  | 11.5  |          |             |      |          |      |             |      |      |
| Approach LOS              | В        | Α        | В     | В     |          |             |      |          |      |             |      |      |
| Intersection Summary      |          |          |       |       |          |             |      |          |      |             |      |      |
| Delay                     |          |          | 12.0  |       |          |             |      |          |      |             |      |      |
| HCM Level of Service      |          |          | В     |       |          |             |      |          |      |             |      |      |
| Intersection Capacity Uti | lization |          | 40.3% | [(    | CU Leve  | el of Servi | ice  |          | Α    |             |      |      |
| Analysis Period (min)     |          |          | 15    |       |          |             |      |          |      |             |      |      |
|                           |          |          |       |       |          |             |      |          |      |             |      |      |

|                           | ۶        | <b>→</b> | <b>←</b>  | •    | <b>\</b> | 4            |  |
|---------------------------|----------|----------|-----------|------|----------|--------------|--|
| Movement                  | EBL      | EBT      | WBT       | WBR  | SBL      | SBR          |  |
| Lane Configurations       |          | ની       | ĵ»        |      | W        |              |  |
| Sign Control              |          | Free     | Free      |      | Stop     |              |  |
| Grade                     |          | 0%       | 0%        |      | 0%       |              |  |
| Volume (veh/h)            | 149      | 140      | 141       | 186  | 114      | 99           |  |
| Peak Hour Factor          | 0.87     | 0.87     | 0.88      | 0.88 | 0.87     | 0.87         |  |
| Hourly flow rate (vph)    | 171      | 161      | 160       | 211  | 131      | 114          |  |
| Pedestrians               |          |          |           |      |          |              |  |
| Lane Width (ft)           |          |          |           |      |          |              |  |
| Walking Speed (ft/s)      |          |          |           |      |          |              |  |
| Percent Blockage          |          |          |           |      |          |              |  |
| Right turn flare (veh)    |          |          |           |      |          |              |  |
| Median type               |          |          |           |      | None     |              |  |
| Median storage veh)       |          |          |           |      |          |              |  |
| Upstream signal (ft)      |          |          |           |      |          |              |  |
| pX, platoon unblocked     |          |          |           |      |          |              |  |
| vC, conflicting volume    | 372      |          |           |      | 769      | 266          |  |
| vC1, stage 1 conf vol     |          |          |           |      |          |              |  |
| vC2, stage 2 conf vol     |          |          |           |      |          |              |  |
| vCu, unblocked vol        | 372      |          |           |      | 769      | 266          |  |
| tC, single (s)            | 4.1      |          |           |      | 6.5      | 6.2          |  |
| tC, 2 stage (s)           |          |          |           |      |          |              |  |
| tF (s)                    | 2.2      |          |           |      | 3.6      | 3.3          |  |
| p0 queue free %           | 86       |          |           |      | 58       | 85           |  |
| cM capacity (veh/h)       | 1187     |          |           |      | 311      | 768          |  |
| Direction, Lane #         | EB 1     | WB 1     | SB 1      |      |          |              |  |
| Volume Total              | 332      | 372      | 245       |      |          |              |  |
| Volume Left               | 171      | 0        | 131       |      |          |              |  |
| Volume Right              | 0        | 211      | 114       |      |          |              |  |
| cSH                       | 1187     | 1700     | 430       |      |          |              |  |
| Volume to Capacity        | 0.14     | 0.22     | 0.57      |      |          |              |  |
| Queue Length 95th (ft)    | 13       | 0.22     | 86        |      |          |              |  |
| Control Delay (s)         | 5.1      | 0.0      | 23.9      |      |          |              |  |
| Lane LOS                  | 3.1<br>A | 0.0      | 23.9<br>C |      |          |              |  |
|                           | 5.1      | 0.0      |           |      |          |              |  |
| Approach LOS              | 5.1      | 0.0      | 23.9      |      |          |              |  |
| Approach LOS              |          |          | С         |      |          |              |  |
| Intersection Summary      |          |          |           |      |          |              |  |
| Average Delay             |          |          | 7.9       |      |          |              |  |
| Intersection Capacity Uti | lization |          | 56.8%     | IC   | CU Leve  | I of Service |  |
| Analysis Period (min)     |          |          | 15        |      |          |              |  |
|                           |          |          |           |      |          |              |  |

|                          | ₾     | -        | •     | •     | ←        | 1         | ~     |      |  |
|--------------------------|-------|----------|-------|-------|----------|-----------|-------|------|--|
| Movement                 | EBU   | EBT      | EBR   | WBL   | WBT      | NBL       | NBR   |      |  |
| Lane Configurations      | Đ     | <b>^</b> | 7     | *     | <b>^</b> | *         | 7     |      |  |
| Ideal Flow (vphpl)       | 1900  | 1900     | 1900  | 1900  | 1900     | 1900      | 1900  |      |  |
| Total Lost time (s)      | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0   |      |  |
| Lane Util. Factor        | 1.00  | 0.95     | 1.00  | 1.00  | 0.95     | 1.00      | 1.00  |      |  |
| Frt                      | 1.00  | 1.00     | 0.85  | 1.00  | 1.00     | 1.00      | 0.85  |      |  |
| Flt Protected            | 0.95  | 1.00     | 1.00  | 0.95  | 1.00     | 0.95      | 1.00  |      |  |
| Satd. Flow (prot)        | 1770  | 3539     | 1538  | 1703  | 3505     | 1736      | 1583  |      |  |
| Flt Permitted            | 0.95  | 1.00     | 1.00  | 0.95  | 1.00     | 0.95      | 1.00  |      |  |
| Satd. Flow (perm)        | 1770  | 3539     | 1538  | 1703  | 3505     | 1736      | 1583  |      |  |
| Volume (vph)             | 1     | 1029     | 38    | 154   | 710      | 101       | 300   |      |  |
| Peak-hour factor, PHF    | 0.92  | 0.92     | 0.92  | 0.89  | 0.89     | 0.94      | 0.94  |      |  |
| Adj. Flow (vph)          | 1     | 1118     | 41    | 173   | 798      | 107       | 319   |      |  |
| RTOR Reduction (vph)     | 0     | 0        | 8     | 0     | 0        | 0         | 228   |      |  |
| Lane Group Flow (vph)    | 1     | 1118     | 33    | 173   | 798      | 107       | 91    |      |  |
| Heavy Vehicles (%)       | 2%    | 2%       | 5%    | 6%    | 3%       | 4%        | 2%    |      |  |
| Turn Type                | Prot  |          | Perm  | Prot  |          |           | ustom |      |  |
| Protected Phases         | 1     | 6        |       | 4 5   | 2        | 3         | 2     |      |  |
| Permitted Phases         |       |          | 6     |       |          |           |       |      |  |
| Actuated Green, G (s)    | 0.7   | 72.1     | 72.1  | 24.5  | 54.2     | 14.7      | 54.2  |      |  |
| Effective Green, g (s)   | 1.4   | 73.2     | 73.2  | 24.0  | 55.3     | 16.1      | 55.3  |      |  |
| Actuated g/C Ratio       | 0.01  | 0.38     | 0.38  | 0.12  | 0.29     | 0.08      | 0.29  |      |  |
| Clearance Time (s)       | 4.7   | 5.1      | 5.1   |       | 5.1      | 5.4       | 5.1   |      |  |
| Vehicle Extension (s)    | 1.0   | 4.9      | 4.9   |       | 4.9      | 1.0       | 4.9   |      |  |
| Lane Grp Cap (vph)       | 13    | 1335     | 580   | 211   | 999      | 144       | 451   |      |  |
| v/s Ratio Prot           | c0.00 | c0.32    |       | c0.10 | c0.23    | c0.06     | 0.06  |      |  |
| v/s Ratio Perm           | 00.00 | 00.02    | 0.02  |       | 00.20    | 00.00     | 0.00  |      |  |
| v/c Ratio                | 0.08  | 0.84     | 0.06  | 0.82  | 0.80     | 0.74      | 0.20  |      |  |
| Uniform Delay, d1        | 95.7  | 55.0     | 38.4  | 82.9  | 64.2     | 86.9      | 52.6  |      |  |
| Progression Factor       | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00  |      |  |
| Incremental Delay, d2    | 0.9   | 5.3      | 0.1   | 20.4  | 5.2      | 16.5      | 0.4   |      |  |
| Delay (s)                | 96.6  | 60.2     | 38.5  | 103.3 | 69.4     | 103.4     | 53.1  |      |  |
| Level of Service         | F     | E        | D     | F     | E        | F         | D     |      |  |
| Approach Delay (s)       |       | 59.5     |       |       | 75.4     | 65.7      |       |      |  |
| Approach LOS             |       | E        |       |       | E        | E         |       |      |  |
| Intersection Summary     |       |          |       |       |          |           |       |      |  |
| HCM Average Control D    | elay  |          | 66.6  | F     | ICM Le   | vel of Se | rvice | Е    |  |
| HCM Volume to Capacit    |       |          | 0.81  |       |          |           |       |      |  |
| Actuated Cycle Length (  |       |          | 194.0 | 5     | Sum of I | ost time  | (s)   | 24.0 |  |
| Intersection Capacity Ut |       |          | 63.7% |       |          | el of Ser | ` '   | В    |  |
| Analysis Period (min)    |       |          | 15    |       |          |           |       |      |  |
| o Critical Lana Group    |       |          |       |       |          |           |       |      |  |

|                             | -          | •    | •     | •     | 4       | /             |  |
|-----------------------------|------------|------|-------|-------|---------|---------------|--|
| Movement                    | EBT        | EBR  | WBL   | WBT   | NBL     | NBR           |  |
| Lane Configurations         | <b>1</b> > |      |       | 4     | W       |               |  |
| Ideal Flow (vphpl)          | 1900       | 1900 | 1900  | 1900  | 1900    | 1900          |  |
| Total Lost time (s)         | 4.0        |      |       | 4.0   | 4.0     |               |  |
| Lane Util. Factor           | 1.00       |      |       | 1.00  | 1.00    |               |  |
| Frt                         | 0.99       |      |       | 1.00  | 0.95    |               |  |
| Flt Protected               | 1.00       |      |       | 1.00  | 0.97    |               |  |
| Satd. Flow (prot)           | 1840       |      |       | 1859  | 1714    |               |  |
| Flt Permitted               | 1.00       |      |       | 1.00  | 0.97    |               |  |
| Satd. Flow (perm)           | 1840       |      |       | 1859  | 1714    |               |  |
| Volume (vph)                | 1430       | 144  | 84    | 1863  | 283     | 171           |  |
| Peak-hour factor, PHF       | 0.93       | 0.93 | 0.93  | 0.93  | 0.87    | 0.87          |  |
| Adj. Flow (vph)             | 1538       | 155  | 90    | 2003  | 325     | 197           |  |
| RTOR Reduction (vph)        | 3          | 0    | 0     | 0     | 15      | 0             |  |
| Lane Group Flow (vph)       | 1690       | 0    | 0     | 2093  | 507     | 0             |  |
| Turn Type                   |            |      | Split |       |         |               |  |
| Protected Phases            | 2          |      | 1     | 1     | 3       |               |  |
| Permitted Phases            |            |      |       |       |         |               |  |
| Actuated Green, G (s)       | 50.1       |      |       | 50.1  | 20.0    |               |  |
| Effective Green, g (s)      | 51.1       |      |       | 50.9  | 19.5    |               |  |
| Actuated g/C Ratio          | 0.37       |      |       | 0.37  | 0.14    |               |  |
| Clearance Time (s)          | 5.0        |      |       | 4.8   | 3.5     |               |  |
| Vehicle Extension (s)       | 6.8        |      |       | 6.3   | 2.0     |               |  |
| Lane Grp Cap (vph)          | 674        |      |       | 679   | 240     |               |  |
| v/s Ratio Prot              | c0.92      |      |       | c1.13 | c0.30   |               |  |
| v/s Ratio Perm              |            |      |       |       |         |               |  |
| v/c Ratio                   | 2.51       |      |       | 3.08  | 2.11    |               |  |
| Uniform Delay, d1           | 44.1       |      |       | 44.2  | 60.0    |               |  |
| Progression Factor          | 1.00       |      |       | 1.00  | 1.00    |               |  |
| Incremental Delay, d2       | 683.1      |      |       | 941.0 | 515.2   |               |  |
| Delay (s)                   | 727.2      |      |       | 985.3 | 575.1   |               |  |
| Level of Service            | F          |      |       | F     | F       |               |  |
| Approach Delay (s)          | 727.2      |      |       | 985.3 | 575.1   |               |  |
| Approach LOS                | F          |      |       | F     | F       |               |  |
| Intersection Summary        |            |      |       |       |         |               |  |
| HCM Average Control D       |            |      | 834.2 | F     | ICM Lev | el of Service |  |
| <b>HCM Volume to Capaci</b> |            |      | 2.69  |       |         |               |  |
| Actuated Cycle Length (     |            |      | 139.4 |       |         | ost time (s)  |  |
| Intersection Capacity Ut    | ilization  | 1    | 99.1% | 10    | CU Leve | el of Service |  |
| Analysis Period (min)       |            |      | 15    |       |         |               |  |
| c Critical Lane Group       |            |      |       |       |         |               |  |

|                          | -            | •       | •     | •        | 1        | /              |   |      |  |
|--------------------------|--------------|---------|-------|----------|----------|----------------|---|------|--|
| Movement                 | EBT          | EBR     | WBL   | WBT      | NBL      | NBR            |   |      |  |
| Lane Configurations      | <b>†</b>     | 1       | *     | <b>†</b> | ች        | 7              |   |      |  |
| Ideal Flow (vphpl)       | 1900         | 1900    | 1900  | 1900     | 1900     | 1900           |   |      |  |
| Total Lost time (s)      | 4.0          | 4.0     | 4.0   | 4.0      | 4.0      | 4.0            |   |      |  |
| Lane Util. Factor        | 1.00         | 1.00    | 1.00  | 1.00     | 1.00     | 1.00           |   |      |  |
| Frt                      | 1.00         | 0.85    | 1.00  | 1.00     | 1.00     | 0.85           |   |      |  |
| Flt Protected            | 1.00         | 1.00    | 0.95  | 1.00     | 0.95     | 1.00           |   |      |  |
| Satd. Flow (prot)        | 1863         | 1583    | 1770  | 1863     | 1770     | 1583           |   |      |  |
| Flt Permitted            | 1.00         | 1.00    | 0.95  | 1.00     | 0.95     | 1.00           |   |      |  |
| Satd. Flow (perm)        | 1863         | 1583    | 1770  | 1863     | 1770     | 1583           |   |      |  |
| Volume (vph)             | 922          | 46      | 384   | 241      | 40       | 453            |   |      |  |
| Peak-hour factor, PHF    | 0.96         | 0.96    | 0.92  | 0.92     | 0.87     | 0.87           |   |      |  |
| Adj. Flow (vph)          | 960          | 48      | 417   | 262      | 46       | 521            |   |      |  |
| RTOR Reduction (vph)     | 0            | 11      | 0     | 0        | 0        | 59             |   |      |  |
| Lane Group Flow (vph)    | 960          | 37      | 417   | 262      | 46       | 462            |   |      |  |
| Turn Type                |              | Perm    | Prot  |          |          | pm+ov          |   |      |  |
| Protected Phases         | 2            | 1 01111 | 1     | 6        | 4        | 1              |   |      |  |
| Permitted Phases         | <del>-</del> | 2       | •     | U        | •        | 4              |   |      |  |
| Actuated Green, G (s)    | 86.7         | 86.7    | 35.8  | 126.1    | 7.5      | 43.3           |   |      |  |
| Effective Green, g (s)   | 88.7         | 88.7    | 35.4  | 128.1    | 7.8      | 43.2           |   |      |  |
| Actuated g/C Ratio       | 0.62         | 0.62    | 0.25  | 0.89     | 0.05     | 0.30           |   |      |  |
| Clearance Time (s)       | 6.0          | 6.0     | 3.6   | 6.0      | 4.3      | 3.6            |   |      |  |
| Vehicle Extension (s)    | 2.0          | 2.0     | 1.0   | 2.0      | 1.0      | 1.0            |   |      |  |
| Lane Grp Cap (vph)       | 1148         | 976     | 435   | 1658     | 96       | 519            |   |      |  |
| v/s Ratio Prot           | c0.52        | 070     | c0.24 | 0.14     | 0.03     | c0.22          |   |      |  |
| v/s Ratio Perm           | 00.02        | 0.02    | 00.21 | 0.11     | 0.00     | 0.07           |   |      |  |
| v/c Ratio                | 0.84         | 0.04    | 0.96  | 0.16     | 0.48     | 0.89           |   |      |  |
| Uniform Delay, d1        | 21.9         | 10.8    | 53.5  | 1.0      | 66.1     | 48.1           |   |      |  |
| Progression Factor       | 1.00         | 1.00    | 1.00  | 1.00     | 1.00     | 1.00           |   |      |  |
| Incremental Delay, d2    | 7.3          | 0.1     | 32.1  | 0.2      | 1.4      | 16.4           |   |      |  |
| Delay (s)                | 29.1         | 10.9    | 85.6  | 1.2      | 67.4     | 64.5           |   |      |  |
| Level of Service         | C            | В       | F     | A        | E        | E              |   |      |  |
| Approach Delay (s)       | 28.3         |         |       | 53.0     | 64.7     |                |   |      |  |
| Approach LOS             | C            |         |       | D        | E        |                |   |      |  |
| Intersection Summary     |              |         |       |          |          |                |   |      |  |
| HCM Average Control D    | )elav        |         | 44.9  | F        | ICM Lev  | vel of Service | 9 | D    |  |
| HCM Volume to Capacit    |              |         | 0.88  |          |          |                | - |      |  |
| Actuated Cycle Length (  |              |         | 143.9 | S        | sum of l | ost time (s)   |   | 12.0 |  |
| Intersection Capacity Ut |              |         | 83.2% |          |          | el of Service  |   | E    |  |
| Analysis Period (min)    |              |         | 15    |          |          | 2. 2. 20. 1100 |   |      |  |
| c Critical Lane Group    |              |         |       |          |          |                |   |      |  |
|                          |              |         |       |          |          |                |   |      |  |

|                              | ۶         | <b>→</b> | •     | •    | <b>←</b> | •         | •      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ     | 4    |
|------------------------------|-----------|----------|-------|------|----------|-----------|--------|----------|-------------|-------------|-------|------|
| Movement                     | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL    | NBT      | NBR         | SBL         | SBT   | SBR  |
| Lane Configurations          | ሻሻ        | <b>^</b> | 7     | 1,1  | <b>^</b> | 7         | ሻሻ     | ተተተ      | 7           | 1/4         | ተተተ   | 7    |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900  | 1900 | 1900     | 1900      | 1900   | 1900     | 1900        | 1900        | 1900  | 1900 |
| Total Lost time (s)          | 4.0       | 4.0      | 4.0   | 4.0  | 4.0      | 4.0       | 4.0    | 4.0      | 4.0         | 4.0         | 4.0   | 4.0  |
| Lane Util. Factor            | 0.97      | 0.95     | 1.00  | 0.97 | 0.95     | 1.00      | 0.97   | 0.91     | 1.00        | 0.97        | 0.91  | 1.00 |
| Frt                          | 1.00      | 1.00     | 0.85  | 1.00 | 1.00     | 0.85      | 1.00   | 1.00     | 0.85        | 1.00        | 1.00  | 0.85 |
| Flt Protected                | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95        | 1.00  | 1.00 |
| Satd. Flow (prot)            | 3433      | 3539     | 1583  | 3433 | 3539     | 1583      | 3433   | 5085     | 1583        | 3433        | 5085  | 1583 |
| Flt Permitted                | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95        | 1.00  | 1.00 |
| Satd. Flow (perm)            | 3433      | 3539     | 1583  | 3433 | 3539     | 1583      | 3433   | 5085     | 1583        | 3433        | 5085  | 1583 |
| Volume (vph)                 | 421       | 530      | 736   | 260  | 355      | 81        | 1341   | 500      | 272         | 136         | 404   | 367  |
| Peak-hour factor, PHF        | 0.93      | 0.93     | 0.93  | 0.92 | 0.92     | 0.92      | 0.95   | 0.95     | 0.95        | 0.92        | 0.92  | 0.92 |
| Adj. Flow (vph)              | 453       | 570      | 791   | 283  | 386      | 88        | 1412   | 526      | 286         | 148         | 439   | 399  |
| RTOR Reduction (vph)         | 0         | 0        | 202   | 0    | 0        | 53        | 0      | 0        | 210         | 0           | 0     | 299  |
| Lane Group Flow (vph)        | 453       | 570      | 589   | 283  | 386      | 35        | 1412   | 526      | 76          | 148         | 439   | 100  |
| Turn Type                    | Prot      |          | Perm  | Prot |          | Perm      | Prot   |          | Perm        | Prot        |       | Perm |
| Protected Phases             | 7         | 4        |       | 3    | 8        |           | 5      | 2        |             | 1           | 6     |      |
| Permitted Phases             |           |          | 4     |      |          | 8         |        |          | 2           |             |       | 6    |
| Actuated Green, G (s)        | 25.1      | 70.3     | 70.3  | 16.5 | 61.6     | 61.6      | 25.1   | 41.0     | 41.0        | 10.3        | 25.8  | 25.8 |
| Effective Green, g (s)       | 26.6      | 71.9     | 71.9  | 18.0 | 63.3     | 63.3      | 26.6   | 42.5     | 42.5        | 11.8        | 27.7  | 27.7 |
| Actuated g/C Ratio           | 0.17      | 0.45     | 0.45  | 0.11 | 0.40     | 0.40      | 0.17   | 0.27     | 0.27        | 0.07        | 0.17  | 0.17 |
| Clearance Time (s)           | 5.5       | 5.6      | 5.6   | 5.5  | 5.7      | 5.7       | 5.5    | 5.5      | 5.5         | 5.5         | 5.9   | 5.9  |
| Vehicle Extension (s)        | 1.0       | 5.0      | 5.0   | 1.0  | 5.9      | 5.9       | 1.0    | 5.4      | 5.4         | 1.0         | 5.4   | 5.4  |
| Lane Grp Cap (vph)           | 570       | 1588     | 710   | 386  | 1398     | 625       | 570    | 1349     | 420         | 253         | 879   | 274  |
| v/s Ratio Prot               | c0.13     | 0.16     |       | 0.08 | 0.11     |           | c0.41  | 0.10     |             | 0.04        | c0.09 |      |
| v/s Ratio Perm               |           |          | c0.37 |      |          | 0.02      |        |          | 0.05        |             |       | 0.06 |
| v/c Ratio                    | 0.79      | 0.36     | 0.83  | 0.73 | 0.28     | 0.06      | 2.48   | 0.39     | 0.18        | 0.58        | 0.50  | 0.37 |
| Uniform Delay, d1            | 64.2      | 29.0     | 38.8  | 68.8 | 32.9     | 30.0      | 66.8   | 48.2     | 45.4        | 71.8        | 60.0  | 58.5 |
| Progression Factor           | 1.00      | 1.00     | 1.00  | 1.00 | 1.00     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00        | 1.00  | 1.00 |
| Incremental Delay, d2        | 7.0       | 0.3      | 8.9   | 6.1  | 0.3      | 0.1       | 670.0  | 0.4      | 0.5         | 2.2         | 1.1   | 2.0  |
| Delay (s)                    | 71.2      | 29.3     | 47.7  | 74.9 | 33.2     | 30.1      | 736.8  | 48.7     | 45.9        | 74.0        | 61.0  | 60.5 |
| Level of Service             | Е         | С        | D     | Е    | С        | С         | F      | D        | D           | Е           | Е     | Е    |
| Approach Delay (s)           |           | 47.8     |       |      | 48.4     |           |        | 485.2    |             |             | 62.8  |      |
| Approach LOS                 |           | D        |       |      | D        |           |        | F        |             |             | Е     |      |
| Intersection Summary         |           |          |       |      |          |           |        |          |             |             |       |      |
| HCM Average Control D        | elay      |          | 218.7 | H    | ICM Le   | vel of Se | ervice |          | F           |             |       |      |
| <b>HCM Volume to Capacit</b> | ty ratio  |          | 1.05  |      |          |           |        |          |             |             |       |      |
| Actuated Cycle Length (      | s)        |          | 160.2 | S    | Sum of I | ost time  | (s)    |          | 12.0        |             |       |      |
| Intersection Capacity Ut     | ilization |          | 81.5% | [0   | CU Leve  | el of Sei | vice   |          | D           |             |       |      |
| Analysis Period (min)        |           |          | 15    |      |          |           |        |          |             |             |       |      |
| c Critical Lane Group        |           |          |       |      |          |           |        |          |             |             |       |      |

|                              | ۶         | <b>→</b>   | •     | •    | <b>←</b> | •         | 4      | †     | <i>&gt;</i> | <b>/</b> | <b>+</b>        | 4    |
|------------------------------|-----------|------------|-------|------|----------|-----------|--------|-------|-------------|----------|-----------------|------|
| Movement                     | EBL       | EBT        | EBR   | WBL  | WBT      | WBR       | NBL    | NBT   | NBR         | SBL      | SBT             | SBR  |
| Lane Configurations          | 14.54     | <b>†</b> † | 7     | 1,1  | <b>^</b> | 7         | ሻሻ     | ተተተ   | 7           | 1,4      | ተተ <sub>ጉ</sub> |      |
| Ideal Flow (vphpl)           | 1900      | 1900       | 1900  | 1900 | 1900     | 1900      | 1900   | 1900  | 1900        | 1900     | 1900            | 1900 |
| Total Lost time (s)          | 4.0       | 4.0        | 4.0   | 4.0  | 4.0      | 4.0       | 4.0    | 4.0   | 4.0         | 4.0      | 4.0             |      |
| Lane Util. Factor            | 0.97      | 0.95       | 1.00  | 0.97 | 0.95     | 1.00      | 0.97   | 0.91  | 1.00        | 0.97     | 0.91            |      |
| Frt                          | 1.00      | 1.00       | 0.85  | 1.00 | 1.00     | 0.85      | 1.00   | 1.00  | 0.85        | 1.00     | 0.98            |      |
| Flt Protected                | 0.95      | 1.00       | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00  | 1.00        | 0.95     | 1.00            |      |
| Satd. Flow (prot)            | 3433      | 3539       | 1583  | 3433 | 3539     | 1583      | 3433   | 5085  | 1583        | 3433     | 4965            |      |
| Flt Permitted                | 0.95      | 1.00       | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00  | 1.00        | 0.95     | 1.00            |      |
| Satd. Flow (perm)            | 3433      | 3539       | 1583  | 3433 | 3539     | 1583      | 3433   | 5085  | 1583        | 3433     | 4965            |      |
| Volume (vph)                 | 402       | 577        | 299   | 239  | 492      | 200       | 371    | 1727  | 168         | 155      | 1081            | 203  |
| Peak-hour factor, PHF        | 0.94      | 0.94       | 0.94  | 0.92 | 0.92     | 0.92      | 0.95   | 0.95  | 0.95        | 0.95     | 0.95            | 0.95 |
| Adj. Flow (vph)              | 428       | 614        | 318   | 260  | 535      | 217       | 391    | 1818  | 177         | 163      | 1138            | 214  |
| RTOR Reduction (vph)         | 0         | 0          | 181   | 0    | 0        | 169       | 0      | 0     | 41          | 0        | 12              | 0    |
| Lane Group Flow (vph)        | 428       | 614        | 137   | 260  | 535      | 48        | 391    | 1818  | 136         | 163      | 1340            | 0    |
| Turn Type                    | Prot      |            | Perm  | Prot |          | Perm      | Prot   |       | Perm        | Prot     |                 |      |
| Protected Phases             | 7         | 4          |       | 3    | 8        |           | 5      | 2     |             | 1        | 6               |      |
| Permitted Phases             |           |            | 4     |      |          | 8         |        |       | 2           |          |                 |      |
| Actuated Green, G (s)        | 24.7      | 43.7       | 43.7  | 15.9 | 35.1     | 35.1      | 21.8   | 73.7  | 73.7        | 11.3     | 63.2            |      |
| Effective Green, g (s)       | 26.2      | 45.4       | 45.4  | 17.4 | 36.6     | 36.6      | 23.3   | 75.3  | 75.3        | 12.8     | 64.8            |      |
| Actuated g/C Ratio           | 0.16      | 0.27       | 0.27  | 0.10 | 0.22     | 0.22      | 0.14   | 0.45  | 0.45        | 0.08     | 0.39            |      |
| Clearance Time (s)           | 5.5       | 5.7        | 5.7   | 5.5  | 5.5      | 5.5       | 5.5    | 5.6   | 5.6         | 5.5      | 5.6             |      |
| Vehicle Extension (s)        | 1.0       | 4.9        | 4.9   | 1.0  | 4.9      | 4.9       | 1.0    | 4.9   | 4.9         | 1.0      | 4.9             |      |
| Lane Grp Cap (vph)           | 539       | 963        | 431   | 358  | 776      | 347       | 479    | 2294  | 714         | 263      | 1928            |      |
| v/s Ratio Prot               | c0.12     | 0.17       |       | 0.08 | c0.15    |           | c0.11  | c0.36 |             | 0.05     | 0.27            |      |
| v/s Ratio Perm               |           |            | 0.09  |      |          | 0.03      |        |       | 0.09        |          |                 |      |
| v/c Ratio                    | 0.79      | 0.64       | 0.32  | 0.73 | 0.69     | 0.14      | 0.82   | 0.79  | 0.19        | 0.62     | 0.70            |      |
| Uniform Delay, d1            | 67.8      | 53.5       | 48.4  | 72.4 | 59.9     | 52.4      | 69.7   | 39.1  | 27.5        | 74.7     | 42.8            |      |
| Progression Factor           | 1.00      | 1.00       | 1.00  | 1.00 | 1.00     | 1.00      | 1.00   | 1.00  | 1.00        | 1.00     | 1.00            |      |
| Incremental Delay, d2        | 7.4       | 1.9        | 0.9   | 6.1  | 3.2      | 0.4       | 9.8    | 2.2   | 0.3         | 3.0      | 1.4             |      |
| Delay (s)                    | 75.1      | 55.4       | 49.3  | 78.5 | 63.2     | 52.8      | 79.5   | 41.4  | 27.8        | 77.7     | 44.2            |      |
| Level of Service             | Е         | E          | D     | Е    | E        | D         | Е      | D     | С           | Е        | D               |      |
| Approach Delay (s)           |           | 60.2       |       |      | 64.9     |           |        | 46.6  |             |          | 47.8            |      |
| Approach LOS                 |           | Е          |       |      | Е        |           |        | D     |             |          | D               |      |
| Intersection Summary         |           |            |       |      |          |           |        |       |             |          |                 |      |
| HCM Average Control D        |           |            | 52.8  | H    | ICM Le   | vel of Se | ervice |       | D           |          |                 |      |
| <b>HCM Volume to Capacit</b> |           |            | 0.76  |      |          |           |        |       |             |          |                 |      |
| Actuated Cycle Length (      |           |            | 166.9 |      | Sum of I |           |        |       | 12.0        |          |                 |      |
| Intersection Capacity Ut     | ilization |            | 76.2% | ŀ    | CU Leve  | el of Sei | vice   |       | D           |          |                 |      |
| Analysis Period (min)        |           |            | 15    |      |          |           |        |       |             |          |                 |      |
| c Critical Lane Group        |           |            |       |      |          |           |        |       |             |          |                 |      |

|                              | ۶         | <b>→</b> | •     | •    | <b>←</b> | •         | 4      | †        | <i>&gt;</i> | <b>/</b> | ţ        | 4    |
|------------------------------|-----------|----------|-------|------|----------|-----------|--------|----------|-------------|----------|----------|------|
| Movement                     | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL    | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations          | 7         | <b>^</b> | 7     | 7    | <b>^</b> | 7         | ሻሻ     | <b>^</b> | 7           | ሻ        | <b>^</b> | 7    |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900  | 1900 | 1900     | 1900      | 1900   | 1900     | 1900        | 1900     | 1900     | 1900 |
| Total Lost time (s)          | 4.0       | 4.0      | 4.0   | 4.0  | 4.0      | 4.0       | 4.0    | 4.0      | 4.0         | 4.0      | 4.0      | 4.0  |
| Lane Util. Factor            | 1.00      | 0.95     | 1.00  | 1.00 | 0.95     | 1.00      | 0.97   | 0.95     | 1.00        | 1.00     | 0.95     | 1.00 |
| Frt                          | 1.00      | 1.00     | 0.85  | 1.00 | 1.00     | 0.85      | 1.00   | 1.00     | 0.85        | 1.00     | 1.00     | 0.85 |
| Flt Protected                | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00     | 1.00 |
| Satd. Flow (prot)            | 1770      | 3539     | 1583  | 1770 | 3539     | 1583      | 3433   | 3539     | 1583        | 1770     | 3539     | 1583 |
| Flt Permitted                | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00     | 1.00 |
| Satd. Flow (perm)            | 1770      | 3539     | 1583  | 1770 | 3539     | 1583      | 3433   | 3539     | 1583        | 1770     | 3539     | 1583 |
| Volume (vph)                 | 204       | 221      | 309   | 106  | 290      | 124       | 515    | 1111     | 83          | 130      | 1078     | 167  |
| Peak-hour factor, PHF        | 0.92      | 0.92     | 0.92  | 0.92 | 0.92     | 0.92      | 0.90   | 0.90     | 0.90        | 0.90     | 0.90     | 0.90 |
| Adj. Flow (vph)              | 222       | 240      | 336   | 115  | 315      | 135       | 572    | 1234     | 92          | 144      | 1198     | 186  |
| RTOR Reduction (vph)         | 0         | 0        | 281   | 0    | 0        | 120       | 0      | 0        | 42          | 0        | 0        | 84   |
| Lane Group Flow (vph)        | 222       | 240      | 55    | 115  | 315      | 15        | 572    | 1234     | 50          | 144      | 1198     | 102  |
| Turn Type                    | Prot      |          | Perm  | Prot |          | Perm      | Prot   |          | Perm        | Prot     |          | Perm |
| Protected Phases             | 7         | 4        |       | 3    | 8        |           | 5      | 2        |             | 1        | 6        |      |
| Permitted Phases             |           |          | 4     |      |          | 8         |        |          | 2           |          |          | 6    |
| Actuated Green, G (s)        | 17.4      | 17.7     | 17.7  | 10.7 | 11.0     | 11.0      | 23.3   | 57.8     | 57.8        | 13.8     | 48.3     | 48.3 |
| Effective Green, g (s)       | 17.4      | 19.7     | 19.7  | 10.7 | 13.0     | 13.0      | 23.3   | 59.8     | 59.8        | 13.8     | 50.3     | 50.3 |
| Actuated g/C Ratio           | 0.14      | 0.16     | 0.16  | 0.09 | 0.11     | 0.11      | 0.19   | 0.50     | 0.50        | 0.12     | 0.42     | 0.42 |
| Clearance Time (s)           | 4.0       | 6.0      | 6.0   | 4.0  | 6.0      | 6.0       | 4.0    | 6.0      | 6.0         | 4.0      | 6.0      | 6.0  |
| Vehicle Extension (s)        | 2.0       | 4.5      | 4.5   | 2.0  | 5.0      | 5.0       | 2.0    | 3.4      | 3.4         | 2.0      | 4.1      | 4.1  |
| Lane Grp Cap (vph)           | 257       | 581      | 260   | 158  | 383      | 171       | 667    | 1764     | 789         | 204      | 1483     | 664  |
| v/s Ratio Prot               | c0.13     | 0.07     |       | 0.06 | c0.09    |           | c0.17  | 0.35     |             | 0.08     | c0.34    |      |
| v/s Ratio Perm               |           |          | 0.03  |      |          | 0.01      |        |          | 0.03        |          |          | 0.06 |
| v/c Ratio                    | 0.86      | 0.41     | 0.21  | 0.73 | 0.82     | 0.09      | 0.86   | 0.70     | 0.06        | 0.71     | 0.81     | 0.15 |
| Uniform Delay, d1            | 50.1      | 45.0     | 43.4  | 53.2 | 52.4     | 48.2      | 46.7   | 23.2     | 15.6        | 51.1     | 30.6     | 21.6 |
| Progression Factor           | 1.00      | 1.00     | 1.00  | 1.00 | 1.00     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00     | 1.00     | 1.00 |
| Incremental Delay, d2        | 23.9      | 8.0      | 0.7   | 13.2 | 14.8     | 0.5       | 10.2   | 2.3      | 0.2         | 8.7      | 4.8      | 0.5  |
| Delay (s)                    | 74.0      | 45.8     | 44.1  | 66.4 | 67.1     | 48.6      | 57.0   | 25.5     | 15.7        | 59.9     | 35.4     | 22.1 |
| Level of Service             | Е         | D        | D     | Е    | Е        | D         | Е      | С        | В           | Е        | D        | С    |
| Approach Delay (s)           |           | 53.0     |       |      | 62.6     |           |        | 34.5     |             |          | 36.1     |      |
| Approach LOS                 |           | D        |       |      | E        |           |        | С        |             |          | D        |      |
| Intersection Summary         |           |          |       |      |          |           |        |          |             |          |          |      |
| HCM Average Control D        | elay      |          | 41.4  | H    | HCM Le   | vel of Se | ervice |          | D           |          |          |      |
| <b>HCM Volume to Capacit</b> | ty ratio  |          | 0.83  |      |          |           |        |          |             |          |          |      |
| Actuated Cycle Length (      | s)        |          | 120.0 | 5    | Sum of I | ost time  | (s)    |          | 16.0        |          |          |      |
| Intersection Capacity Ut     | ilization |          | 77.1% | ŀ    | CU Leve  | el of Sei | vice   |          | D           |          |          |      |
| Analysis Period (min)        |           |          | 15    |      |          |           |        |          |             |          |          |      |
| c Critical Lane Group        |           |          |       |      |          |           |        |          |             |          |          |      |

|                           | -          | •    | •     | <b>←</b> | •       | <b>/</b>      |   |
|---------------------------|------------|------|-------|----------|---------|---------------|---|
| Movement                  | EBT        | EBR  | WBL   | WBT      | NBL     | NBR           |   |
| Lane Configurations       | <b>↑</b> ↑ |      | ች     | <b>^</b> | ¥       |               |   |
| Sign Control              | Free       |      | ·     | Free     | Stop    |               |   |
| Grade                     | 0%         |      |       | 0%       | 0%      |               |   |
| Volume (veh/h)            | 408        | 1    | 163   | 1193     | 0       | 66            |   |
| Peak Hour Factor          | 0.87       | 0.87 | 0.94  | 0.94     | 0.60    | 0.60          |   |
| Hourly flow rate (vph)    | 469        | 1    | 173   | 1269     | 0       | 110           |   |
| Pedestrians               |            |      |       |          |         |               |   |
| Lane Width (ft)           |            |      |       |          |         |               |   |
| Walking Speed (ft/s)      |            |      |       |          |         |               |   |
| Percent Blockage          |            |      |       |          |         |               |   |
| Right turn flare (veh)    |            |      |       |          |         |               |   |
| Median type               |            |      |       |          | None    |               |   |
| Median storage veh)       |            |      |       |          |         |               |   |
| Upstream signal (ft)      |            |      |       | 714      |         |               |   |
| pX, platoon unblocked     |            |      |       |          | 0.70    |               |   |
| vC, conflicting volume    |            |      | 470   |          | 1451    | 235           |   |
| vC1, stage 1 conf vol     |            |      |       |          |         |               |   |
| vC2, stage 2 conf vol     |            |      |       |          |         |               |   |
| vCu, unblocked vol        |            |      | 470   |          | 1220    | 235           |   |
| tC, single (s)            |            |      | 4.4   |          | 6.8     | 7.1           |   |
| tC, 2 stage (s)           |            |      |       |          |         |               |   |
| tF (s)                    |            |      | 2.4   |          | 3.5     | 3.4           |   |
| p0 queue free %           |            |      | 83    |          | 100     | 85            |   |
| cM capacity (veh/h)       |            |      | 1001  |          | 100     | 749           |   |
| Direction, Lane #         | EB 1       | EB 2 | WB 1  | WB 2     | WB3     | NB 1          |   |
| Volume Total              | 313        | 157  | 173   | 635      | 635     | 110           |   |
| Volume Left               | 0          | 0    | 173   | 0        | 0       | 0             |   |
| Volume Right              | 0          | 1    | 0     | 0        | 0       | 110           |   |
| cSH                       | 1700       | 1700 | 1001  | 1700     | 1700    | 749           |   |
| Volume to Capacity        | 0.18       | 0.09 | 0.17  | 0.37     | 0.37    | 0.15          |   |
| Queue Length 95th (ft)    | 0          | 0    | 16    | 0        | 0       | 13            |   |
| Control Delay (s)         | 0.0        | 0.0  | 9.3   | 0.0      | 0.0     | 10.6          |   |
| Lane LOS                  |            |      | Α     |          |         | В             |   |
| Approach Delay (s)        | 0.0        |      | 1.1   |          |         | 10.6          |   |
| Approach LOS              |            |      |       |          |         | В             |   |
| Intersection Summary      |            |      |       |          |         |               |   |
| Average Delay             |            |      | 1.4   |          |         |               |   |
| Intersection Capacity Uti | lization   |      | 43.7% | Į.       | CU Leve | el of Service | е |
| Analysis Period (min)     |            |      | 15    |          |         |               |   |
|                           |            |      |       |          |         |               |   |

|                          | •         | -        | •     | •    | -         | 4              |      |
|--------------------------|-----------|----------|-------|------|-----------|----------------|------|
| Movement                 | EBL       | EBT      | WBT   | WBR  | SBL       | SBR            |      |
| Lane Configurations      | ች         | <b>^</b> | ħβ    |      | ች         | 7              |      |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900 | 1900      | 1900           |      |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   |      | 4.0       | 4.0            |      |
| Lane Util. Factor        | 1.00      | 0.95     | 0.95  |      | 1.00      | 1.00           |      |
| Frt                      | 1.00      | 1.00     | 0.98  |      | 1.00      | 0.85           |      |
| Flt Protected            | 0.95      | 1.00     | 1.00  |      | 0.95      | 1.00           |      |
| Satd. Flow (prot)        | 1444      | 3471     | 3407  |      | 1770      | 1292           |      |
| Flt Permitted            | 0.95      | 1.00     | 1.00  |      | 0.95      | 1.00           |      |
| Satd. Flow (perm)        | 1444      | 3471     | 3407  |      | 1770      | 1292           |      |
| Volume (vph)             | 66        | 437      | 1127  | 127  | 426       | 226            |      |
| Peak-hour factor, PHF    | 0.92      | 0.92     | 0.93  | 0.93 | 0.92      | 0.92           |      |
| Adj. Flow (vph)          | 72        | 475      | 1212  | 137  | 463       | 246            |      |
| RTOR Reduction (vph)     | 0         | 0        | 9     | 0    | 0         | 128            |      |
| Lane Group Flow (vph)    | 72        | 475      | 1340  | 0    | 463       | 118            |      |
| Heavy Vehicles (%)       | 25%       | 4%       | 2%    | 25%  | 2%        | 25%            |      |
| Turn Type                | Prot      |          |       |      |           | Perm           |      |
| Protected Phases         | 7         | 4        | 8     |      | 6         |                |      |
| Permitted Phases         |           |          |       |      |           | 6              |      |
| Actuated Green, G (s)    | 5.6       | 46.9     | 37.3  |      | 25.5      | 25.5           |      |
| Effective Green, g (s)   | 5.6       | 46.9     | 37.3  |      | 25.5      | 25.5           |      |
| Actuated g/C Ratio       | 0.07      | 0.58     | 0.46  |      | 0.32      | 0.32           |      |
| Clearance Time (s)       | 4.0       | 4.0      | 4.0   |      | 4.0       | 4.0            |      |
| Vehicle Extension (s)    | 3.0       | 3.0      | 3.0   |      | 3.0       | 3.0            |      |
| Lane Grp Cap (vph)       | 101       | 2025     | 1581  |      | 561       | 410            |      |
| v/s Ratio Prot           | c0.05     | 0.14     | c0.39 |      | c0.26     |                |      |
| v/s Ratio Perm           |           |          |       |      |           | 0.09           |      |
| v/c Ratio                | 0.71      | 0.23     | 0.85  |      | 0.83      | 0.29           |      |
| Uniform Delay, d1        | 36.6      | 8.1      | 19.0  |      | 25.4      | 20.6           |      |
| Progression Factor       | 1.00      | 1.00     | 1.00  |      | 1.00      | 1.00           |      |
| Incremental Delay, d2    | 21.1      | 0.1      | 4.4   |      | 9.6       | 0.4            |      |
| Delay (s)                | 57.7      | 8.1      | 23.5  |      | 35.0      | 21.0           |      |
| Level of Service         | Е         | Α        | С     |      | D         | С              |      |
| Approach Delay (s)       |           | 14.7     | 23.5  |      | 30.1      |                |      |
| Approach LOS             |           | В        | С     |      | С         |                |      |
| Intersection Summary     |           |          |       |      |           |                |      |
| HCM Average Control D    | Delay     |          | 23.4  | F    | ICM Lev   | vel of Service | C    |
| HCM Volume to Capaci     | ty ratio  |          | 0.83  |      |           |                |      |
| Actuated Cycle Length (  | (s)       |          | 80.4  | S    | Sum of lo | ost time (s)   | 12.0 |
| Intersection Capacity Ut | ilization |          | 72.5% |      |           | el of Service  | С    |
| Analysis Period (min)    |           |          | 15    |      |           |                |      |
| 0 111 11 0               |           |          |       |      |           |                |      |

|                           | ٠        | <b>→</b> | •     | •    | •       | •         | 4    | †    | /    | <b>&gt;</b> | <b>↓</b> | 1    |
|---------------------------|----------|----------|-------|------|---------|-----------|------|------|------|-------------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL  | WBT     | WBR       | NBL  | NBT  | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |      | 4       |           |      | 4    |      |             | 4        |      |
| Sign Control              |          | Stop     |       |      | Stop    |           |      | Stop |      |             | Stop     |      |
| Volume (vph)              | 2        | 19       | 45    | 76   | 18      | 1         | 18   | 175  | 28   | 0           | 611      | 7    |
| Peak Hour Factor          | 0.73     | 0.73     | 0.73  | 0.86 | 0.86    | 0.86      | 0.87 | 0.87 | 0.87 | 0.92        | 0.92     | 0.92 |
| Hourly flow rate (vph)    | 3        | 26       | 62    | 88   | 21      | 1         | 21   | 201  | 32   | 0           | 664      | 8    |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1 |         |           |      |      |      |             |          |      |
| Volume Total (vph)        | 90       | 110      | 254   | 672  |         |           |      |      |      |             |          |      |
| Volume Left (vph)         | 3        | 88       | 21    | 0    |         |           |      |      |      |             |          |      |
| Volume Right (vph)        | 62       | 1        | 32    | 8    |         |           |      |      |      |             |          |      |
| Hadj (s)                  | -0.37    | 0.22     | -0.01 | 0.03 |         |           |      |      |      |             |          |      |
| Departure Headway (s)     | 6.2      | 6.7      | 5.5   | 5.0  |         |           |      |      |      |             |          |      |
| Degree Utilization, x     | 0.16     | 0.21     | 0.39  | 0.93 |         |           |      |      |      |             |          |      |
| Capacity (veh/h)          | 544      | 506      | 634   | 715  |         |           |      |      |      |             |          |      |
| Control Delay (s)         | 10.3     | 11.4     | 11.9  | 40.7 |         |           |      |      |      |             |          |      |
| Approach Delay (s)        | 10.3     | 11.4     | 11.9  | 40.7 |         |           |      |      |      |             |          |      |
| Approach LOS              | В        | В        | В     | Е    |         |           |      |      |      |             |          |      |
| Intersection Summary      |          |          |       |      |         |           |      |      |      |             |          |      |
| Delay                     |          |          | 28.9  |      |         |           |      |      |      |             |          |      |
| HCM Level of Service      |          |          | D     |      |         |           |      |      |      |             |          |      |
| Intersection Capacity Uti | lization |          | 51.1% | 10   | CU Leve | el of Ser | vice |      | Α    |             |          |      |
| Analysis Period (min)     |          |          | 15    |      |         |           |      |      |      |             |          |      |

| ovement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                          |                                                                                                                                                                                             | •                                                          | •                                                                                                                          |                                                                                                                                                                                                                 | -                                             | ١,                                                                                                                               | - 1                                                                                                                      | - /                                | _                                                                                                               | •                                                                                                     | •             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EBL                                                                                                                      | EBT                                                                                                                                                                                         | EBR                                                        | WBL                                                                                                                        | WBT                                                                                                                                                                                                             | WBR                                           | NBL                                                                                                                              | NBT                                                                                                                      | NBR                                | SBL                                                                                                             | SBT                                                                                                   | SBR           |
| ane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                        | <b>∱</b> }                                                                                                                                                                                  |                                                            | 7                                                                                                                          | <b>↑</b> ↑                                                                                                                                                                                                      |                                               | ¥                                                                                                                                | f)                                                                                                                       |                                    | 7                                                                                                               | ĵ»                                                                                                    |               |
| leal Flow (vphpl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1900                                                                                                                     | 1900                                                                                                                                                                                        | 1900                                                       | 1900                                                                                                                       | 1900                                                                                                                                                                                                            | 1900                                          | 1900                                                                                                                             | 1900                                                                                                                     | 1900                               | 1900                                                                                                            | 1900                                                                                                  | 1900          |
| otal Lost time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.0                                                                                                                      | 4.0                                                                                                                                                                                         |                                                            | 4.0                                                                                                                        | 4.0                                                                                                                                                                                                             |                                               | 4.0                                                                                                                              | 4.0                                                                                                                      |                                    | 4.0                                                                                                             | 4.0                                                                                                   |               |
| ane Util. Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00                                                                                                                     | 0.95                                                                                                                                                                                        |                                                            | 1.00                                                                                                                       | 0.95                                                                                                                                                                                                            |                                               | 1.00                                                                                                                             | 1.00                                                                                                                     |                                    | 1.00                                                                                                            | 1.00                                                                                                  |               |
| rt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                                                                                                     | 0.98                                                                                                                                                                                        |                                                            | 1.00                                                                                                                       | 0.98                                                                                                                                                                                                            |                                               | 1.00                                                                                                                             | 0.87                                                                                                                     |                                    | 1.00                                                                                                            | 0.92                                                                                                  |               |
| t Protected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.95                                                                                                                     | 1.00                                                                                                                                                                                        |                                                            | 0.95                                                                                                                       | 1.00                                                                                                                                                                                                            |                                               | 0.95                                                                                                                             | 1.00                                                                                                                     |                                    | 0.95                                                                                                            |                                                                                                       |               |
| atd. Flow (prot)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1597                                                                                                                     | 3415                                                                                                                                                                                        |                                                            | 1656                                                                                                                       | 3452                                                                                                                                                                                                            |                                               | 1770                                                                                                                             | 1596                                                                                                                     |                                    | 1444                                                                                                            |                                                                                                       |               |
| t Permitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.95                                                                                                                     | 1.00                                                                                                                                                                                        |                                                            | 0.95                                                                                                                       | 1.00                                                                                                                                                                                                            |                                               | 0.95                                                                                                                             | 1.00                                                                                                                     |                                    | 0.95                                                                                                            |                                                                                                       |               |
| atd. Flow (perm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1597                                                                                                                     | 3415                                                                                                                                                                                        |                                                            | 1656                                                                                                                       | 3452                                                                                                                                                                                                            |                                               | 1770                                                                                                                             | 1596                                                                                                                     |                                    | 1444                                                                                                            | 1705                                                                                                  |               |
| olume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56                                                                                                                       | 837                                                                                                                                                                                         | 118                                                        | 212                                                                                                                        | 724                                                                                                                                                                                                             | 87                                            | 169                                                                                                                              | 47                                                                                                                       | 268                                | 331                                                                                                             | 148                                                                                                   | 192           |
| eak-hour factor, PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.93                                                                                                                     | 0.93                                                                                                                                                                                        | 0.93                                                       | 0.93                                                                                                                       | 0.93                                                                                                                                                                                                            | 0.93                                          | 0.93                                                                                                                             | 0.93                                                                                                                     | 0.93                               | 0.92                                                                                                            | 0.92                                                                                                  | 0.92          |
| dj. Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                       | 900                                                                                                                                                                                         | 127                                                        | 228                                                                                                                        | 778                                                                                                                                                                                                             | 94                                            | 182                                                                                                                              | 51                                                                                                                       | 288                                | 360                                                                                                             | 161                                                                                                   | 209           |
| TOR Reduction (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                        | 11                                                                                                                                                                                          | 0                                                          | 0                                                                                                                          | 9                                                                                                                                                                                                               | 0                                             | 0                                                                                                                                | 214                                                                                                                      | 0                                  | 0                                                                                                               | 49                                                                                                    | 0             |
| ane Group Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                       | 1016                                                                                                                                                                                        | 0                                                          | 228                                                                                                                        | 863                                                                                                                                                                                                             | 0                                             | 182                                                                                                                              | 125                                                                                                                      | 0                                  | 360                                                                                                             | 321                                                                                                   | 0             |
| eavy Vehicles (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13%                                                                                                                      | 4%                                                                                                                                                                                          | 2%                                                         | 9%                                                                                                                         | 3%                                                                                                                                                                                                              | 2%                                            | 2%                                                                                                                               | 9%                                                                                                                       | 3%                                 | 25%                                                                                                             | 2%                                                                                                    | 2%            |
| urn Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Prot                                                                                                                     |                                                                                                                                                                                             |                                                            | Prot                                                                                                                       |                                                                                                                                                                                                                 |                                               | Prot                                                                                                                             |                                                                                                                          |                                    | Prot                                                                                                            |                                                                                                       |               |
| rotected Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                                                                                                        | 4                                                                                                                                                                                           |                                                            | 3                                                                                                                          | 8                                                                                                                                                                                                               |                                               | 5                                                                                                                                | 2                                                                                                                        |                                    | 1                                                                                                               | 6                                                                                                     |               |
| ermitted Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                          |                                                                                                                                                                                             |                                                            |                                                                                                                            |                                                                                                                                                                                                                 |                                               |                                                                                                                                  |                                                                                                                          |                                    |                                                                                                                 |                                                                                                       |               |
| ctuated Green, G (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.7                                                                                                                      | 29.9                                                                                                                                                                                        |                                                            | 14.0                                                                                                                       | 37.2                                                                                                                                                                                                            |                                               | 12.8                                                                                                                             | 11.9                                                                                                                     |                                    | 24.1                                                                                                            | 23.2                                                                                                  |               |
| ffective Green, g (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.7                                                                                                                      | 29.9                                                                                                                                                                                        |                                                            | 14.0                                                                                                                       | 37.2                                                                                                                                                                                                            |                                               | 12.8                                                                                                                             | 11.9                                                                                                                     |                                    | 24.1                                                                                                            | 23.2                                                                                                  |               |
| ctuated g/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.07                                                                                                                     | 0.31                                                                                                                                                                                        |                                                            | 0.15                                                                                                                       | 0.39                                                                                                                                                                                                            |                                               | 0.13                                                                                                                             | 0.12                                                                                                                     |                                    | 0.25                                                                                                            | 0.24                                                                                                  |               |
| learance Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.0                                                                                                                      | 4.0                                                                                                                                                                                         |                                                            | 4.0                                                                                                                        | 4.0                                                                                                                                                                                                             |                                               | 4.0                                                                                                                              | 4.0                                                                                                                      |                                    | 4.0                                                                                                             | 4.0                                                                                                   |               |
| ehicle Extension (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                      | 3.0                                                                                                                                                                                         |                                                            | 3.0                                                                                                                        | 3.0                                                                                                                                                                                                             |                                               | 3.0                                                                                                                              | 3.0                                                                                                                      |                                    | 3.0                                                                                                             | 3.0                                                                                                   |               |
| ane Grp Cap (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 112                                                                                                                      | 1065                                                                                                                                                                                        |                                                            | 242                                                                                                                        | 1339                                                                                                                                                                                                            |                                               | 236                                                                                                                              | 198                                                                                                                      |                                    | 363                                                                                                             | 412                                                                                                   |               |
| s Ratio Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04                                                                                                                     | c0.30                                                                                                                                                                                       |                                                            | c0.14                                                                                                                      | 0.25                                                                                                                                                                                                            |                                               | 0.10                                                                                                                             | 0.08                                                                                                                     |                                    | c0.25                                                                                                           | c0.19                                                                                                 |               |
| s Ratio Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                          |                                                                                                                                                                                             |                                                            |                                                                                                                            |                                                                                                                                                                                                                 |                                               |                                                                                                                                  |                                                                                                                          |                                    |                                                                                                                 |                                                                                                       |               |
| c Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.54                                                                                                                     | 0.95                                                                                                                                                                                        |                                                            | 0.94                                                                                                                       | 0.64                                                                                                                                                                                                            |                                               | 0.77                                                                                                                             | 0.63                                                                                                                     |                                    | 0.99                                                                                                            | 0.78                                                                                                  |               |
| niform Delay, d1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43.1                                                                                                                     | 32.3                                                                                                                                                                                        |                                                            | 40.5                                                                                                                       | 24.0                                                                                                                                                                                                            |                                               | 40.1                                                                                                                             | 39.9                                                                                                                     |                                    | 35.8                                                                                                            | 34.0                                                                                                  |               |
| rogression Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00                                                                                                                     | 1.00                                                                                                                                                                                        |                                                            | 1.00                                                                                                                       | 1.00                                                                                                                                                                                                            |                                               | 1.00                                                                                                                             | 1.00                                                                                                                     |                                    | 1.00                                                                                                            | 1.00                                                                                                  |               |
| cremental Delay, d2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.9                                                                                                                      |                                                                                                                                                                                             |                                                            | 41.9                                                                                                                       |                                                                                                                                                                                                                 |                                               | 14.4                                                                                                                             |                                                                                                                          |                                    | 44.8                                                                                                            |                                                                                                       |               |
| elay (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                          |                                                                                                                                                                                             |                                                            |                                                                                                                            |                                                                                                                                                                                                                 |                                               |                                                                                                                                  |                                                                                                                          |                                    | 80.6                                                                                                            |                                                                                                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D                                                                                                                        |                                                                                                                                                                                             |                                                            | F                                                                                                                          |                                                                                                                                                                                                                 |                                               | D                                                                                                                                |                                                                                                                          |                                    | F                                                                                                               |                                                                                                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                          | 49.7                                                                                                                                                                                        |                                                            |                                                                                                                            | 36.9                                                                                                                                                                                                            |                                               |                                                                                                                                  | 49.2                                                                                                                     |                                    |                                                                                                                 |                                                                                                       |               |
| pproach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                          | D                                                                                                                                                                                           |                                                            |                                                                                                                            | D                                                                                                                                                                                                               |                                               |                                                                                                                                  | D                                                                                                                        |                                    |                                                                                                                 | Е                                                                                                     |               |
| tersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                             |                                                            |                                                                                                                            |                                                                                                                                                                                                                 |                                               |                                                                                                                                  |                                                                                                                          |                                    |                                                                                                                 |                                                                                                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                        |                                                                                                                                                                                             | 48.1                                                       | H                                                                                                                          | ICM Lev                                                                                                                                                                                                         | vel of Se                                     | ervice                                                                                                                           |                                                                                                                          | D                                  |                                                                                                                 |                                                                                                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                          |                                                                                                                                                                                             |                                                            |                                                                                                                            |                                                                                                                                                                                                                 |                                               |                                                                                                                                  |                                                                                                                          |                                    |                                                                                                                 |                                                                                                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                          |                                                                                                                                                                                             | 95.9                                                       |                                                                                                                            |                                                                                                                                                                                                                 | ost time                                      |                                                                                                                                  |                                                                                                                          | 12.0                               |                                                                                                                 |                                                                                                       |               |
| tersection Capacity Ut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ilization                                                                                                                |                                                                                                                                                                                             | 89.3%                                                      | 10                                                                                                                         | CU Leve                                                                                                                                                                                                         | el of Ser                                     | vice                                                                                                                             |                                                                                                                          | Е                                  |                                                                                                                 |                                                                                                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                          |                                                                                                                                                                                             | 15                                                         |                                                                                                                            |                                                                                                                                                                                                                 |                                               |                                                                                                                                  |                                                                                                                          |                                    |                                                                                                                 |                                                                                                       |               |
| otal Lost time (s) ane Util. Factor rt It Protected atd. Flow (prot) It Permitted atd. Flow (perm) olume (vph) eak-hour factor, PHF dj. Flow (vph) TOR Reduction (vph) ane Group Flow (vph) eavy Vehicles (%) urn Type rotected Phases ermitted Phases ctuated Green, G (s) ffective Green, g (s) ctuated g/C Ratio learance Time (s) ehicle Extension (s) ane Grp Cap (vph) s Ratio Prot s Ratio Perm c Ratio niform Delay, d1 rogression Factor cremental Delay, d2 elay (s) evel of Service pproach Delay (s) pproach LOS  ttersection Summary CM Average Control E CM Volume to Capaci ctuated Cycle Length (s) | 4.0 1.00 1.00 0.95 1597 0.95 1597 56 0.93 60 0 60 13% Prot 7 6.7 6.7 6.7 0.07 4.0 3.0 112 0.04 0.54 43.1 1.00 4.9 48.0 D | 4.0<br>0.95<br>0.98<br>1.00<br>3415<br>1.00<br>3415<br>837<br>0.93<br>900<br>11<br>1016<br>4%<br>4<br>29.9<br>29.9<br>0.31<br>4.0<br>3.0<br>1065<br>c0.30<br>17.5<br>49.8<br>D<br>49.7<br>D | 118<br>0.93<br>127<br>0<br>0<br>2%<br>48.1<br>0.92<br>95.9 | 4.0 1.00 1.00 0.95 1656 0.95 1656 212 0.93 228 0 228 9% Prot 3 14.0 14.0 0.15 4.0 3.0 242 c0.14 0.94 40.5 1.00 41.9 82.5 F | 4.0<br>0.95<br>0.98<br>1.00<br>3452<br>1.00<br>3452<br>724<br>0.93<br>778<br>9<br>863<br>3%<br>8<br>37.2<br>37.2<br>0.39<br>4.0<br>3.0<br>1339<br>0.25<br>0.64<br>24.0<br>1.00<br>1.1<br>25.0<br>C<br>36.9<br>D | 87<br>0.93<br>94<br>0<br>0<br>2%<br>vel of Se | 4.0 1.00 1.00 1.00 0.95 1770 0.95 1770 169 0.93 182 0 182 2% Prot 5  12.8 12.8 0.13 4.0 3.0 236 0.10  0.77 40.1 1.00 14.4 54.5 D | 4.0 1.00 0.87 1.00 1596 1.00 1596 47 0.93 51 214 125 9% 2 11.9 11.9 0.12 4.0 3.0 198 0.08 0.63 39.9 1.00 6.5 46.4 D 49.2 | 268<br>0.93<br>288<br>0<br>0<br>3% | 4.0 1.00 1.00 0.95 1444 0.95 1444 331 0.92 360 0 360 25% Prot 1 24.1 0.25 4.0 3.0 363 c0.25 0.99 35.8 1.00 44.8 | 4.0 1.00 0.92 1.00 1705 1.00 1705 148 0.92 161 49 321 2% 6 23.2 23.2 0.24 4.0 3.0 412 c0.19 0.78 34.0 | 1<br>0.:<br>2 |

c Critical Lane Group

|                           | ٠        | <b>→</b> | •     | •     | <b>←</b> | •          | •      | <b>†</b> | *    | <b>/</b> | ļ    | 4    |
|---------------------------|----------|----------|-------|-------|----------|------------|--------|----------|------|----------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR        | NBL    | NBT      | NBR  | SBL      | SBT  | SBR  |
| Lane Configurations       |          | 4        |       |       | 4        |            |        | 4        |      |          | 4    |      |
| Sign Control              |          | Stop     |       |       | Stop     |            |        | Stop     |      |          | Stop |      |
| Volume (vph)              | 47       | 2        | 3     | 6     | 3        | 5          | 1      | 84       | 7    | 5        | 283  | 94   |
| Peak Hour Factor          | 0.88     | 0.88     | 0.88  | 0.67  | 0.67     | 0.67       | 0.92   | 0.92     | 0.92 | 0.87     | 0.87 | 0.87 |
| Hourly flow rate (vph)    | 53       | 2        | 3     | 9     | 4        | 7          | 1      | 91       | 8    | 6        | 325  | 108  |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |            |        |          |      |          |      |      |
| Volume Total (vph)        | 59       | 21       | 100   | 439   |          |            |        |          |      |          |      |      |
| Volume Left (vph)         | 53       | 9        | 1     | 6     |          |            |        |          |      |          |      |      |
| Volume Right (vph)        | 3        | 7        | 8     | 108   |          |            |        |          |      |          |      |      |
| Hadj (s)                  | 0.20     | -0.09    | 0.13  | -0.08 |          |            |        |          |      |          |      |      |
| Departure Headway (s)     | 5.3      | 5.1      | 4.7   | 4.2   |          |            |        |          |      |          |      |      |
| Degree Utilization, x     | 0.09     | 0.03     | 0.13  | 0.51  |          |            |        |          |      |          |      |      |
| Capacity (veh/h)          | 610      | 625      | 733   | 845   |          |            |        |          |      |          |      |      |
| Control Delay (s)         | 8.8      | 8.2      | 8.4   | 11.3  |          |            |        |          |      |          |      |      |
| Approach Delay (s)        | 8.8      | 8.2      | 8.4   | 11.3  |          |            |        |          |      |          |      |      |
| Approach LOS              | Α        | Α        | Α     | В     |          |            |        |          |      |          |      |      |
| Intersection Summary      |          |          |       |       |          |            |        |          |      |          |      |      |
| Delay                     |          |          | 10.5  |       |          |            |        |          |      |          |      |      |
| HCM Level of Service      |          |          | В     |       |          |            |        |          |      |          |      |      |
| Intersection Capacity Uti | lization |          | 35.9% | 10    | CU Leve  | el of Serv | vice . |          | Α    |          |      |      |
| Analysis Period (min)     |          |          | 15    |       |          |            |        |          |      |          |      |      |
|                           |          |          |       |       |          |            |        |          |      |          |      |      |

|                          | -           | •           | •     | <b>←</b> | 4       | <b>/</b>      |   |
|--------------------------|-------------|-------------|-------|----------|---------|---------------|---|
| Movement                 | EBT         | EBR         | WBL   | WBT      | NBL     | NBR           |   |
| Lane Configurations      | <b>↑</b> ↑  |             | ች     | <b>^</b> | ¥       |               |   |
| Sign Control             | Free        |             |       | Free     | Stop    |               |   |
| Grade                    | 0%          |             |       | 0%       | 0%      |               |   |
| Volume (veh/h)           | 1423        | 5           | 121   | 756      | 2       | 190           |   |
| Peak Hour Factor         | 0.95        | 0.95        | 0.92  | 0.92     | 0.83    | 0.83          |   |
| Hourly flow rate (vph)   | 1498        | 5           | 132   | 822      | 2       | 229           |   |
| Pedestrians              |             |             |       |          |         |               |   |
| Lane Width (ft)          |             |             |       |          |         |               |   |
| Walking Speed (ft/s)     |             |             |       |          |         |               |   |
| Percent Blockage         |             |             |       |          |         |               |   |
| Right turn flare (veh)   |             |             |       |          |         |               |   |
| Median type              |             |             |       |          | None    |               |   |
| Median storage veh)      |             |             |       |          |         |               |   |
| Upstream signal (ft)     |             |             |       | 714      |         |               |   |
| pX, platoon unblocked    |             |             |       |          |         |               |   |
| vC, conflicting volume   |             |             | 1503  |          | 2174    | 752           |   |
| vC1, stage 1 conf vol    |             |             |       |          |         | _             |   |
| vC2, stage 2 conf vol    |             |             |       |          |         |               |   |
| vCu, unblocked vol       |             |             | 1503  |          | 2174    | 752           |   |
| tC, single (s)           |             |             | 4.1   |          | 6.8     | 6.9           |   |
| tC, 2 stage (s)          |             |             |       |          |         |               |   |
| tF (s)                   |             |             | 2.2   |          | 3.5     | 3.3           |   |
| p0 queue free %          |             |             | 70    |          | 91      | 35            |   |
| cM capacity (veh/h)      |             |             | 442   |          | 28      | 353           |   |
|                          | <b>ED</b> 4 | <b>ED</b> 0 |       | 14/5.0   |         |               |   |
| Direction, Lane #        | EB 1        | EB 2        | WB 1  | WB 2     | WB3     | NB 1          |   |
| Volume Total             | 999         | 505         | 132   | 411      | 411     | 231           |   |
| Volume Left              | 0           | 0           | 132   | 0        | 0       | 2             |   |
| Volume Right             | 0           | 5           | 0     | 0        | 0       | 229           |   |
| cSH                      | 1700        | 1700        | 442   | 1700     | 1700    | 315           |   |
| Volume to Capacity       | 0.59        | 0.30        | 0.30  | 0.24     | 0.24    | 0.74          |   |
| Queue Length 95th (ft)   | 0           | 0           | 31    | 0        | 0       | 137           |   |
| Control Delay (s)        | 0.0         | 0.0         | 16.6  | 0.0      | 0.0     | 42.5          |   |
| Lane LOS                 |             |             | С     |          |         | Е             |   |
| Approach Delay (s)       | 0.0         |             | 2.3   |          |         | 42.5          |   |
| Approach LOS             |             |             |       |          |         | E             |   |
| Intersection Summary     |             |             |       |          |         |               |   |
| Average Delay            |             |             | 4.5   |          |         |               |   |
| Intersection Capacity Ut | ilization   |             | 68.1% | I.       | CU Leve | el of Service | е |
| Analysis Period (min)    |             |             | 15    |          |         |               |   |
|                          |             |             |       |          |         |               |   |

|                          | ۶         | -        | ←           | •    | -        | 1              |      |   |
|--------------------------|-----------|----------|-------------|------|----------|----------------|------|---|
| Movement                 | EBL       | EBT      | WBT         | WBR  | SBL      | SBR            |      |   |
| Lane Configurations      | ች         | <b>^</b> | <b>∱</b> 1> |      | ች        | 7              |      |   |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900        | 1900 | 1900     | 1900           |      |   |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0         |      | 4.0      | 4.0            |      |   |
| Lane Util. Factor        | 1.00      | 0.95     | 0.95        |      | 1.00     | 1.00           |      |   |
| Frt                      | 1.00      | 1.00     | 0.94        |      | 1.00     | 0.85           |      |   |
| Flt Protected            | 0.95      | 1.00     | 1.00        |      | 0.95     | 1.00           |      |   |
| Satd. Flow (prot)        | 1770      | 3539     | 3314        |      | 1770     | 1583           |      |   |
| Flt Permitted            | 0.95      | 1.00     | 1.00        |      | 0.95     | 1.00           |      |   |
| Satd. Flow (perm)        | 1770      | 3539     | 3314        |      | 1770     | 1583           |      |   |
| Volume (vph)             | 253       | 1365     | 764         | 482  | 271      | 142            |      |   |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.93        | 0.93 | 0.87     | 0.87           |      |   |
| Adj. Flow (vph)          | 261       | 1407     | 822         | 518  | 311      | 163            |      |   |
| RTOR Reduction (vph)     | 0         | 0        | 100         | 0    | 0        | 127            |      |   |
| Lane Group Flow (vph)    | 261       | 1407     | 1240        | 0    | 311      | 36             |      |   |
| Heavy Vehicles (%)       | 2%        | 2%       | 3%          | 2%   | 2%       | 2%             |      |   |
| Turn Type                | Prot      |          |             |      |          | Perm           |      |   |
| Protected Phases         | 7         | 4        | 8           |      | 6        |                |      |   |
| Permitted Phases         |           |          |             |      |          | 6              |      |   |
| Actuated Green, G (s)    | 16.1      | 56.2     | 36.1        |      | 18.5     | 18.5           |      |   |
| Effective Green, g (s)   | 16.1      | 56.2     | 36.1        |      | 18.5     | 18.5           |      |   |
| Actuated g/C Ratio       | 0.19      | 0.68     | 0.44        |      | 0.22     | 0.22           |      |   |
| Clearance Time (s)       | 4.0       | 4.0      | 4.0         |      | 4.0      | 4.0            |      |   |
| Vehicle Extension (s)    | 3.0       | 3.0      | 3.0         |      | 3.0      | 3.0            |      |   |
| Lane Grp Cap (vph)       | 345       | 2405     | 1447        |      | 396      | 354            |      |   |
| v/s Ratio Prot           | c0.15     | 0.40     | c0.37       |      | c0.18    |                |      |   |
| v/s Ratio Perm           |           |          |             |      |          | 0.02           |      |   |
| v/c Ratio                | 0.76      | 0.59     | 0.86        |      | 0.79     | 0.10           |      |   |
| Uniform Delay, d1        | 31.4      | 7.0      | 21.0        |      | 30.2     | 25.5           |      |   |
| Progression Factor       | 1.00      | 1.00     | 1.00        |      | 1.00     | 1.00           |      |   |
| Incremental Delay, d2    | 9.1       | 0.4      | 5.2         |      | 9.8      | 0.1            |      |   |
| Delay (s)                | 40.6      | 7.4      | 26.2        |      | 40.1     | 25.6           |      |   |
| Level of Service         | D         | Α        | С           |      | D        | С              |      |   |
| Approach Delay (s)       |           | 12.6     | 26.2        |      | 35.1     |                |      |   |
| Approach LOS             |           | В        | С           |      | D        |                |      |   |
| Intersection Summary     |           |          |             |      |          |                |      |   |
| HCM Average Control D    | elay      |          | 20.9        | H    | ICM Lev  | vel of Service | ce ( | С |
| HCM Volume to Capaci     | ty ratio  |          | 0.82        |      |          |                |      |   |
| Actuated Cycle Length (  | (s)       |          | 82.7        | S    | Sum of l | ost time (s)   | 12.  | 0 |
| Intersection Capacity Ut | ilization |          | 75.6%       | 10   | CU Leve  | el of Service  | e [  | D |
| Analysis Period (min)    |           |          | 15          |      |          |                |      |   |
| o Critical Lana Graup    |           |          |             |      |          |                |      |   |

|                           | ۶         | <b>→</b> | •     | •    | <b>←</b> | •          | •    | <b>†</b> | <b>/</b> | <b>/</b> | Ţ    | 4    |
|---------------------------|-----------|----------|-------|------|----------|------------|------|----------|----------|----------|------|------|
| Movement                  | EBL       | EBT      | EBR   | WBL  | WBT      | WBR        | NBL  | NBT      | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations       |           | 4        |       |      | 4        |            |      | 4        |          |          | 4    |      |
| Sign Control              |           | Stop     |       |      | Stop     |            |      | Stop     |          |          | Stop |      |
| Volume (vph)              | 7         | 31       | 31    | 61   | 26       | 1          | 53   | 692      | 94       | 1        | 396  | 6    |
| Peak Hour Factor          | 0.84      | 0.84     | 0.84  | 0.90 | 0.90     | 0.90       | 0.92 | 0.92     | 0.92     | 0.87     | 0.87 | 0.87 |
| Hourly flow rate (vph)    | 8         | 37       | 37    | 68   | 29       | 1          | 58   | 752      | 102      | 1        | 455  | 7    |
| Direction, Lane #         | EB 1      | WB 1     | NB 1  | SB 1 |          |            |      |          |          |          |      |      |
| Volume Total (vph)        | 82        | 98       | 912   | 463  |          |            |      |          |          |          |      |      |
| Volume Left (vph)         | 8         | 68       | 58    | 1    |          |            |      |          |          |          |      |      |
| Volume Right (vph)        | 37        | 1        | 102   | 7    |          |            |      |          |          |          |      |      |
| Hadj (s)                  | -0.22     | 0.17     | -0.02 | 0.03 |          |            |      |          |          |          |      |      |
| Departure Headway (s)     | 6.8       | 7.1      | 5.3   | 5.5  |          |            |      |          |          |          |      |      |
| Degree Utilization, x     | 0.16      | 0.19     | 1.33  | 0.71 |          |            |      |          |          |          |      |      |
| Capacity (veh/h)          | 483       | 466      | 688   | 636  |          |            |      |          |          |          |      |      |
| Control Delay (s)         | 11.1      | 11.8     | 175.8 | 20.9 |          |            |      |          |          |          |      |      |
| Approach Delay (s)        | 11.1      | 11.8     | 175.8 | 20.9 |          |            |      |          |          |          |      |      |
| Approach LOS              | В         | В        | F     | С    |          |            |      |          |          |          |      |      |
| Intersection Summary      |           |          |       |      |          |            |      |          |          |          |      |      |
| Delay                     |           |          | 110.7 |      |          |            |      |          |          |          |      |      |
| HCM Level of Service      |           |          | F     |      |          |            |      |          |          |          |      |      |
| Intersection Capacity Uti | ilization |          | 87.8% | 10   | CU Leve  | el of Serv | rice |          | Е        |          |      |      |
| Analysis Period (min)     |           |          | 15    |      |          |            |      |          |          |          |      |      |
|                           |           |          |       |      |          |            |      |          |          |          |      |      |

| Γ SBR                            |
|----------------------------------|
| <del></del>                      |
| 1900                             |
| )                                |
| )                                |
| 2                                |
| )                                |
| 3                                |
| )                                |
| 3                                |
| 9 136                            |
| 7 0.87                           |
| 5 156                            |
| 0 0                              |
| 1 0                              |
| 6 2%                             |
|                                  |
| 3                                |
|                                  |
| 5                                |
| 5                                |
| 3                                |
| )                                |
| )                                |
|                                  |
| 3                                |
|                                  |
| l                                |
| 2                                |
| )                                |
| 3                                |
| 3                                |
| =                                |
| 9                                |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
|                                  |
| 000203037501% 6 55600116 12068ES |

c Critical Lane Group

|                           | ۶        | <b>→</b> | •     | •     | •       | •          | 4    | <b>†</b> | <b>/</b> | <b>/</b> | Ţ    | 4    |
|---------------------------|----------|----------|-------|-------|---------|------------|------|----------|----------|----------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT     | WBR        | NBL  | NBT      | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations       |          | 4        |       |       | 4       |            |      | 4        |          |          | 4    |      |
| Sign Control              |          | Stop     |       |       | Stop    |            |      | Stop     |          |          | Stop |      |
| Volume (vph)              | 118      | 5        | 5     | 7     | 2       | 4          | 2    | 318      | 8        | 8        | 200  | 87   |
| Peak Hour Factor          | 0.87     | 0.87     | 0.87  | 0.75  | 0.75    | 0.75       | 0.87 | 0.87     | 0.87     | 0.92     | 0.92 | 0.92 |
| Hourly flow rate (vph)    | 136      | 6        | 6     | 9     | 3       | 5          | 2    | 366      | 9        | 9        | 217  | 95   |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |         |            |      |          |          |          |      |      |
| Volume Total (vph)        | 147      | 17       | 377   | 321   |         |            |      |          |          |          |      |      |
| Volume Left (vph)         | 136      | 9        | 2     | 9     |         |            |      |          |          |          |      |      |
| Volume Right (vph)        | 6        | 5        | 9     | 95    |         |            |      |          |          |          |      |      |
| Hadj (s)                  | 0.24     | 0.08     | 0.02  | -0.13 |         |            |      |          |          |          |      |      |
| Departure Headway (s)     | 5.8      | 6.0      | 4.8   | 4.8   |         |            |      |          |          |          |      |      |
| Degree Utilization, x     | 0.24     | 0.03     | 0.51  | 0.42  |         |            |      |          |          |          |      |      |
| Capacity (veh/h)          | 557      | 504      | 722   | 725   |         |            |      |          |          |          |      |      |
| Control Delay (s)         | 10.7     | 9.2      | 12.7  | 11.2  |         |            |      |          |          |          |      |      |
| Approach Delay (s)        | 10.7     | 9.2      | 12.7  | 11.2  |         |            |      |          |          |          |      |      |
| Approach LOS              | В        | Α        | В     | В     |         |            |      |          |          |          |      |      |
| Intersection Summary      |          |          |       |       |         |            |      |          |          |          |      |      |
| Delay                     |          |          | 11.7  |       |         |            |      |          |          |          |      |      |
| HCM Level of Service      |          |          | В     |       |         |            |      |          |          |          |      |      |
| Intersection Capacity Uti | lization |          | 39.4% | ŀ     | CU Leve | el of Serv | /ice |          | Α        |          |      |      |
| Analysis Period (min)     |          |          | 15    |       |         |            |      |          |          |          |      |      |
|                           |          |          |       |       |         |            |      |          |          |          |      |      |

|                           | -          | •    | •     | •        | 1       | <b>/</b>     |    |
|---------------------------|------------|------|-------|----------|---------|--------------|----|
| Movement                  | EBT        | EBR  | WBL   | WBT      | NBL     | NBR          |    |
| Lane Configurations       | <b>↑</b> ↑ |      | ኻ     | <b>^</b> | ¥       |              |    |
| Sign Control              | Free       |      |       | Free     | Stop    |              |    |
| Grade                     | 0%         |      |       | 0%       | 0%      |              |    |
| Volume (veh/h)            | 406        | 1    | 163   | 1170     | 0       | 67           |    |
| Peak Hour Factor          | 0.87       | 0.87 | 0.94  | 0.94     | 0.60    | 0.60         |    |
| Hourly flow rate (vph)    | 467        | 1    | 173   | 1245     | 0       | 112          |    |
| Pedestrians               |            |      |       |          |         |              |    |
| Lane Width (ft)           |            |      |       |          |         |              |    |
| Walking Speed (ft/s)      |            |      |       |          |         |              |    |
| Percent Blockage          |            |      |       |          |         |              |    |
| Right turn flare (veh)    |            |      |       |          |         |              |    |
| Median type               |            |      |       |          | None    |              |    |
| Median storage veh)       |            |      |       |          |         |              |    |
| Upstream signal (ft)      |            |      |       | 714      |         |              |    |
| pX, platoon unblocked     |            |      |       |          | 0.71    |              |    |
| vC, conflicting volume    |            |      | 468   |          | 1436    | 234          |    |
| vC1, stage 1 conf vol     |            |      |       |          |         |              |    |
| vC2, stage 2 conf vol     |            |      |       |          |         |              |    |
| vCu, unblocked vol        |            |      | 468   |          | 1210    | 234          |    |
| tC, single (s)            |            |      | 4.4   |          | 6.8     | 7.1          |    |
| tC, 2 stage (s)           |            |      |       |          |         |              |    |
| tF (s)                    |            |      | 2.4   |          | 3.5     | 3.4          |    |
| p0 queue free %           |            |      | 83    |          | 100     | 85           |    |
| cM capacity (veh/h)       |            |      | 1004  |          | 103     | 750          |    |
| Direction, Lane #         | EB 1       | EB 2 | WB 1  | WB 2     | WB3     | NB 1         |    |
| Volume Total              | 311        | 157  | 173   | 622      | 622     | 112          |    |
| Volume Left               | 0          | 0    | 173   | 0        | 0       | 0            |    |
| Volume Right              | 0          | 1    | 0     | 0        | 0       | 112          |    |
| cSH                       | 1700       | 1700 | 1004  | 1700     | 1700    | 750          |    |
| Volume to Capacity        | 0.18       | 0.09 | 0.17  | 0.37     | 0.37    | 0.15         |    |
| Queue Length 95th (ft)    | 0          | 0    | 16    | 0        | 0       | 13           |    |
| Control Delay (s)         | 0.0        | 0.0  | 9.3   | 0.0      | 0.0     | 10.6         |    |
| Lane LOS                  |            |      | Α     |          |         | В            |    |
| Approach Delay (s)        | 0.0        |      | 1.1   |          |         | 10.6         |    |
| Approach LOS              |            |      |       |          |         | В            |    |
| Intersection Summary      |            |      |       |          |         |              |    |
| Average Delay             |            |      | 1.4   |          |         |              |    |
| Intersection Capacity Uti | lization   |      | 43.2% | ŀ        | CU Leve | el of Servic | се |
| Analysis Period (min)     |            |      | 15    |          |         |              |    |
|                           |            |      |       |          |         |              |    |

|                          | ၨ        | -        | ←          | •    | -        | 4                                       |    |     |  |
|--------------------------|----------|----------|------------|------|----------|-----------------------------------------|----|-----|--|
| Movement                 | EBL      | EBT      | WBT        | WBR  | SBL      | SBR                                     |    |     |  |
| Lane Configurations      | ሻ        | <b>^</b> | <b>↑</b> Ъ |      | *        | 7                                       |    |     |  |
| Ideal Flow (vphpl)       | 1900     | 1900     | 1900       | 1900 | 1900     | 1900                                    |    |     |  |
| Total Lost time (s)      | 4.0      | 4.0      | 4.0        |      | 4.0      | 4.0                                     |    |     |  |
| Lane Util. Factor        | 1.00     | 0.95     | 0.95       |      | 1.00     | 1.00                                    |    |     |  |
| Frt                      | 1.00     | 1.00     | 0.99       |      | 1.00     | 0.85                                    |    |     |  |
| Flt Protected            | 0.95     | 1.00     | 1.00       |      | 0.95     | 1.00                                    |    |     |  |
| Satd. Flow (prot)        | 1444     | 3471     | 3411       |      | 1770     | 1292                                    |    |     |  |
| Flt Permitted            | 0.95     | 1.00     | 1.00       |      | 0.95     | 1.00                                    |    |     |  |
| Satd. Flow (perm)        | 1444     | 3471     | 3411       |      | 1770     | 1292                                    |    |     |  |
| Volume (vph)             | 67       | 425      | 1125       | 123  | 374      | 206                                     |    |     |  |
| Peak-hour factor, PHF    | 0.92     | 0.92     | 0.93       | 0.93 | 0.92     | 0.92                                    |    |     |  |
| Adj. Flow (vph)          | 73       | 462      | 1210       | 132  | 407      | 224                                     |    |     |  |
| RTOR Reduction (vph)     | 0        | 0        | 8          | 0    | 0        | 132                                     |    |     |  |
| Lane Group Flow (vph)    | 73       | 462      | 1334       | 0    | 407      | 92                                      |    |     |  |
| Heavy Vehicles (%)       | 25%      | 4%       | 2%         | 25%  | 2%       | 25%                                     |    |     |  |
| Turn Type                | Prot     |          |            |      |          | Perm                                    |    |     |  |
| Protected Phases         | 7        | 4        | 8          |      | 6        | • • • • • • • • • • • • • • • • • • • • |    |     |  |
| Permitted Phases         |          |          |            |      |          | 6                                       |    |     |  |
| Actuated Green, G (s)    | 5.6      | 45.2     | 35.6       |      | 22.7     | 22.7                                    |    |     |  |
| Effective Green, g (s)   | 5.6      | 45.2     | 35.6       |      | 22.7     | 22.7                                    |    |     |  |
| Actuated g/C Ratio       | 0.07     | 0.60     | 0.47       |      | 0.30     | 0.30                                    |    |     |  |
| Clearance Time (s)       | 4.0      | 4.0      | 4.0        |      | 4.0      | 4.0                                     |    |     |  |
| Vehicle Extension (s)    | 3.0      | 3.0      | 3.0        |      | 3.0      | 3.0                                     |    |     |  |
| Lane Grp Cap (vph)       | 107      | 2067     | 1600       |      | 529      | 386                                     |    |     |  |
| v/s Ratio Prot           | c0.05    | 0.13     | c0.39      |      | c0.23    |                                         |    |     |  |
| v/s Ratio Perm           |          |          |            |      |          | 0.07                                    |    |     |  |
| v/c Ratio                | 0.68     | 0.22     | 0.83       |      | 0.77     | 0.24                                    |    |     |  |
| Uniform Delay, d1        | 34.3     | 7.2      | 17.6       |      | 24.2     | 20.1                                    |    |     |  |
| Progression Factor       | 1.00     | 1.00     | 1.00       |      | 1.00     | 1.00                                    |    |     |  |
| Incremental Delay, d2    | 16.5     | 0.1      | 3.9        |      | 6.7      | 0.3                                     |    |     |  |
| Delay (s)                | 50.7     | 7.2      | 21.5       |      | 30.9     | 20.4                                    |    |     |  |
| Level of Service         | D        | Α        | С          |      | С        | С                                       |    |     |  |
| Approach Delay (s)       |          | 13.2     | 21.5       |      | 27.2     |                                         |    |     |  |
| Approach LOS             |          | В        | С          |      | С        |                                         |    |     |  |
| Intersection Summary     |          |          |            |      |          |                                         |    |     |  |
| HCM Average Control D    | elay     |          | 21.1       | H    | ICM Lev  | el of Servi                             | ce | С   |  |
| HCM Volume to Capacit    | ty ratio |          | 0.80       |      |          |                                         |    |     |  |
| Actuated Cycle Length (  |          |          | 75.9       | S    | um of lo | ost time (s)                            | 1. | 2.0 |  |
| Intersection Capacity Ut |          |          | 69.4%      |      |          | el of Servic                            |    | С   |  |
| Analysis Period (min)    |          |          | 15         |      |          |                                         |    |     |  |
| o Critical Lana Group    |          |          |            |      |          |                                         |    |     |  |

|                           | ۶        | <b>→</b> | •     | •    | •       | •         | 4    | †    | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|------|---------|-----------|------|------|----------|-------------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL  | WBT     | WBR       | NBL  | NBT  | NBR      | SBL         | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |      | 4       |           |      | 4    |          |             | 4        |      |
| Sign Control              |          | Stop     |       |      | Stop    |           |      | Stop |          |             | Stop     |      |
| Volume (vph)              | 2        | 19       | 45    | 75   | 18      | 1         | 18   | 172  | 26       | 0           | 583      | 5    |
| Peak Hour Factor          | 0.73     | 0.73     | 0.73  | 0.86 | 0.86    | 0.86      | 0.87 | 0.87 | 0.87     | 0.92        | 0.92     | 0.92 |
| Hourly flow rate (vph)    | 3        | 26       | 62    | 87   | 21      | 1         | 21   | 198  | 30       | 0           | 634      | 5    |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1 |         |           |      |      |          |             |          |      |
| Volume Total (vph)        | 90       | 109      | 248   | 639  |         |           |      |      |          |             |          |      |
| Volume Left (vph)         | 3        | 87       | 21    | 0    |         |           |      |      |          |             |          |      |
| Volume Right (vph)        | 62       | 1        | 30    | 5    |         |           |      |      |          |             |          |      |
| Hadj (s)                  | -0.37    | 0.22     | -0.01 | 0.03 |         |           |      |      |          |             |          |      |
| Departure Headway (s)     | 6.1      | 6.6      | 5.4   | 5.0  |         |           |      |      |          |             |          |      |
| Degree Utilization, x     | 0.15     | 0.20     | 0.37  | 0.88 |         |           |      |      |          |             |          |      |
| Capacity (veh/h)          | 544      | 507      | 632   | 639  |         |           |      |      |          |             |          |      |
| Control Delay (s)         | 10.1     | 11.2     | 11.6  | 32.9 |         |           |      |      |          |             |          |      |
| Approach Delay (s)        | 10.1     | 11.2     | 11.6  | 32.9 |         |           |      |      |          |             |          |      |
| Approach LOS              | В        | В        | В     | D    |         |           |      |      |          |             |          |      |
| Intersection Summary      |          |          |       |      |         |           |      |      |          |             |          |      |
| Delay                     |          |          | 24.0  |      |         |           |      |      |          |             |          |      |
| HCM Level of Service      |          |          | С     |      |         |           |      |      |          |             |          |      |
| Intersection Capacity Uti | lization |          | 49.5% | 10   | CU Leve | el of Ser | vice |      | Α        |             |          |      |
| Analysis Period (min)     |          |          | 15    |      |         |           |      |      |          |             |          |      |
|                           |          |          |       |      |         |           |      |      |          |             |          |      |

|                          | ၨ         | <b>→</b>   | •     | •     | <b>←</b>   | •         | 4      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ     | 4    |
|--------------------------|-----------|------------|-------|-------|------------|-----------|--------|----------|-------------|-------------|-------|------|
| Movement                 | EBL       | EBT        | EBR   | WBL   | WBT        | WBR       | NBL    | NBT      | NBR         | SBL         | SBT   | SBR  |
| Lane Configurations      | J.        | <b>∱</b> } |       | J.    | <b>↑</b> ↑ |           | J.     | f)       |             | ¥           | f)    |      |
| Ideal Flow (vphpl)       | 1900      | 1900       | 1900  | 1900  | 1900       | 1900      | 1900   | 1900     | 1900        | 1900        | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0      |             | 4.0         | 4.0   |      |
| Lane Util. Factor        | 1.00      | 0.95       |       | 1.00  | 0.95       |           | 1.00   | 1.00     |             | 1.00        | 1.00  |      |
| Frt                      | 1.00      | 0.98       |       | 1.00  | 0.98       |           | 1.00   | 0.87     |             | 1.00        | 0.91  |      |
| Flt Protected            | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00     |             | 0.95        | 1.00  |      |
| Satd. Flow (prot)        | 1597      | 3418       |       | 1656  | 3449       |           | 1770   | 1595     |             | 1444        | 1704  |      |
| Flt Permitted            | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00     |             | 0.95        | 1.00  |      |
| Satd. Flow (perm)        | 1597      | 3418       |       | 1656  | 3449       |           | 1770   | 1595     |             | 1444        | 1704  |      |
| Volume (vph)             | 59        | 784        | 103   | 211   | 742        | 96        | 159    | 43       | 252         | 346         | 151   | 199  |
| Peak-hour factor, PHF    | 0.93      | 0.93       | 0.93  | 0.93  | 0.93       | 0.93      | 0.93   | 0.93     | 0.93        | 0.92        | 0.92  | 0.92 |
| Adj. Flow (vph)          | 63        | 843        | 111   | 227   | 798        | 103       | 171    | 46       | 271         | 376         | 164   | 216  |
| RTOR Reduction (vph)     | 0         | 10         | 0     | 0     | 9          | 0         | 0      | 212      | 0           | 0           | 49    | 0    |
| Lane Group Flow (vph)    | 63        | 944        | 0     | 227   | 892        | 0         | 171    | 105      | 0           | 376         | 331   | 0    |
| Heavy Vehicles (%)       | 13%       | 4%         | 2%    | 9%    | 3%         | 2%        | 2%     | 9%       | 3%          | 25%         | 2%    | 2%   |
| Turn Type                | Prot      |            |       | Prot  |            |           | Prot   |          |             | Prot        |       |      |
| Protected Phases         | 7         | 4          |       | 3     | 8          |           | 5      | 2        |             | 1           | 6     |      |
| Permitted Phases         |           |            |       |       |            |           |        |          |             |             |       |      |
| Actuated Green, G (s)    | 6.7       | 29.2       |       | 14.1  | 36.6       |           | 12.5   | 11.9     |             | 24.1        | 23.5  |      |
| Effective Green, g (s)   | 6.7       | 29.2       |       | 14.1  | 36.6       |           | 12.5   | 11.9     |             | 24.1        | 23.5  |      |
| Actuated g/C Ratio       | 0.07      | 0.31       |       | 0.15  | 0.38       |           | 0.13   | 0.12     |             | 0.25        | 0.25  |      |
| Clearance Time (s)       | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0      |             | 4.0         | 4.0   |      |
| Vehicle Extension (s)    | 3.0       | 3.0        |       | 3.0   | 3.0        |           | 3.0    | 3.0      |             | 3.0         | 3.0   |      |
| Lane Grp Cap (vph)       | 112       | 1047       |       | 245   | 1325       |           | 232    | 199      |             | 365         | 420   |      |
| v/s Ratio Prot           | 0.04      | c0.28      |       | c0.14 | 0.26       |           | 0.10   | 0.07     |             | c0.26       | c0.19 |      |
| v/s Ratio Perm           |           |            |       |       |            |           |        |          |             |             |       |      |
| v/c Ratio                | 0.56      | 0.90       |       | 0.93  | 0.67       |           | 0.74   | 0.53     |             | 1.03        | 0.79  |      |
| Uniform Delay, d1        | 42.9      | 31.7       |       | 40.1  | 24.4       |           | 39.8   | 39.1     |             | 35.6        | 33.6  |      |
| Progression Factor       | 1.00      | 1.00       |       | 1.00  | 1.00       |           | 1.00   | 1.00     |             | 1.00        | 1.00  |      |
| Incremental Delay, d2    | 6.3       | 10.7       |       | 37.7  | 1.4        |           | 11.5   | 2.5      |             | 55.1        | 9.5   |      |
| Delay (s)                | 49.2      | 42.4       |       | 77.8  | 25.7       |           | 51.4   | 41.6     |             | 90.7        | 43.0  |      |
| Level of Service         | D         | D          |       | Е     | С          |           | D      | D        |             | F           | D     |      |
| Approach Delay (s)       |           | 42.8       |       |       | 36.2       |           |        | 45.0     |             |             | 66.7  |      |
| Approach LOS             |           | D          |       |       | D          |           |        | D        |             |             | Е     |      |
| Intersection Summary     |           |            |       |       |            |           |        |          |             |             |       |      |
| HCM Average Control D    | •         |            | 46.3  | F     | ICM Le     | vel of Se | ervice |          | D           |             |       |      |
| HCM Volume to Capacit    | •         |            | 0.91  |       |            |           |        |          |             |             |       |      |
| Actuated Cycle Length (  |           |            | 95.3  |       |            | ost time  |        |          | 12.0        |             |       |      |
| Intersection Capacity Ut | ilization |            | 87.0% | 10    | CU Leve    | el of Ser | vice   |          | E           |             |       |      |
| Analysis Period (min)    |           |            | 15    |       |            |           |        |          |             |             |       |      |

|                           | ۶        | <b>→</b> | •     | •     | •       | •         | 4    | †    | /    | <b>&gt;</b> | ţ    | 4    |
|---------------------------|----------|----------|-------|-------|---------|-----------|------|------|------|-------------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT     | WBR       | NBL  | NBT  | NBR  | SBL         | SBT  | SBR  |
| Lane Configurations       |          | 4        |       |       | 4       |           |      | 4    |      |             | 4    |      |
| Sign Control              |          | Stop     |       |       | Stop    |           |      | Stop |      |             | Stop |      |
| Volume (vph)              | 45       | 2        | 3     | 6     | 3       | 5         | 1    | 78   | 7    | 5           | 268  | 93   |
| Peak Hour Factor          | 0.88     | 0.88     | 0.88  | 0.67  | 0.67    | 0.67      | 0.92 | 0.92 | 0.92 | 0.87        | 0.87 | 0.87 |
| Hourly flow rate (vph)    | 51       | 2        | 3     | 9     | 4       | 7         | 1    | 85   | 8    | 6           | 308  | 107  |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |         |           |      |      |      |             |      |      |
| Volume Total (vph)        | 57       | 21       | 93    | 421   |         |           |      |      |      |             |      |      |
| Volume Left (vph)         | 51       | 9        | 1     | 6     |         |           |      |      |      |             |      |      |
| Volume Right (vph)        | 3        | 7        | 8     | 107   |         |           |      |      |      |             |      |      |
| Hadj (s)                  | 0.19     | -0.09    | 0.13  | -0.09 |         |           |      |      |      |             |      |      |
| Departure Headway (s)     | 5.3      | 5.0      | 4.7   | 4.1   |         |           |      |      |      |             |      |      |
| Degree Utilization, x     | 0.08     | 0.03     | 0.12  | 0.48  |         |           |      |      |      |             |      |      |
| Capacity (veh/h)          | 619      | 636      | 739   | 849   |         |           |      |      |      |             |      |      |
| Control Delay (s)         | 8.7      | 8.2      | 8.3   | 10.9  |         |           |      |      |      |             |      |      |
| Approach Delay (s)        | 8.7      | 8.2      | 8.3   | 10.9  |         |           |      |      |      |             |      |      |
| Approach LOS              | Α        | Α        | Α     | В     |         |           |      |      |      |             |      |      |
| Intersection Summary      |          |          |       |       |         |           |      |      |      |             |      |      |
| Delay                     |          |          | 10.2  |       |         |           |      |      |      |             |      |      |
| HCM Level of Service      |          |          | В     |       |         |           |      |      |      |             |      |      |
| Intersection Capacity Uti | lization |          | 34.8% | 10    | CU Leve | el of Ser | vice |      | Α    |             |      |      |
| Analysis Period (min)     |          |          | 15    |       |         |           |      |      |      |             |      |      |
|                           |          |          |       |       |         |           |      |      |      |             |      |      |

|                           | -          | $\rightarrow$ | •     | ←        | 1       | /            |    |
|---------------------------|------------|---------------|-------|----------|---------|--------------|----|
| Movement                  | EBT        | EBR           | WBL   | WBT      | NBL     | NBR          |    |
| Lane Configurations       | <b>↑</b> ↑ |               | ሻ     | <b>^</b> | W       |              |    |
| Sign Control              | Free       |               |       | Free     | Stop    |              |    |
| Grade                     | 0%         |               |       | 0%       | 0%      |              |    |
| Volume (veh/h)            | 1368       | 5             | 116   | 721      | 2       | 183          |    |
| Peak Hour Factor          | 0.95       | 0.95          | 0.92  | 0.92     | 0.83    | 0.83         |    |
| Hourly flow rate (vph)    | 1440       | 5             | 126   | 784      | 2       | 220          |    |
| Pedestrians               |            |               |       |          |         |              |    |
| Lane Width (ft)           |            |               |       |          |         |              |    |
| Walking Speed (ft/s)      |            |               |       |          |         |              |    |
| Percent Blockage          |            |               |       |          |         |              |    |
| Right turn flare (veh)    |            |               |       |          |         |              |    |
| Median type               |            |               |       |          | None    |              |    |
| Median storage veh)       |            |               |       |          |         |              |    |
| Upstream signal (ft)      |            |               |       | 714      |         |              |    |
| pX, platoon unblocked     |            |               |       |          |         |              |    |
| vC, conflicting volume    |            |               | 1445  |          | 2087    | 723          |    |
| vC1, stage 1 conf vol     |            |               |       |          |         |              |    |
| vC2, stage 2 conf vol     |            |               |       |          |         |              |    |
| vCu, unblocked vol        |            |               | 1445  |          | 2087    | 723          |    |
| tC, single (s)            |            |               | 4.1   |          | 6.8     | 6.9          |    |
| tC, 2 stage (s)           |            |               |       |          |         |              |    |
| tF (s)                    |            |               | 2.2   |          | 3.5     | 3.3          |    |
| p0 queue free %           |            |               | 73    |          | 93      | 40           |    |
| cM capacity (veh/h)       |            |               | 465   |          | 33      | 369          |    |
| Direction, Lane #         | EB 1       | EB 2          | WB 1  | WB2      | WB3     | NB 1         |    |
| Volume Total              | 960        | 485           | 126   | 392      | 392     | 223          |    |
| Volume Left               | 0          | 0             | 126   | 0        | 0       | 2            |    |
| Volume Right              | 0          | 5             | 0     | 0        | 0       | 220          |    |
| cSH                       | 1700       | 1700          | 465   | 1700     | 1700    | 332          |    |
| Volume to Capacity        | 0.56       | 0.29          | 0.27  | 0.23     | 0.23    | 0.67         |    |
| Queue Length 95th (ft)    | 0          | 0             | 27    | 0        | 0       | 114          |    |
| Control Delay (s)         | 0.0        | 0.0           | 15.6  | 0.0      | 0.0     | 35.3         |    |
| Lane LOS                  |            |               | С     |          |         | Е            |    |
| Approach Delay (s)        | 0.0        |               | 2.2   |          |         | 35.3         |    |
| Approach LOS              |            |               |       |          |         | Е            |    |
| Intersection Summary      |            |               |       |          |         |              |    |
| Average Delay             |            |               | 3.8   |          |         |              |    |
| Intersection Capacity Uti | lization   |               | 65.8% | ŀ        | CU Leve | el of Servic | ce |
| Analysis Period (min)     |            |               | 15    |          |         |              |    |
|                           |            |               |       |          |         |              |    |

|                          | ၨ     | -        | ←          | •    | -         | 4             |      |     |
|--------------------------|-------|----------|------------|------|-----------|---------------|------|-----|
| Movement                 | EBL   | EBT      | WBT        | WBR  | SBL       | SBR           |      |     |
| Lane Configurations      | ሻ     | <b>^</b> | <b>∱</b> } |      | ች         | 7             |      |     |
| Ideal Flow (vphpl)       | 1900  | 1900     | 1900       | 1900 | 1900      | 1900          |      |     |
| Total Lost time (s)      | 4.0   | 4.0      | 4.0        |      | 4.0       | 4.0           |      |     |
| Lane Util. Factor        | 1.00  | 0.95     | 0.95       |      | 1.00      | 1.00          |      |     |
| Frt                      | 1.00  | 1.00     | 0.95       |      | 1.00      | 0.85          |      |     |
| Flt Protected            | 0.95  | 1.00     | 1.00       |      | 0.95      | 1.00          |      |     |
| Satd. Flow (prot)        | 1770  | 3539     | 3325       |      | 1770      | 1583          |      |     |
| Flt Permitted            | 0.95  | 1.00     | 1.00       |      | 0.95      | 1.00          |      |     |
| Satd. Flow (perm)        | 1770  | 3539     | 3325       |      | 1770      | 1583          |      |     |
| Volume (vph)             | 226   | 1328     | 725        | 415  | 241       | 131           |      |     |
| Peak-hour factor, PHF    | 0.97  | 0.97     | 0.93       | 0.93 | 0.87      | 0.87          |      |     |
| Adj. Flow (vph)          | 233   | 1369     | 780        | 446  | 277       | 151           |      |     |
| RTOR Reduction (vph)     | 0     | 0        | 80         | 0    | 0         | 116           |      |     |
| Lane Group Flow (vph)    | 233   | 1369     | 1146       | 0    | 277       | 35            |      |     |
| Heavy Vehicles (%)       | 2%    | 2%       | 3%         | 2%   | 2%        | 2%            |      |     |
| Turn Type                | Prot  |          |            |      |           | Perm          |      |     |
| Protected Phases         | 7     | 4        | 8          |      | 6         |               |      |     |
| Permitted Phases         |       |          |            |      |           | 6             |      |     |
| Actuated Green, G (s)    | 11.4  | 47.3     | 31.9       |      | 16.5      | 16.5          |      |     |
| Effective Green, g (s)   | 11.4  | 47.3     | 31.9       |      | 16.5      | 16.5          |      |     |
| Actuated g/C Ratio       | 0.16  | 0.66     | 0.44       |      | 0.23      | 0.23          |      |     |
| Clearance Time (s)       | 4.0   | 4.0      | 4.0        |      | 4.0       | 4.0           |      |     |
| Vehicle Extension (s)    | 3.0   | 3.0      | 3.0        |      | 3.0       | 3.0           |      |     |
| Lane Grp Cap (vph)       | 281   | 2331     | 1477       |      | 407       | 364           |      |     |
| v/s Ratio Prot           | c0.13 | 0.39     | c0.34      |      | c0.16     |               |      |     |
| v/s Ratio Perm           |       |          |            |      |           | 0.02          |      |     |
| v/c Ratio                | 0.83  | 0.59     | 0.78       |      | 0.68      | 0.10          |      |     |
| Uniform Delay, d1        | 29.3  | 6.8      | 16.9       |      | 25.2      | 21.8          |      |     |
| Progression Factor       | 1.00  | 1.00     | 1.00       |      | 1.00      | 1.00          |      |     |
| Incremental Delay, d2    | 17.9  | 0.4      | 2.6        |      | 4.6       | 0.1           |      |     |
| Delay (s)                | 47.2  | 7.2      | 19.5       |      | 29.9      | 21.9          |      |     |
| Level of Service         | D     | Α        | В          |      | С         | С             |      |     |
| Approach Delay (s)       |       | 13.0     | 19.5       |      | 27.1      |               |      |     |
| Approach LOS             |       | В        | В          |      | С         |               |      |     |
| Intersection Summary     |       |          |            |      |           |               |      |     |
| HCM Average Control D    | elay  |          | 17.3       | Н    | ICM Lev   | vel of Serv   | rice | В   |
| HCM Volume to Capacit    |       |          | 0.76       |      |           |               |      |     |
| Actuated Cycle Length (  | s)    |          | 71.8       | S    | Sum of lo | ost time (s   | 1    | 2.0 |
| Intersection Capacity Ut |       |          | 69.2%      | IC   | CU Leve   | el of Service | ce   | С   |
| Analysis Period (min)    |       |          | 15         |      |           |               |      |     |

|                           | ۶        | <b>→</b> | •     | •    | <b>←</b> | •         | 4    | †    | /    | <b>&gt;</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|------|----------|-----------|------|------|------|-------------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL  | WBT      | WBR       | NBL  | NBT  | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |      | 4        |           |      | 4    |      |             | 4        |      |
| Sign Control              |          | Stop     |       |      | Stop     |           |      | Stop |      |             | Stop     |      |
| Volume (vph)              | 6        | 31       | 31    | 56   | 26       | 1         | 53   | 641  | 90   | 1           | 365      | 5    |
| Peak Hour Factor          | 0.84     | 0.84     | 0.84  | 0.90 | 0.90     | 0.90      | 0.92 | 0.92 | 0.92 | 0.87        | 0.87     | 0.87 |
| Hourly flow rate (vph)    | 7        | 37       | 37    | 62   | 29       | 1         | 58   | 697  | 98   | 1           | 420      | 6    |
| Direction, Lane #         | EB 1     | WB1      | NB 1  | SB 1 |          |           |      |      |      |             |          |      |
| Volume Total (vph)        | 81       | 92       | 852   | 426  |          |           |      |      |      |             |          |      |
| Volume Left (vph)         | 7        | 62       | 58    | 1    |          |           |      |      |      |             |          |      |
| Volume Right (vph)        | 37       | 1        | 98    | 6    |          |           |      |      |      |             |          |      |
| Hadj (s)                  | -0.22    | 0.16     | -0.02 | 0.03 |          |           |      |      |      |             |          |      |
| Departure Headway (s)     | 6.7      | 7.0      | 5.1   | 5.5  |          |           |      |      |      |             |          |      |
| Degree Utilization, x     | 0.15     | 0.18     | 1.22  | 0.65 |          |           |      |      |      |             |          |      |
| Capacity (veh/h)          | 495      | 474      | 709   | 638  |          |           |      |      |      |             |          |      |
| Control Delay (s)         | 10.9     | 11.6     | 129.8 | 18.1 |          |           |      |      |      |             |          |      |
| Approach Delay (s)        | 10.9     | 11.6     | 129.8 | 18.1 |          |           |      |      |      |             |          |      |
| Approach LOS              | В        | В        | F     | С    |          |           |      |      |      |             |          |      |
| Intersection Summary      |          |          |       |      |          |           |      |      |      |             |          |      |
| Delay                     |          |          | 82.8  |      |          |           |      |      |      |             |          |      |
| HCM Level of Service      |          |          | F     |      |          |           |      |      |      |             |          |      |
| Intersection Capacity Uti | lization |          | 82.9% | 10   | CU Leve  | el of Ser | vice |      | Е    |             |          |      |
| Analysis Period (min)     |          |          | 15    |      |          |           |      |      |      |             |          |      |
|                           |          |          |       |      |          |           |      |      |      |             |          |      |

|                          | ۶         | <b>→</b>   | •     | •     | -          | •         | 1      | <b>†</b> | <i>&gt;</i> | <b>/</b> | ļ     | 4    |
|--------------------------|-----------|------------|-------|-------|------------|-----------|--------|----------|-------------|----------|-------|------|
| Movement                 | EBL       | EBT        | EBR   | WBL   | WBT        | WBR       | NBL    | NBT      | NBR         | SBL      | SBT   | SBR  |
| Lane Configurations      | 7         | <b>↑</b> ↑ |       | J.    | <b>↑</b> ↑ |           | , Y    | f)       |             | ¥        | f)    |      |
| Ideal Flow (vphpl)       | 1900      | 1900       | 1900  | 1900  | 1900       | 1900      | 1900   | 1900     | 1900        | 1900     | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0      |             | 4.0      | 4.0   |      |
| Lane Util. Factor        | 1.00      | 0.95       |       | 1.00  | 0.95       |           | 1.00   | 1.00     |             | 1.00     | 1.00  |      |
| Frt                      | 1.00      | 0.98       |       | 1.00  | 0.96       |           | 1.00   | 0.90     |             | 1.00     | 0.91  |      |
| Flt Protected            | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00     |             | 0.95     | 1.00  |      |
| Satd. Flow (prot)        | 1770      | 3459       |       | 1770  | 3223       |           | 1770   | 1640     |             | 1770     | 1602  |      |
| Flt Permitted            | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00     |             | 0.95     | 1.00  |      |
| Satd. Flow (perm)        | 1770      | 3459       |       | 1770  | 3223       |           | 1770   | 1640     |             | 1770     | 1602  |      |
| Volume (vph)             | 220       | 1072       | 190   | 329   | 949        | 382       | 149    | 164      | 301         | 214      | 96    | 130  |
| Peak-hour factor, PHF    | 0.94      | 0.94       | 0.94  | 0.97  | 0.97       | 0.97      | 0.92   | 0.92     | 0.92        | 0.87     | 0.87  | 0.87 |
| Adj. Flow (vph)          | 234       | 1140       | 202   | 339   | 978        | 394       | 162    | 178      | 327         | 246      | 110   | 149  |
| RTOR Reduction (vph)     | 0         | 9          | 0     | 0     | 29         | 0         | 0      | 44       | 0           | 0        | 32    | 0    |
| Lane Group Flow (vph)    | 234       | 1333       | 0     | 339   | 1343       | 0         | 162    | 461      | 0           | 246      | 227   | 0    |
| Heavy Vehicles (%)       | 2%        | 2%         | 2%    | 2%    | 2%         | 20%       | 2%     | 2%       | 6%          | 2%       | 17%   | 2%   |
| Turn Type                | Prot      |            |       | Prot  |            |           | Prot   |          |             | Prot     |       |      |
| Protected Phases         | 7         | 4          |       | 3     | 8          |           | 5      | 2        |             | 1        | 6     |      |
| Permitted Phases         |           |            |       |       |            |           |        |          |             |          |       |      |
| Actuated Green, G (s)    | 17.0      | 50.0       |       | 27.0  | 60.0       |           | 17.4   | 40.0     |             | 17.0     | 39.6  |      |
| Effective Green, g (s)   | 17.0      | 50.0       |       | 27.0  | 60.0       |           | 17.4   | 40.0     |             | 17.0     | 39.6  |      |
| Actuated g/C Ratio       | 0.11      | 0.33       |       | 0.18  | 0.40       |           | 0.12   | 0.27     |             | 0.11     | 0.26  |      |
| Clearance Time (s)       | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0      |             | 4.0      | 4.0   |      |
| Vehicle Extension (s)    | 3.0       | 3.0        |       | 3.0   | 3.0        |           | 3.0    | 3.0      |             | 3.0      | 3.0   |      |
| Lane Grp Cap (vph)       | 201       | 1153       |       | 319   | 1289       |           | 205    | 437      |             | 201      | 423   |      |
| v/s Ratio Prot           | c0.13     | c0.39      |       | c0.19 | 0.42       |           | 0.09   | c0.28    |             | c0.14    | 0.14  |      |
| v/s Ratio Perm           |           |            |       |       |            |           |        |          |             |          |       |      |
| v/c Ratio                | 1.16      | 1.16       |       | 1.06  | 1.04       |           | 0.79   | 1.05     |             | 1.22     | 0.54  |      |
| Uniform Delay, d1        | 66.5      | 50.0       |       | 61.5  | 45.0       |           | 64.5   | 55.0     |             | 66.5     | 47.3  |      |
| Progression Factor       | 1.00      | 1.00       |       | 1.00  | 1.00       |           | 1.00   | 1.00     |             | 1.00     | 1.00  |      |
| Incremental Delay, d2    | 114.8     | 80.2       |       | 67.9  | 36.7       |           | 18.4   | 58.3     |             | 136.8    | 1.3   |      |
| Delay (s)                | 181.3     | 130.2      |       | 129.4 | 81.7       |           | 83.0   | 113.3    |             | 203.3    | 48.7  |      |
| Level of Service         | F         | F          |       | F     | F          |           | F      | F        |             | F        | D     |      |
| Approach Delay (s)       |           | 137.8      |       |       | 91.2       |           |        | 105.9    |             |          | 124.0 |      |
| Approach LOS             |           | F          |       |       | F          |           |        | F        |             |          | F     |      |
| Intersection Summary     |           |            |       |       |            |           |        |          |             |          |       |      |
| HCM Average Control D    |           |            | 113.6 | F     | ICM Le     | vel of Se | ervice |          | F           |          |       |      |
| HCM Volume to Capaci     | •         |            | 1.08  |       |            |           |        |          |             |          |       |      |
| Actuated Cycle Length (  |           |            | 150.0 | S     | Sum of I   | ost time  | (s)    |          | 12.0        |          |       |      |
| Intersection Capacity Ut | ilization | 1          | 06.2% | 10    | CU Leve    | el of Ser | vice   |          | G           |          |       |      |
| Analysis Period (min)    |           |            | 15    |       |            |           |        |          |             |          |       |      |
| o Critical Lana Group    |           |            |       |       |            |           |        |          |             |          |       |      |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •          | 4    | <b>†</b> | /    | <b>&gt;</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|-------|----------|------------|------|----------|------|-------------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR        | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |       | 4        |            |      | 4        |      |             | 4        |      |
| Sign Control              |          | Stop     |       |       | Stop     |            |      | Stop     |      |             | Stop     |      |
| Volume (vph)              | 114      | 5        | 5     | 7     | 2        | 4          | 2    | 293      | 8    | 8           | 183      | 82   |
| Peak Hour Factor          | 0.87     | 0.87     | 0.87  | 0.75  | 0.75     | 0.75       | 0.87 | 0.87     | 0.87 | 0.92        | 0.92     | 0.92 |
| Hourly flow rate (vph)    | 131      | 6        | 6     | 9     | 3        | 5          | 2    | 337      | 9    | 9           | 199      | 89   |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |            |      |          |      |             |          |      |
| Volume Total (vph)        | 143      | 17       | 348   | 297   |          |            |      |          |      |             |          |      |
| Volume Left (vph)         | 131      | 9        | 2     | 9     |          |            |      |          |      |             |          |      |
| Volume Right (vph)        | 6        | 5        | 9     | 89    |          |            |      |          |      |             |          |      |
| Hadj (s)                  | 0.24     | 0.08     | 0.02  | -0.13 |          |            |      |          |      |             |          |      |
| Departure Headway (s)     | 5.7      | 5.8      | 4.8   | 4.7   |          |            |      |          |      |             |          |      |
| Degree Utilization, x     | 0.23     | 0.03     | 0.46  | 0.39  |          |            |      |          |      |             |          |      |
| Capacity (veh/h)          | 572      | 528      | 730   | 735   |          |            |      |          |      |             |          |      |
| Control Delay (s)         | 10.4     | 9.0      | 11.8  | 10.6  |          |            |      |          |      |             |          |      |
| Approach Delay (s)        | 10.4     | 9.0      | 11.8  | 10.6  |          |            |      |          |      |             |          |      |
| Approach LOS              | В        | Α        | В     | В     |          |            |      |          |      |             |          |      |
| Intersection Summary      |          |          |       |       |          |            |      |          |      |             |          |      |
| Delay                     |          |          | 11.0  |       |          |            |      |          |      |             |          |      |
| HCM Level of Service      |          |          | В     |       |          |            |      |          |      |             |          |      |
| Intersection Capacity Uti | lization |          | 37.8% | 10    | CU Leve  | el of Serv | /ice |          | Α    |             |          |      |
| Analysis Period (min)     |          |          | 15    |       |          |            |      |          |      |             |          |      |
|                           |          |          |       |       |          |            |      |          |      |             |          |      |

|                          | -          | $\rightarrow$ | •     | •        | 1       | <b>/</b>     |    |
|--------------------------|------------|---------------|-------|----------|---------|--------------|----|
| Movement                 | EBT        | EBR           | WBL   | WBT      | NBL     | NBR          |    |
| Lane Configurations      | <b>∱</b> } |               | ሻ     | <b>^</b> | ¥       |              |    |
| Sign Control             | Free       |               |       | Free     | Stop    |              |    |
| Grade                    | 0%         |               |       | 0%       | 0%      |              |    |
| Volume (veh/h)           | 361        | 1             | 171   | 1104     | 0       | 65           |    |
| Peak Hour Factor         | 0.87       | 0.87          | 0.94  | 0.94     | 0.60    | 0.60         |    |
| Hourly flow rate (vph)   | 415        | 1             | 182   | 1174     | 0       | 108          |    |
| Pedestrians              |            |               |       |          |         |              |    |
| Lane Width (ft)          |            |               |       |          |         |              |    |
| Walking Speed (ft/s)     |            |               |       |          |         |              |    |
| Percent Blockage         |            |               |       |          |         |              |    |
| Right turn flare (veh)   |            |               |       |          |         |              |    |
| Median type              |            |               |       |          | None    |              |    |
| Median storage veh)      |            |               |       |          |         |              |    |
| Upstream signal (ft)     |            |               |       | 714      |         |              |    |
| pX, platoon unblocked    |            |               |       |          | 0.76    |              |    |
| vC, conflicting volume   |            |               | 416   |          | 1367    | 208          |    |
| vC1, stage 1 conf vol    |            |               |       |          |         |              |    |
| vC2, stage 2 conf vol    |            |               | 4.4.0 |          |         |              |    |
| vCu, unblocked vol       |            |               | 416   |          | 1171    | 208          |    |
| tC, single (s)           |            |               | 4.4   |          | 6.8     | 7.1          |    |
| tC, 2 stage (s)          |            |               | 0.4   |          | 0.5     | 0.4          |    |
| tF (s)                   |            |               | 2.4   |          | 3.5     | 3.4          |    |
| p0 queue free %          |            |               | 83    |          | 100     | 86           |    |
| cM capacity (veh/h)      |            |               | 1052  |          | 117     | 780          |    |
| Direction, Lane #        | EB 1       | EB 2          | WB 1  | WB 2     | WB 3    | NB 1         |    |
| Volume Total             | 277        | 139           | 182   | 587      | 587     | 108          |    |
| Volume Left              | 0          | 0             | 182   | 0        | 0       | 0            |    |
| Volume Right             | 0          | 1             | 0     | 0        | 0       | 108          |    |
| cSH                      | 1700       | 1700          | 1052  | 1700     | 1700    | 780          |    |
| Volume to Capacity       | 0.16       | 0.08          | 0.17  | 0.35     | 0.35    | 0.14         |    |
| Queue Length 95th (ft)   | 0          | 0             | 16    | 0        | 0       | 12           |    |
| Control Delay (s)        | 0.0        | 0.0           | 9.1   | 0.0      | 0.0     | 10.4         |    |
| Lane LOS                 |            |               | Α     |          |         | В            |    |
| Approach Delay (s)       | 0.0        |               | 1.2   |          |         | 10.4         |    |
| Approach LOS             |            |               |       |          |         | В            |    |
| Intersection Summary     |            |               |       |          |         |              |    |
| Average Delay            |            |               | 1.5   |          |         |              |    |
| Intersection Capacity Ut | ilization  |               | 41.2% | ŀ        | CU Leve | el of Servic | се |
| Analysis Period (min)    |            |               | 15    |          |         |              |    |
|                          |            |               |       |          |         |              |    |

| Movement         EBL         EBT         WBT         WBR         SBL         SBR           Lane Configurations         1         1         1         7         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ideal Flow (vphpl) 1900 1900 1900 1900 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ideal Flow (vphpl) 1900 1900 1900 1900 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lane Util. Factor 1.00 0.95 0.95 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Frt 1.00 1.00 1.00 1.00 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Flt Protected 0.95 1.00 1.00 0.95 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Satd. Flow (prot) 1444 3471 3526 1770 1292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Flt Permitted 0.95 1.00 1.00 0.95 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Satd. Flow (perm) 1444 3471 3526 1770 1292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Volume (vph) 8 418 1255 13 33 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Peak-hour factor, PHF 0.92 0.92 0.93 0.93 0.92 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Adj. Flow (vph) 9 454 1349 14 36 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RTOR Reduction (vph) 0 0 0 0 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lane Group Flow (vph) 9 454 1363 0 36 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Heavy Vehicles (%) 25% 4% 2% 25% 2% 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Turn Type Prot Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Protected Phases 7 4 8 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Permitted Phases 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Actuated Green, G (s) 0.8 29.3 24.5 7.9 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Effective Green, g (s) 0.8 29.3 24.5 7.9 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Actuated g/C Ratio 0.02 0.65 0.54 0.17 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Clearance Time (s) 4.0 4.0 4.0 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vehicle Extension (s)         3.0         3.0         3.0         3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lane Grp Cap (vph) 26 2250 1911 309 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| v/s Ratio Prot 0.01 c0.13 c0.39 c0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| v/s Ratio Perm 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| v/c Ratio 0.35 0.20 0.71 0.12 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Uniform Delay, d1 21.9 3.2 7.7 15.7 15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Progression Factor 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Incremental Delay, d2 7.9 0.0 1.3 0.2 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Delay (s) 29.8 3.3 9.0 15.9 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Level of Service C A A B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Approach Delay (s) 3.8 9.0 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Approach LOS A A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HCM Average Control Delay 7.9 HCM Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HCM Volume to Capacity ratio 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Actuated Cycle Length (s) 45.2 Sum of lost time (s) 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Intersection Capacity Utilization 45.1% ICU Level of Service A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                           | ۶        | <b>→</b> | •     | •    | <b>←</b> | •          | 4    | <b>†</b> | *    | <b>/</b> | ļ    | 4    |
|---------------------------|----------|----------|-------|------|----------|------------|------|----------|------|----------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL  | WBT      | WBR        | NBL  | NBT      | NBR  | SBL      | SBT  | SBR  |
| Lane Configurations       |          | 4        |       |      | 4        |            |      | 4        |      |          | 4    |      |
| Sign Control              |          | Stop     |       |      | Stop     |            |      | Stop     |      |          | Stop |      |
| Volume (vph)              | 0        | 19       | 45    | 481  | 18       | 1          | 18   | 0        | 129  | 0        | 1    | 0    |
| Peak Hour Factor          | 0.73     | 0.73     | 0.73  | 0.86 | 0.86     | 0.86       | 0.87 | 0.87     | 0.87 | 0.92     | 0.92 | 0.92 |
| Hourly flow rate (vph)    | 0        | 26       | 62    | 559  | 21       | 1          | 21   | 0        | 148  | 0        | 1    | 0    |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1 |          |            |      |          |      |          |      |      |
| Volume Total (vph)        | 88       | 581      | 169   | 1    |          |            |      |          |      |          |      |      |
| Volume Left (vph)         | 0        | 559      | 21    | 0    |          |            |      |          |      |          |      |      |
| Volume Right (vph)        | 62       | 1        | 148   | 0    |          |            |      |          |      |          |      |      |
| Hadj (s)                  | -0.39    | 0.23     | -0.45 | 0.03 |          |            |      |          |      |          |      |      |
| Departure Headway (s)     | 4.7      | 4.7      | 5.1   | 5.9  |          |            |      |          |      |          |      |      |
| Degree Utilization, x     | 0.11     | 0.76     | 0.24  | 0.00 |          |            |      |          |      |          |      |      |
| Capacity (veh/h)          | 719      | 752      | 647   | 543  |          |            |      |          |      |          |      |      |
| Control Delay (s)         | 8.3      | 20.8     | 9.6   | 8.9  |          |            |      |          |      |          |      |      |
| Approach Delay (s)        | 8.3      | 20.8     | 9.6   | 8.9  |          |            |      |          |      |          |      |      |
| Approach LOS              | Α        | С        | Α     | Α    |          |            |      |          |      |          |      |      |
| Intersection Summary      |          |          |       |      |          |            |      |          |      |          |      |      |
| Delay                     |          |          | 17.2  |      |          |            |      |          |      |          |      |      |
| HCM Level of Service      |          |          | С     |      |          |            |      |          |      |          |      |      |
| Intersection Capacity Uti | lization |          | 56.6% | - 10 | CU Leve  | el of Serv | /ice |          | В    |          |      |      |
| Analysis Period (min)     |          |          | 15    |      |          |            |      |          |      |          |      |      |
|                           |          |          |       |      |          |            |      |          |      |          |      |      |

|                          | ۶         | -          | •     | •    | <b>←</b>   | •         | •      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ     | 4    |
|--------------------------|-----------|------------|-------|------|------------|-----------|--------|----------|-------------|-------------|-------|------|
| Movement                 | EBL       | EBT        | EBR   | WBL  | WBT        | WBR       | NBL    | NBT      | NBR         | SBL         | SBT   | SBR  |
| Lane Configurations      | 7         | <b>∱</b> ∱ |       | Ţ    | <b>↑</b> ↑ |           | ř      | £        |             | Ţ           | f)    |      |
| Ideal Flow (vphpl)       | 1900      | 1900       | 1900  | 1900 | 1900       | 1900      | 1900   | 1900     | 1900        | 1900        | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0        |       | 4.0  | 4.0        |           | 4.0    | 4.0      |             | 4.0         | 4.0   |      |
| Lane Util. Factor        | 1.00      | 0.95       |       | 1.00 | 0.95       |           | 1.00   | 1.00     |             | 1.00        | 1.00  |      |
| Frt                      | 1.00      | 0.96       |       | 1.00 | 0.94       |           | 1.00   | 0.94     |             | 1.00        | 0.92  |      |
| Flt Protected            | 0.95      | 1.00       |       | 0.95 | 1.00       |           | 0.95   | 1.00     |             | 0.95        | 1.00  |      |
| Satd. Flow (prot)        | 1597      | 3361       |       | 1656 | 3320       |           | 1770   | 1674     |             | 1444        | 1713  |      |
| Flt Permitted            | 0.95      | 1.00       |       | 0.95 | 1.00       |           | 0.95   | 1.00     |             | 0.95        | 1.00  |      |
| Satd. Flow (perm)        | 1597      | 3361       |       | 1656 | 3320       |           | 1770   | 1674     |             | 1444        | 1713  |      |
| Volume (vph)             | 182       | 331        | 105   | 71   | 424        | 254       | 76     | 160      | 111         | 1005        | 605   | 697  |
| Peak-hour factor, PHF    | 0.93      | 0.93       | 0.93  | 0.93 | 0.93       | 0.93      | 0.93   | 0.93     | 0.93        | 0.92        | 0.92  | 0.92 |
| Adj. Flow (vph)          | 196       | 356        | 113   | 76   | 456        | 273       | 82     | 172      | 119         | 1092        | 658   | 758  |
| RTOR Reduction (vph)     | 0         | 32         | 0     | 0    | 100        | 0         | 0      | 24       | 0           | 0           | 36    | 0    |
| Lane Group Flow (vph)    | 196       | 437        | 0     | 76   | 629        | 0         | 82     | 267      | 0           | 1092        | 1380  | 0    |
| Heavy Vehicles (%)       | 13%       | 4%         | 2%    | 9%   | 3%         | 2%        | 2%     | 9%       | 3%          | 25%         | 2%    | 2%   |
| Turn Type                | Prot      |            |       | Prot |            |           | Prot   |          |             | Prot        |       |      |
| Protected Phases         | 7         | 4          |       | 3    | 8          |           | 5      | 2        |             | 1           | 6     |      |
| Permitted Phases         |           |            |       |      |            |           |        |          |             |             |       |      |
| Actuated Green, G (s)    | 9.0       | 23.9       |       | 8.0  | 22.9       |           | 8.0    | 17.4     |             | 24.1        | 33.5  |      |
| Effective Green, g (s)   | 9.0       | 23.9       |       | 8.0  | 22.9       |           | 8.0    | 17.4     |             | 24.1        | 33.5  |      |
| Actuated g/C Ratio       | 0.10      | 0.27       |       | 0.09 | 0.26       |           | 0.09   | 0.19     |             | 0.27        | 0.37  |      |
| Clearance Time (s)       | 4.0       | 4.0        |       | 4.0  | 4.0        |           | 4.0    | 4.0      |             | 4.0         | 4.0   |      |
| Vehicle Extension (s)    | 3.0       | 3.0        |       | 3.0  | 3.0        |           | 3.0    | 3.0      |             | 3.0         | 3.0   |      |
| Lane Grp Cap (vph)       | 161       | 899        |       | 148  | 850        |           | 158    | 326      |             | 389         | 642   |      |
| v/s Ratio Prot           | c0.12     | 0.13       |       | 0.05 | c0.19      |           | 0.05   | 0.16     |             | c0.76       | c0.81 |      |
| v/s Ratio Perm           |           |            |       |      |            |           |        |          |             |             |       |      |
| v/c Ratio                | 1.22      | 0.49       |       | 0.51 | 0.74       |           | 0.52   | 0.82     |             | 2.81        | 2.15  |      |
| Uniform Delay, d1        | 40.2      | 27.6       |       | 38.8 | 30.5       |           | 38.9   | 34.5     |             | 32.7        | 28.0  |      |
| Progression Factor       | 1.00      | 1.00       |       | 1.00 | 1.00       |           | 1.00   | 1.00     |             | 1.00        | 1.00  |      |
| Incremental Delay, d2    | 141.2     | 0.4        |       | 3.0  | 3.5        |           | 2.9    | 14.7     |             | 820.4       | 522.7 |      |
| Delay (s)                | 181.4     | 28.0       |       | 41.8 | 34.0       |           | 41.7   | 49.2     |             | 853.0       | 550.7 |      |
| Level of Service         | F         | С          |       | D    | С          |           | D      | D        |             | F           | F     |      |
| Approach Delay (s)       |           | 73.2       |       |      | 34.8       |           |        | 47.5     |             |             | 682.3 |      |
| Approach LOS             |           | E          |       |      | С          |           |        | D        |             |             | F     |      |
| Intersection Summary     |           |            |       |      |            |           |        |          |             |             |       |      |
| HCM Average Control D    | elay      |            | 415.0 | F    | ICM Lev    | vel of Se | ervice |          | F           |             |       |      |
| HCM Volume to Capacit    | •         |            | 1.79  |      |            |           |        |          |             |             |       |      |
| Actuated Cycle Length (  |           |            | 89.4  |      |            | ost time  | ` '    |          | 12.0        |             |       |      |
| Intersection Capacity Ut | ilization | 1          | 22.0% | [(   | CU Leve    | el of Ser | vice   |          | Н           |             |       |      |
| Analysis Period (min)    |           |            | 15    |      |            |           |        |          |             |             |       |      |

| ۶      | <b>→</b>                                                                                 | •                                                                                                                | •         | •         | •                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                        | <b>†</b>                                                                                                                                                                                                                                                                                                           | /                        | -                        | ļ                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBL    | EBT                                                                                      | EBR                                                                                                              | WBL       | WBT       | WBR                                                                                                                                                                                                                                                                      | NBL                                                                                                                                                                                                                                                                                      | NBT                                                                                                                                                                                                                                                                                                                | NBR                      | SBL                      | SBT                                  | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 4                                                                                        |                                                                                                                  |           | 4         |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                  |                          |                          | 4                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | Stop                                                                                     |                                                                                                                  |           | Stop      |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          | Stop                                                                                                                                                                                                                                                                                                               |                          |                          | Stop                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 148    | 2                                                                                        | 3                                                                                                                | 6         | 3         | 5                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                        | 77                                                                                                                                                                                                                                                                                                                 | 7                        | 5                        | 289                                  | 499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.88   | 0.88                                                                                     | 0.88                                                                                                             | 0.67      | 0.67      | 0.67                                                                                                                                                                                                                                                                     | 0.92                                                                                                                                                                                                                                                                                     | 0.92                                                                                                                                                                                                                                                                                                               | 0.92                     | 0.87                     | 0.87                                 | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 168    | 2                                                                                        | 3                                                                                                                | 9         | 4         | 7                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                        | 84                                                                                                                                                                                                                                                                                                                 | 8                        | 6                        | 332                                  | 574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EB 1   | WB 1                                                                                     | NB 1                                                                                                             | SB 1      |           |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                          |                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 174    | 21                                                                                       | 92                                                                                                               | 911       |           |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                          |                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 168    | 9                                                                                        | 1                                                                                                                | 6         |           |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                          |                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3      | 7                                                                                        | 8                                                                                                                | 574       |           |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                          |                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.23   | -0.09                                                                                    | 0.13                                                                                                             | -0.27     |           |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                          |                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.2    | 6.3                                                                                      | 5.6                                                                                                              | 4.4       |           |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                          |                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.30   | 0.04                                                                                     | 0.14                                                                                                             | 1.12      |           |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                          |                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 567    | 546                                                                                      | 621                                                                                                              | 810       |           |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                          |                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11.9   | 9.5                                                                                      | 9.5                                                                                                              | 88.0      |           |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                          |                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11.9   | 9.5                                                                                      | 9.5                                                                                                              | 88.0      |           |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                          |                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| В      | Α                                                                                        | Α                                                                                                                | F         |           |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                          |                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                                                                          |                                                                                                                  |           |           |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                          |                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                                                                          | 69.5                                                                                                             |           |           |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                          |                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                                                                          | F                                                                                                                |           |           |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                          |                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| zation |                                                                                          | 70.9%                                                                                                            | 10        | CU Leve   | el of Serv                                                                                                                                                                                                                                                               | vice                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                    | С                        |                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                                                                          | 15                                                                                                               |           |           |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                          |                          |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | 148<br>0.88<br>168<br>EB 1<br>174<br>168<br>3<br>0.23<br>6.2<br>0.30<br>567<br>11.9<br>B | Stop 148 2 0.88 0.88 168 2 EB 1 WB 1 174 21 168 9 3 7 0.23 -0.09 6.2 6.3 0.30 0.04 567 546 11.9 9.5 11.9 9.5 B A | Stop  148 | Stop  148 | Stop Stop  148 2 3 6 3 0.88 0.88 0.88 0.67 0.67 168 2 3 9 4  EB 1 WB 1 NB 1 SB 1  174 21 92 911 168 9 1 6 3 7 8 574 0.23 -0.09 0.13 -0.27 6.2 6.3 5.6 4.4 0.30 0.04 0.14 1.12 567 546 621 810 11.9 9.5 9.5 88.0 11.9 9.5 9.5 88.0 B A A F  69.5 F zation 70.9% ICU Level | Stop Stop  148 2 3 6 3 5 0.88 0.88 0.88 0.67 0.67 0.67 168 2 3 9 4 7  EB 1 WB 1 NB 1 SB 1  174 21 92 911 168 9 1 6 3 7 8 574 0.23 -0.09 0.13 -0.27 6.2 6.3 5.6 4.4 0.30 0.04 0.14 1.12 567 546 621 810 11.9 9.5 9.5 88.0 11.9 9.5 9.5 88.0 B A A F  Exation 70.9% ICU Level of Serverses | Stop Stop  148 2 3 6 3 5 1  0.88 0.88 0.88 0.67 0.67 0.67 0.92  168 2 3 9 4 7 1  EB 1 WB 1 NB 1 SB 1  174 21 92 911  168 9 1 6 3 7 8 574  0.23 -0.09 0.13 -0.27  6.2 6.3 5.6 4.4  0.30 0.04 0.14 1.12  567 546 621 810  11.9 9.5 9.5 88.0  11.9 9.5 9.5 88.0  B A A F   69.5  F  zation 70.9% ICU Level of Service | Stop Stop Stop Stop  148 | Stop Stop Stop Stop  148 | Stop Stop Stop Stop Stop Stop    148 | Stop         Stop         Stop         Stop         Stop           148         2         3         6         3         5         1         77         7         5         289           0.88         0.88         0.88         0.67         0.67         0.92         0.92         0.92         0.87         0.87           168         2         3         9         4         7         1         84         8         6         332           EB 1         WB 1         NB 1         SB 1         8         6         332         8         6         332         8         6         332         8         6         332         8         6         332         8         6         332         8         6         332         8         6         332         8         6         332         8         6         332         8         6         332         8         6         332         8         6         332         8         6         332         8         6         332         8         6         332         8         6         332         8         6         332         8         6         4 |

|                            | -          | $\rightarrow$ | •     | •        | 1       | <b>/</b>    |    |
|----------------------------|------------|---------------|-------|----------|---------|-------------|----|
| Movement                   | EBT        | EBR           | WBL   | WBT      | NBL     | NBR         |    |
| Lane Configurations        | <b>†</b> } |               | ሻ     | <b>^</b> | W       |             |    |
| Sign Control               | Free       |               | ·     | Free     | Stop    |             |    |
| Grade                      | 0%         |               |       | 0%       | 0%      |             |    |
| Volume (veh/h)             | 1258       | 5             | 113   | 640      | 2       | 184         |    |
| Peak Hour Factor           | 0.95       | 0.95          | 0.92  | 0.92     | 0.83    | 0.83        |    |
| Hourly flow rate (vph)     | 1324       | 5             | 123   | 696      | 2       | 222         |    |
| Pedestrians                |            |               |       |          |         |             |    |
| Lane Width (ft)            |            |               |       |          |         |             |    |
| Walking Speed (ft/s)       |            |               |       |          |         |             |    |
| Percent Blockage           |            |               |       |          |         |             |    |
| Right turn flare (veh)     |            |               |       |          |         |             |    |
| Median type                |            |               |       |          | None    |             |    |
| Median storage veh)        |            |               |       |          |         |             |    |
| Upstream signal (ft)       |            |               |       | 714      |         |             |    |
| pX, platoon unblocked      |            |               |       |          | 0.95    |             |    |
| vC, conflicting volume     |            |               | 1329  |          | 1920    | 665         |    |
| vC1, stage 1 conf vol      |            |               |       |          |         |             |    |
| vC2, stage 2 conf vol      |            |               |       |          |         |             |    |
| vCu, unblocked vol         |            |               | 1329  |          | 1916    | 665         |    |
| tC, single (s)             |            |               | 4.1   |          | 6.8     | 6.9         |    |
| tC, 2 stage (s)            |            |               |       |          |         |             |    |
| tF (s)                     |            |               | 2.2   |          | 3.5     | 3.3         |    |
| p0 queue free %            |            |               | 76    |          | 94      | 45          |    |
| cM capacity (veh/h)        |            |               | 515   |          | 43      | 403         |    |
| Direction, Lane #          | EB 1       | EB 2          | WB 1  | WB 2     | WB3     | NB 1        |    |
| Volume Total               | 883        | 447           | 123   | 348      | 348     | 224         |    |
| Volume Left                | 0          | 0             | 123   | 0        | 0       | 2           |    |
| Volume Right               | 0          | 5             | 0     | 0        | 0       | 222         |    |
| cSH                        | 1700       | 1700          | 515   | 1700     | 1700    | 369         |    |
| Volume to Capacity         | 0.52       | 0.26          | 0.24  | 0.20     | 0.20    | 0.61        |    |
| Queue Length 95th (ft)     | 0          | 0             | 23    | 0        | 0       | 96          |    |
| Control Delay (s)          | 0.0        | 0.0           | 14.2  | 0.0      | 0.0     | 28.7        |    |
| Lane LOS                   |            |               | В     |          |         | D           |    |
| Approach Delay (s)         | 0.0        |               | 2.1   |          |         | 28.7        |    |
| Approach LOS               |            |               |       |          |         | D           |    |
| Intersection Summary       |            |               |       |          |         |             |    |
| Average Delay              |            |               | 3.4   |          |         |             |    |
| Intersection Capacity Ut   | ilization  |               | 62.7% | I        | CILLave | el of Servi | CE |
| Analysis Period (min)      | ZaliUiT    |               | 15    |          | CO 1646 | or Oct VIC  |    |
| Aliaiysis i Gilou (illili) |            |               | 10    |          |         |             |    |
|                            |            |               |       |          |         |             |    |

|                          | ᄼ         | -        | •          | •    | -        | 4             |   |    |
|--------------------------|-----------|----------|------------|------|----------|---------------|---|----|
| Movement                 | EBL       | EBT      | WBT        | WBR  | SBL      | SBR           |   |    |
| Lane Configurations      | ች         | <b>^</b> | <b>∱</b> } |      | ች        | 7             |   |    |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900       | 1900 | 1900     | 1900          |   |    |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0        |      | 4.0      | 4.0           |   |    |
| Lane Util. Factor        | 1.00      | 0.95     | 0.95       |      | 1.00     | 1.00          |   |    |
| Frt                      | 1.00      | 1.00     | 0.99       |      | 1.00     | 0.85          |   |    |
| Flt Protected            | 0.95      | 1.00     | 1.00       |      | 0.95     | 1.00          |   |    |
| Satd. Flow (prot)        | 1770      | 3539     | 3479       |      | 1770     | 1583          |   |    |
| Flt Permitted            | 0.95      | 1.00     | 1.00       |      | 0.95     | 1.00          |   |    |
| Satd. Flow (perm)        | 1770      | 3539     | 3479       |      | 1770     | 1583          |   |    |
| Volume (vph)             | 22        | 1420     | 741        | 41   | 21       | 12            |   |    |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.93       | 0.93 | 0.87     | 0.87          |   |    |
| Adj. Flow (vph)          | 23        | 1464     | 797        | 44   | 24       | 14            |   |    |
| RTOR Reduction (vph)     | 0         | 0        | 3          | 0    | 0        | 12            |   |    |
| Lane Group Flow (vph)    | 23        | 1464     | 838        | 0    | 24       | 2             |   |    |
| Heavy Vehicles (%)       | 2%        | 2%       | 3%         | 2%   | 2%       | 2%            |   |    |
| Turn Type                | Prot      |          |            |      |          | Perm          |   |    |
| Protected Phases         | 7         | 4        | 8          |      | 6        |               |   |    |
| Permitted Phases         |           |          |            |      |          | 6             |   |    |
| Actuated Green, G (s)    | 1.0       | 27.4     | 22.4       |      | 7.6      | 7.6           |   |    |
| Effective Green, g (s)   | 1.0       | 27.4     | 22.4       |      | 7.6      | 7.6           |   |    |
| Actuated g/C Ratio       | 0.02      | 0.64     | 0.52       |      | 0.18     | 0.18          |   |    |
| Clearance Time (s)       | 4.0       | 4.0      | 4.0        |      | 4.0      | 4.0           |   |    |
| Vehicle Extension (s)    | 3.0       | 3.0      | 3.0        |      | 3.0      | 3.0           |   |    |
| Lane Grp Cap (vph)       | 41        | 2255     | 1812       |      | 313      | 280           |   |    |
| v/s Ratio Prot           | 0.01      | c0.41    | 0.24       |      | c0.01    |               |   |    |
| v/s Ratio Perm           |           |          |            |      |          | 0.00          |   |    |
| v/c Ratio                | 0.56      | 0.65     | 0.46       |      | 0.08     | 0.01          |   |    |
| Uniform Delay, d1        | 20.8      | 4.8      | 6.5        |      | 14.8     | 14.6          |   |    |
| Progression Factor       | 1.00      | 1.00     | 1.00       |      | 1.00     | 1.00          |   |    |
| Incremental Delay, d2    | 16.4      | 0.7      | 0.2        |      | 0.1      | 0.0           |   |    |
| Delay (s)                | 37.2      | 5.5      | 6.7        |      | 14.9     | 14.6          |   |    |
| Level of Service         | D         | Α        | Α          |      | В        | В             |   |    |
| Approach Delay (s)       |           | 6.0      | 6.7        |      | 14.8     |               |   |    |
| Approach LOS             |           | Α        | Α          |      | В        |               |   |    |
| Intersection Summary     |           |          |            |      |          |               |   |    |
| HCM Average Control D    | elay      |          | 6.4        | F    | ICM Lev  | vel of Servic | e | Α  |
| HCM Volume to Capacit    | ty ratio  |          | 0.52       |      |          |               |   |    |
| Actuated Cycle Length (  | s)        |          | 43.0       | S    | Sum of l | ost time (s)  | 8 | .0 |
| Intersection Capacity Ut | ilization |          | 49.3%      | 10   | CU Leve  | el of Service |   | Α  |
| Analysis Period (min)    |           |          | 15         |      |          |               |   |    |
| o Critical Lana Group    |           |          |            |      |          |               |   |    |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •         | •    | <b>†</b> | <b>/</b> | <b>/</b> | ļ    | 4    |
|---------------------------|----------|----------|-------|-------|----------|-----------|------|----------|----------|----------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR       | NBL  | NBT      | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations       |          | 4        |       |       | 4        |           |      | 4        |          |          | 4    |      |
| Sign Control              |          | Stop     |       |       | Stop     |           |      | Stop     |          |          | Stop |      |
| Volume (vph)              | 0        | 31       | 31    | 285   | 26       | 1         | 53   | 2        | 512      | 1        | 0    | 2    |
| Peak Hour Factor          | 0.84     | 0.84     | 0.84  | 0.90  | 0.90     | 0.90      | 0.92 | 0.92     | 0.92     | 0.87     | 0.87 | 0.87 |
| Hourly flow rate (vph)    | 0        | 37       | 37    | 317   | 29       | 1         | 58   | 2        | 557      | 1        | 0    | 2    |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |           |      |          |          |          |      |      |
| Volume Total (vph)        | 74       | 347      | 616   | 3     |          |           |      |          |          |          |      |      |
| Volume Left (vph)         | 0        | 317      | 58    | 1     |          |           |      |          |          |          |      |      |
| Volume Right (vph)        | 37       | 1        | 557   | 2     |          |           |      |          |          |          |      |      |
| Hadj (s)                  | -0.27    | 0.21     | -0.49 | -0.30 |          |           |      |          |          |          |      |      |
| Departure Headway (s)     | 5.8      | 5.8      | 4.7   | 5.8   |          |           |      |          |          |          |      |      |
| Degree Utilization, x     | 0.12     | 0.56     | 0.80  | 0.01  |          |           |      |          |          |          |      |      |
| Capacity (veh/h)          | 554      | 585      | 752   | 547   |          |           |      |          |          |          |      |      |
| Control Delay (s)         | 9.6      | 15.9     | 23.6  | 8.8   |          |           |      |          |          |          |      |      |
| Approach Delay (s)        | 9.6      | 15.9     | 23.6  | 8.8   |          |           |      |          |          |          |      |      |
| Approach LOS              | Α        | С        | С     | Α     |          |           |      |          |          |          |      |      |
| Intersection Summary      |          |          |       |       |          |           |      |          |          |          |      |      |
| Delay                     |          |          | 20.0  |       |          |           |      |          |          |          |      |      |
| HCM Level of Service      |          |          | С     |       |          |           |      |          |          |          |      |      |
| Intersection Capacity Uti | lization |          | 67.0% | [0    | CU Leve  | el of Ser | vice |          | С        |          |      |      |
| Analysis Period (min)     |          |          | 15    |       |          |           |      |          |          |          |      |      |
|                           |          |          |       |       |          |           |      |          |          |          |      |      |

|                                                | ۶        | <b>→</b>   | •        | •         | +                    | •         | 1      | †     | <i>&gt;</i> | <b>/</b> | <b>+</b> | -√   |
|------------------------------------------------|----------|------------|----------|-----------|----------------------|-----------|--------|-------|-------------|----------|----------|------|
| Movement                                       | EBL      | EBT        | EBR      | WBL       | WBT                  | WBR       | NBL    | NBT   | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations                            | 7        | <b>↑</b> ↑ |          | Ť         | <b>∱</b> }           |           | , j    | ĵ»    |             | Ť        | ĵ»       |      |
| Ideal Flow (vphpl)                             | 1900     | 1900       | 1900     | 1900      | 1900                 | 1900      | 1900   | 1900  | 1900        | 1900     | 1900     | 1900 |
| Total Lost time (s)                            | 4.0      | 4.0        |          | 4.0       | 4.0                  |           | 4.0    | 4.0   |             | 4.0      | 4.0      |      |
| Lane Util. Factor                              | 1.00     | 0.95       |          | 1.00      | 0.95                 |           | 1.00   | 1.00  |             | 1.00     | 1.00     |      |
| Frt                                            | 1.00     | 0.98       |          | 1.00      | 0.89                 |           | 1.00   | 0.98  |             | 1.00     | 0.92     |      |
| Flt Protected                                  | 0.95     | 1.00       |          | 0.95      | 1.00                 |           | 0.95   | 1.00  |             | 0.95     | 1.00     |      |
| Satd. Flow (prot)                              | 1770     | 3459       |          | 1770      | 2790                 |           | 1770   | 1809  |             | 1770     | 1604     |      |
| Flt Permitted                                  | 0.95     | 1.00       |          | 0.95      | 1.00                 |           | 0.95   | 1.00  |             | 0.95     | 1.00     |      |
| Satd. Flow (perm)                              | 1770     | 3459       |          | 1770      | 2790                 |           | 1770   | 1809  |             | 1770     | 1604     |      |
| Volume (vph)                                   | 728      | 601        | 107      | 142       | 383                  | 1050      | 119    | 627   | 114         | 567      | 347      | 401  |
| Peak-hour factor, PHF                          | 0.94     | 0.94       | 0.94     | 0.97      | 0.97                 | 0.97      | 0.92   | 0.92  | 0.92        | 0.87     | 0.87     | 0.87 |
| Adj. Flow (vph)                                | 774      | 639        | 114      | 146       | 395                  | 1082      | 129    | 682   | 124         | 652      | 399      | 461  |
| RTOR Reduction (vph)                           | 0        | 9          | 0        | 0         | 167                  | 0         | 0      | 4     | 0           | 0        | 27       | 0    |
| Lane Group Flow (vph)                          | 774      | 744        | 0        | 146       | 1310                 | 0         | 129    | 802   | 0           | 652      | 833      | 0    |
| Heavy Vehicles (%)                             | 2%       | 2%         | 2%       | 2%        | 2%                   | 20%       | 2%     | 2%    | 6%          | 2%       | 17%      | 2%   |
| Turn Type                                      | Prot     |            |          | Prot      |                      |           | Prot   |       |             | Prot     |          |      |
| Protected Phases                               | 7        | 4          |          | 3         | 8                    |           | 5      | 2     |             | 1        | 6        |      |
| Permitted Phases                               | <u> </u> |            |          |           |                      |           |        |       |             |          |          |      |
| Actuated Green, G (s)                          | 17.0     | 60.1       |          | 16.9      | 60.0                 |           | 15.5   | 40.0  |             | 17.0     | 41.5     |      |
| Effective Green, g (s)                         | 17.0     | 60.1       |          | 16.9      | 60.0                 |           | 15.5   | 40.0  |             | 17.0     | 41.5     |      |
| Actuated g/C Ratio                             | 0.11     | 0.40       |          | 0.11      | 0.40                 |           | 0.10   | 0.27  |             | 0.11     | 0.28     |      |
| Clearance Time (s)                             | 4.0      | 4.0        |          | 4.0       | 4.0                  |           | 4.0    | 4.0   |             | 4.0      | 4.0      |      |
| Vehicle Extension (s)                          | 3.0      | 3.0        |          | 3.0       | 3.0                  |           | 3.0    | 3.0   |             | 3.0      | 3.0      |      |
| Lane Grp Cap (vph)                             | 201      | 1386       |          | 199       | 1116                 |           | 183    | 482   |             | 201      | 444      |      |
| v/s Ratio Prot                                 | c0.44    | 0.22       |          | 0.08      | c0.47                |           | 0.07   | 0.44  |             | c0.37    | c0.52    |      |
| v/s Ratio Perm                                 | 00.11    | 0.22       |          | 0.00      | 00.17                |           | 0.07   | 0     |             | 00.07    | 00.02    |      |
| v/c Ratio                                      | 3.85     | 0.54       |          | 0.73      | 1.53dr               |           | 0.70   | 1.66  |             | 3.24     | 1.88     |      |
| Uniform Delay, d1                              | 66.5     | 34.3       |          | 64.4      | 45.0                 |           | 65.0   | 55.0  |             | 66.5     | 54.2     |      |
| Progression Factor                             | 1.00     | 1.00       |          | 1.00      | 1.00                 |           | 1.00   | 1.00  |             | 1.00     | 1.00     |      |
|                                                | 1294.8   | 0.4        |          | 13.1      | 87.8                 |           | 11.7   | 307.5 |             | 1022.5   | 403.0    |      |
| Delay (s)                                      | 1361.3   | 34.7       |          | 77.4      | 132.8                |           | 76.7   | 362.5 |             | 1089.0   | 457.2    |      |
| Level of Service                               | F        | C          |          | E         | F                    |           | Ε      | F     |             | F        | F        |      |
| Approach Delay (s)                             | •        | 707.1      |          | _         | 127.8                |           | _      | 323.0 |             | •        | 729.7    |      |
| Approach LOS                                   |          | F          |          |           | F                    |           |        | F     |             |          | F        |      |
|                                                |          |            |          |           |                      |           |        |       |             |          |          |      |
| Intersection Summary HCM Average Control I     | Dolov    |            | 481.1    |           | HCM Lev              | vol of Co | nvice  |       | F           |          |          |      |
| HCM Volume to Capac                            |          |            |          | ı         | IOW LE               | vei ui Se | SIVICE |       | Г           |          |          |      |
|                                                | •        |            | 1.95     |           | Sum of I             | oot time  | (c)    |       | 12.0        |          |          |      |
| Actuated Cycle Length                          |          | 4          | 150.0    |           | Sum of le<br>CU Leve |           |        |       | 12.0        |          |          |      |
| Intersection Capacity U                        | unzation | <u> </u>   | 69.5%    | ı         | CO Leve              | ei oi Ser | vice   |       | Н           |          |          |      |
| Analysis Period (min)<br>dr Defacto Right Lane | Dance    | do with 1  | 15       | lone -    | 0 0 1 0 0            | lone      |        |       |             |          |          |      |
| or Delacto Right Lane                          |          | Je WILII   | ı ınougi | i larie a | s a nym              | iane.     |        |       |             |          |          |      |

c Critical Lane Group

|                          | ۶         | <b>→</b> | •     | •     | <b>←</b> | •          | •    | <b>†</b> | /    | <b>&gt;</b> | <b>↓</b> | 4    |
|--------------------------|-----------|----------|-------|-------|----------|------------|------|----------|------|-------------|----------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL   | WBT      | WBR        | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations      |           | 4        |       |       | 4        |            |      | 4        |      |             | 4        |      |
| Sign Control             |           | Stop     |       |       | Stop     |            |      | Stop     |      |             | Stop     |      |
| Volume (vph)             | 536       | 5        | 5     | 7     | 2        | 4          | 2    | 300      | 8    | 8           | 181      | 311  |
| Peak Hour Factor         | 0.87      | 0.87     | 0.87  | 0.75  | 0.75     | 0.75       | 0.87 | 0.87     | 0.87 | 0.92        | 0.92     | 0.92 |
| Hourly flow rate (vph)   | 616       | 6        | 6     | 9     | 3        | 5          | 2    | 345      | 9    | 9           | 197      | 338  |
| Direction, Lane #        | EB 1      | WB 1     | NB 1  | SB 1  |          |            |      |          |      |             |          |      |
| Volume Total (vph)       | 628       | 17       | 356   | 543   |          |            |      |          |      |             |          |      |
| Volume Left (vph)        | 616       | 9        | 2     | 9     |          |            |      |          |      |             |          |      |
| Volume Right (vph)       | 6         | 5        | 9     | 338   |          |            |      |          |      |             |          |      |
| Hadj (s)                 | 0.26      | 0.08     | 0.02  | -0.31 |          |            |      |          |      |             |          |      |
| Departure Headway (s)    | 7.0       | 8.8      | 7.1   | 6.4   |          |            |      |          |      |             |          |      |
| Degree Utilization, x    | 1.23      | 0.04     | 0.70  | 0.96  |          |            |      |          |      |             |          |      |
| Capacity (veh/h)         | 513       | 376      | 497   | 543   |          |            |      |          |      |             |          |      |
| Control Delay (s)        | 141.2     | 12.2     | 24.8  | 54.7  |          |            |      |          |      |             |          |      |
| Approach Delay (s)       | 141.2     | 12.2     | 24.8  | 54.7  |          |            |      |          |      |             |          |      |
| Approach LOS             | F         | В        | С     | F     |          |            |      |          |      |             |          |      |
| Intersection Summary     |           |          |       |       |          |            |      |          |      |             |          |      |
| Delay                    |           |          | 82.5  |       |          |            |      |          |      |             |          |      |
| HCM Level of Service     |           |          | F     |       |          |            |      |          |      |             |          |      |
| Intersection Capacity Ut | ilization |          | 78.1% | 10    | CU Leve  | el of Serv | ice  |          | D    |             |          |      |
| Analysis Period (min)    |           |          | 15    |       |          |            |      |          |      |             |          |      |
|                          |           |          |       |       |          |            |      |          |      |             |          |      |

## **Appendix B-2: Freeway Operations**

Existing Plus Preferred Alternative Conditions

Existing Plus Approved Specific Plan Conditions

Existing Plus Minimal Impact Conditions

Existing Plus No Federal Action Conditions

HCM 2000 Basic Freeway Segments Capacity Analysis

Jurisdiction Sacramento County

Analysis Year Existing Plus Pref. Alt.

Analyst F&P

Agency or Company Caltrans
Date 10/4/2010
Project Description Elverta Specific Plan

| Genera | al Information | l .                          | I           | Flow Rate C | alculatio | n     |         |        |      |                |     |          |                |                         | Speed Calcul | lation | Results    |          |
|--------|----------------|------------------------------|-------------|-------------|-----------|-------|---------|--------|------|----------------|-----|----------|----------------|-------------------------|--------------|--------|------------|----------|
|        | Freeway/       |                              | Analysis    | Volume      |           |       |         | Truck/ |      |                |     |          |                | Flow Rate               | Measured     | S      | Density, D | Level of |
|        | Direction      | From/To                      | Time Period | (vph)       | PHF       | Lanes | Terrain | Bus %  | RV % | E <sub>T</sub> | ER  | $f_{HV}$ | f <sub>P</sub> | v <sub>p</sub> (pcphpl) | FFS (mph)    | (mph)  | (pcplpm)   | Service  |
| 1      | SR-99 SB       | Sankey Road to Riego Road    | AM          | 1,874       | 0.92      | 2     | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 1,054                   | 65.0         | 60.5   | 17.4       | В        |
| 2      | SR 99 SB       | Riego Road to Elverta Road   | AM          | 2,420       | 0.92      | 2     | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 1,361                   | 65.0         | 60.5   | 22.5       | С        |
| 3      | SR 99 SB       | Elverta Road to Elkhorn Blvd | AM          | 3,399       | 0.92      | 2     | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 1,912                   | 65.0         | 59.3   | 32.2       | D        |
| 4      | SR 99 SB       | Elkhorn Blvd to I-5          | AM          | 4,240       | 0.92      | 2     | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 2,385                   | 65.0         | -      | -          | F        |
| 5      | SR 99 NB       | I-5 to Elkhorn Blvd          | AM          | 1,327       | 0.92      | 2     | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 804                     | 65.0         | 60.5   | 13.3       | В        |
| 6      | SR 99 NB       | Elkhorn Blvd to Elverta Road | AM          | 1,131       | 0.92      | 2     | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 685                     | 65.0         | 60.5   | 11.3       | В        |
| 7      | SR 99 NB       | Elverta Road to Riego Road   | AM          | 902         | 0.92      | 2     | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 547                     | 65.0         | 60.5   | 9.0        | Α        |
| 8      | SR 99 NB       | Riego Road to Sankey Road    | AM          | 745         | 0.92      | 2     | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 451                     | 65.0         | 60.5   | 7.5        | Α        |
| 1      |                | Sankey Road to Riego Road    | PM          | 1,090       | 0.92      | 2     | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 607                     | 65.0         | 60.5   | 10.0       | Α        |
| 2      | SR 99 SB       | Riego Road to Elverta Road   | PM          | 1,239       | 0.92      | 2     | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 690                     | 65.0         | 60.5   | 11.4       | В        |
| 3      |                | Elverta Road to Elkhorn Blvd | PM          | 1,722       | 0.92      | 2     | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 959                     | 65.0         | 60.5   | 15.9       | В        |
| 4      |                | Elkhorn Blvd to I-5          | PM          | 2,052       | 0.92      | 2     | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 1,143                   | 65.0         | 60.5   | 18.9       | С        |
| 5      | SR 99 NB       | I-5 to Elkhorn Blvd          | PM          | 4,728       | 0.92      | 2     | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 2,737                   | 65.0         | -      | -          | F        |
| 6      | SR 99 NB       | Elkhorn Blvd to Elverta Road | PM          | 3,664       | 0.92      | 2     | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 2,121                   | 65.0         | 56.2   | 37.7       | E        |
| 7      | SR 99 NB       | Elverta Road to Riego Road   | PM          | 2,514       | 0.92      | 2     | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 1,455                   | 65.0         | 60.5   | 24.1       | С        |
| 8      | SR 99 NB       | Riego Road to Sankey Road    | PM          | 1,991       | 0.92      | 2     | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 1,152                   | 65.0         | 60.5   | 19.0       | С        |
|        |                |                              |             |             |           |       |         |        |      |                |     |          |                |                         |              |        |            |          |

Page 1 of 1 11/23/2010 Fehr & Peers

## **Appendix B-3: Peak Hour Signal Warrant Analysis**

Existing Plus Preferred Alternative Conditions

Existing Plus Approved Specific Plan Conditions

Existing Plus Minimal Impact Conditions

Existing Plus No Federal Action Conditions



**Turn Movement Volumes** 

Elkhorn Boulevard SR 99 SB Off-Ramp Sheet No

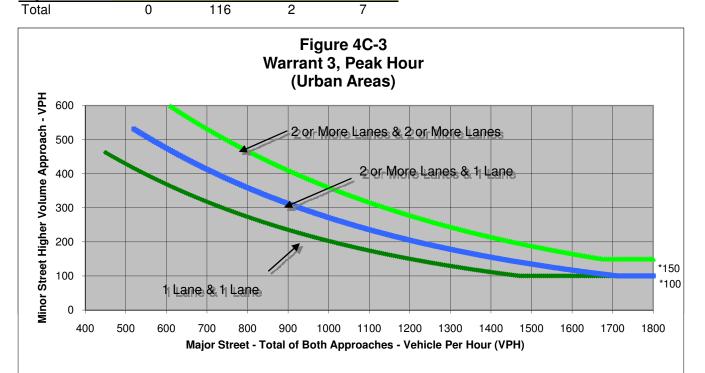
1

2

Project Scenario Elverta Specific Plan EIS

Peak Hour AM

Existing Plus Preferred Alternative


of

Major Street Direction

|              | NB | SB    | EB | WB |
|--------------|----|-------|----|----|
| Left         | 0  | 115   | 0  | 0  |
| Through      | 0  | 0     | 2  | 7  |
| Right        | 0  | 1     | 0  | 0  |
| <del>-</del> |    | 4.4.0 | _  |    |

North/South

x East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street      | Minor Street      | Warrant Met |
|--------------------------|-------------------|-------------------|-------------|
|                          | Elkhorn Boulevard | SR 99 SB Off-Ramp | warrant wet |
| Number of Approach Lanes | 1                 | 1                 | <u>NO</u>   |
| Traffic Volume (VPH) *   | 9                 | 116               | <u></u>     |

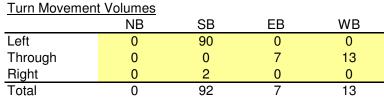


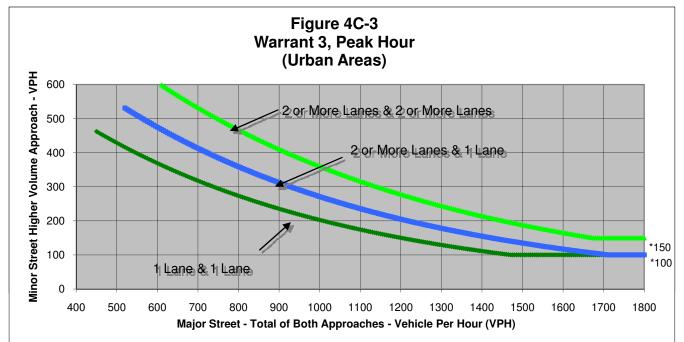
Elkhorn Boulevard SR 99 SB Off-Ramp Sheet No

2

of

2


Project Scenario Elverta Specific Plan EIS


Existing Plus Preferred Alternative

Peak Hour PM

Major Street Direction

North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street      | Minor Street      | Warrant Met |
|--------------------------|-------------------|-------------------|-------------|
|                          | Elkhorn Boulevard | SR 99 SB Off-Ramp | warrant wet |
| Number of Approach Lanes | 1                 | 1                 | NO          |
| Traffic Volume (VPH) *   | 20                | 92                | <u></u>     |



**Turn Movement Volumes** 

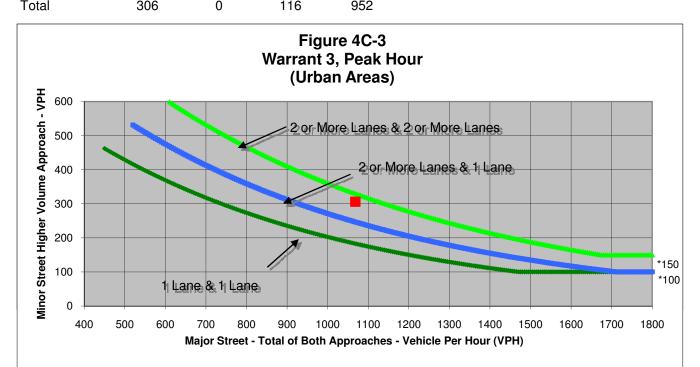
Elkhorn Boulevard SR 99 NB Off-Ramp Sheet No

2

Project Scenario Elverta Specific Plan EIS

Peak Hour AM

Existing Plus Preferred Alternative


of

**Major Street Direction** 

|         | NB  | SB | EB  | WB  |
|---------|-----|----|-----|-----|
| Left    | 7   | 0  | 0   | 0   |
| Through | 0   | 0  | 116 | 952 |
| Right   | 299 | 0  | 0   | 0   |
| Total   | 206 | Λ  | 116 | OEO |

North/South

East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street      | Minor Street      | Warrant Met        |
|--------------------------|-------------------|-------------------|--------------------|
|                          | Elkhorn Boulevard | SR 99 NB Off-Ramp | <u>warrant wet</u> |
| Number of Approach Lanes | 1                 | 1                 | <u>YES</u>         |
| Traffic Volume (VPH) *   | 1,068             | 306               | <u> </u>           |



Elkhorn Boulevard SR 99 NB Off-Ramp Sheet No

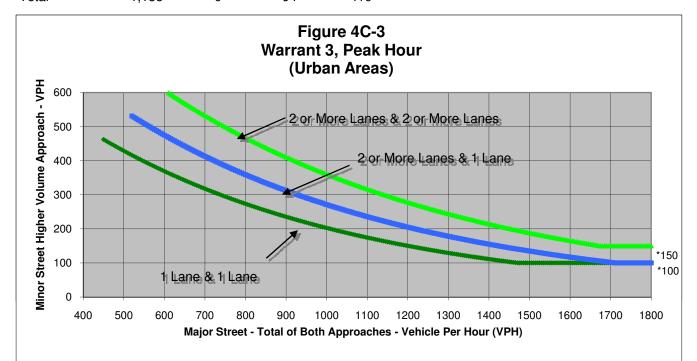
2

of

2

Project Scenario Elverta Specific Plan EIS

Peak Hour PM


Existing Plus Preferred Alternative

Major Street Direction

**Turn Movement Volumes** SB EB WB Left 19 0 Through 0 0 94 410 Right 1,166 0 0 0 Total 0 94 410 1.185

North/South

X East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street      | Minor Street      | Warrant Met        |
|--------------------------|-------------------|-------------------|--------------------|
|                          | Elkhorn Boulevard | SR 99 NB Off-Ramp | <u>wairant wet</u> |
| Number of Approach Lanes | 1                 | 1                 | <u>YES</u>         |
| Traffic Volume (VPH) *   | 504               | 1,185             | <u> </u>           |



Elverta Road

E. Levee Road

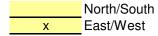
Sheet No

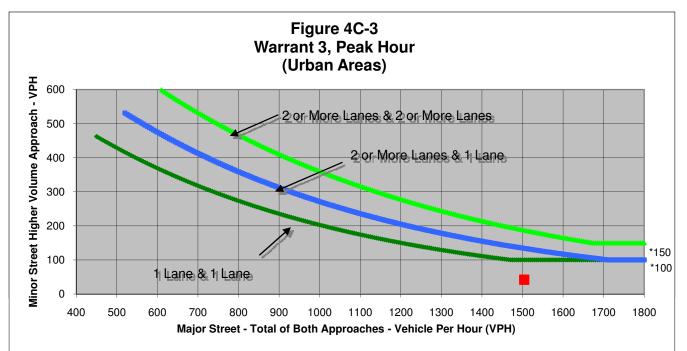
1

of

2

Project Scenario Elverta Specific Plan EIS


Peak Hour AM


Existing Plus Preferred Alternative

Turn Movement Volumes

|         | NB | SB | EB  | WB    |
|---------|----|----|-----|-------|
| Left    | 1  | 3  | 4   | 106   |
| Through | 13 | 35 | 284 | 1,102 |
| Right   | 21 | 4  | 4   | 4     |
| Total   | 35 | 42 | 292 | 1,212 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

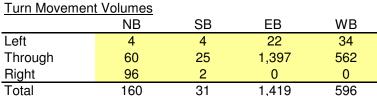
|                          | Major Street | Minor Street  | Warrant Met        |
|--------------------------|--------------|---------------|--------------------|
|                          | Elverta Road | E. Levee Road | <u>wairant wet</u> |
| Number of Approach Lanes | 1            | 1             | NO                 |
| Traffic Volume (VPH) *   | 1,504        | 42            | <u></u>            |

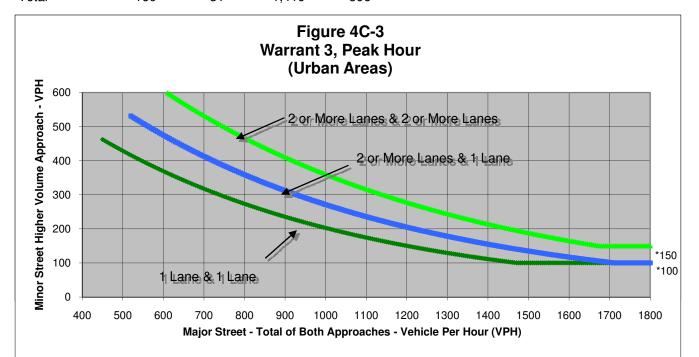


Elverta Road E. Levee Road Sheet No

of

2


**Project** Scenario Elverta Specific Plan EIS


Peak Hour PM

**Existing Plus Preferred Alternative** 

Major Street Direction

North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street  | Warrant Met       |
|--------------------------|--------------|---------------|-------------------|
|                          | Elverta Road | E. Levee Road | <u>wanani wet</u> |
| Number of Approach Lanes | 1            | 1             | YES               |
| Traffic Volume (VPH) *   | 2,015        | 160           | <u>. 10</u>       |



Elkhorn Boulevard E. Levee Road

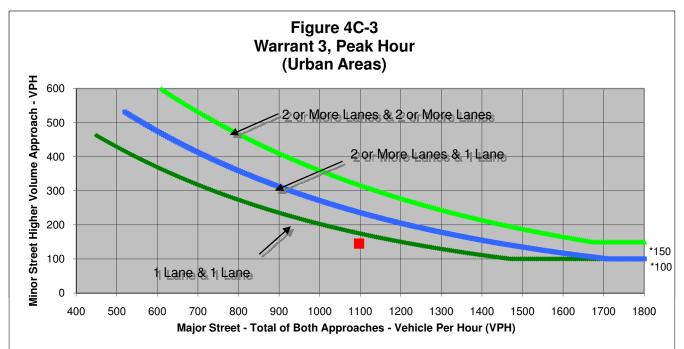
Sheet No

of

2

Project Scenario Elverta Specific Plan EIS

Peak Hour AM


**Existing Plus Preferred Alternative** 

**Turn Movement Volumes** 

|         | NB | SB  | EB  | WB  |
|---------|----|-----|-----|-----|
| Left    | 0  | 24  | 31  | 0   |
| Through | 0  | 0   | 416 | 644 |
| Right   | 0  | 121 | 0   | 6   |
| Total   | 0  | 145 | 447 | 650 |

Major Street Direction

North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street      | Minor Street  | Warrant Met        |
|--------------------------|-------------------|---------------|--------------------|
|                          | Elkhorn Boulevard | E. Levee Road | <u>wairant wet</u> |
| Number of Approach Lanes | 1                 | 1             | <u>NO</u>          |
| Traffic Volume (VPH) *   | 1,097             | 145           | <u></u>            |



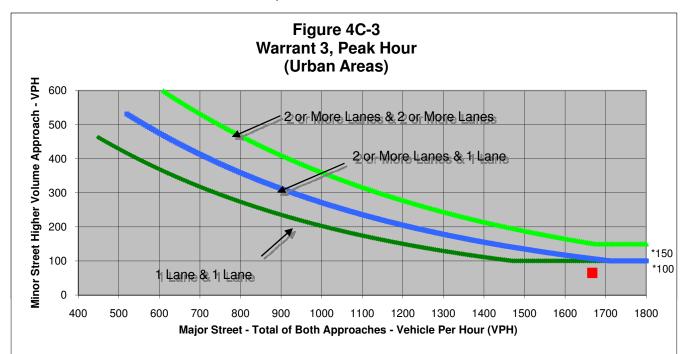
Elkhorn Boulevard E. Levee Road

Sheet No

of

2

**Project** Scenario Elverta Specific Plan EIS **Existing Plus Preferred Alternative** 


Peak Hour PM

**Turn Movement Volumes** 

|         | Tanna to the total |    |       |     |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|-----|--|
|         | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SB | EB    | WB  |  |
| Left    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 | 119   | 0   |  |
| Through | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0  | 968   | 546 |  |
| Right   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54 | 0     | 34  |  |
| Total   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65 | 1,087 | 580 |  |

Major Street Direction

North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street      | Minor Street  | Warrant Met |
|--------------------------|-------------------|---------------|-------------|
|                          | Elkhorn Boulevard | E. Levee Road | warrant wet |
| Number of Approach Lanes | 1                 | 1             | NO          |
| Traffic Volume (VPH) *   | 1,667             | 65            | <u></u>     |



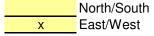
Elverta Road Sorento Road Sheet No

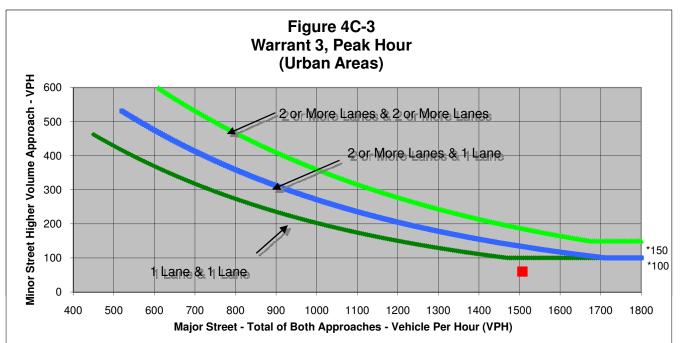
1

of

2

Project Scenario Elverta Specific Plan EIS


Peak Hour AM


Existing Plus Preferred Alternative

**Turn Movement Volumes** 

|         | NB | SB | EB  | WB    |
|---------|----|----|-----|-------|
| Left    | 0  | 9  | 4   | 3     |
| Through | 1  | 1  | 303 | 1,162 |
| Right   | 5  | 50 | 1   | 34    |
| Total   | 6  | 60 | 308 | 1,199 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | Sorento Road | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 1,507        | 60           | <u></u>            |



Elverta Road Sorento Road Sheet No

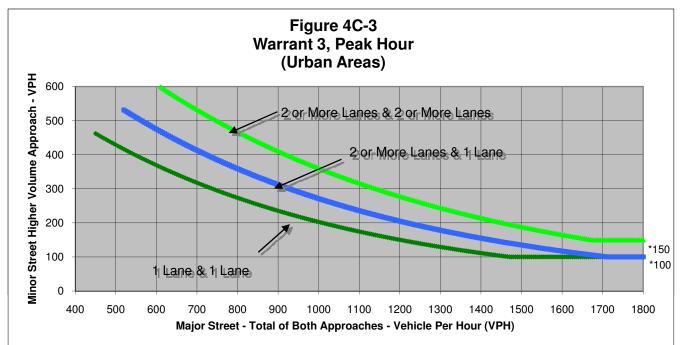
2

of

2

Project Scenario Elverta Specific Plan EIS

Peak Hour PM


Existing Plus Preferred Alternative

Major Street Direction

<u>Turn Movement Volumes</u>

|         | NB | SB | EB    | WB  |
|---------|----|----|-------|-----|
| Left    | 1  | 39 | 33    | 2   |
| Through | 1  | 2  | 1,461 | 584 |
| Right   | 5  | 11 | 3     | 24  |
| Total   | 7  | 52 | 1,497 | 610 |

North/South
x East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | Sorento Road | <u>wairant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 2,107        | 52           | <u></u>            |



16

27

9

Major Street Minor Street

Left

Right

Through

**Turn Movement Volumes** 

Elverta Road Elwyn Road

SB

109

25

64

ΕB

299

7

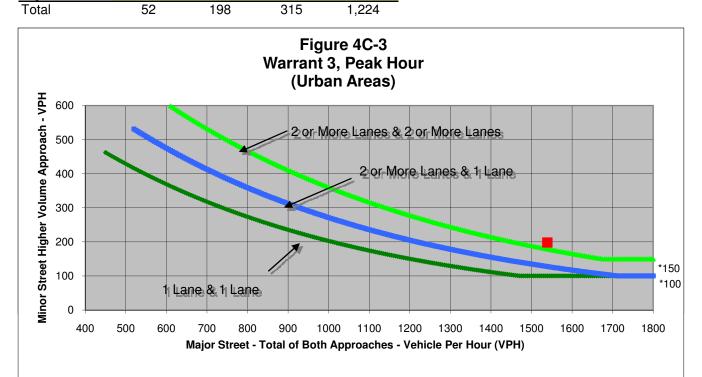
Sheet No

1

of

2

Project Scenario Elverta Specific Plan EIS


Peak Hour AM

Existing Plus Preferred Alternative

Major Street Direction

WB 5 1,117 102

North/South
x East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | Elwyn Road   | <u>wairant wet</u> |
| Number of Approach Lanes | 1            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 1,539        | 198          | <u>. 20</u>        |



18

Major Street Minor Street

Left

Through

**Turn Movement Volumes** 

Elverta Road Elwyn Road

SB

124

26

EB

157

1,326

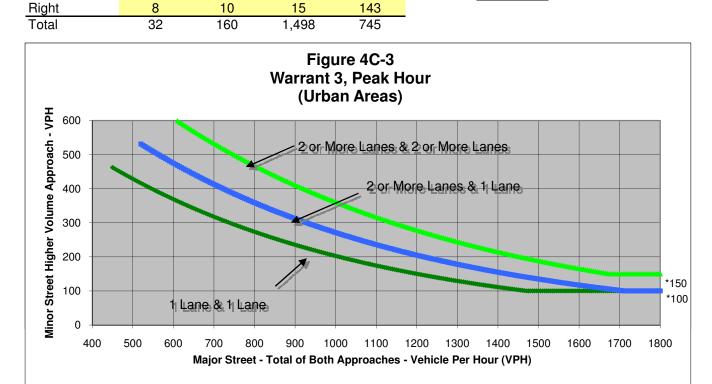
Sheet No

2

of

2

Project Scenario Elverta Specific Plan EIS


Peak Hour PM

Existing Plus Preferred Alternative

Major Street Direction

WB 9 593 143

North/South
x East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

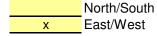
|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | Elwyn Road   | <u>wairant wet</u> |
| Number of Approach Lanes | 1            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,243        | 160          | <u> </u>           |

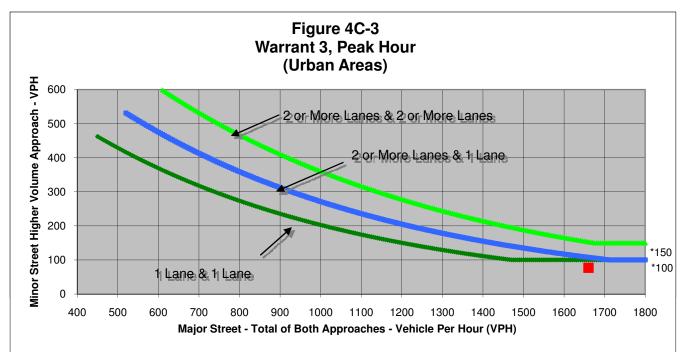


Elverta Road Rio Linda Blvd Sheet No

2

Project Scenario Elverta Specific Plan EIS


**Existing Plus Preferred Alternative** Peak Hour AM


of

**Turn Movement Volumes** 

|         | NB | SB | EB  | WB    |
|---------|----|----|-----|-------|
| Left    | 49 | 0  | 0   | 59    |
| Through | 0  | 0  | 355 | 1,164 |
| Right   | 28 | 0  | 82  | 0     |
| Total   | 77 | 0  | 437 | 1,223 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street   | Warrant Met        |
|--------------------------|--------------|----------------|--------------------|
|                          | Elverta Road | Rio Linda Blvd | <u>wairant wet</u> |
| Number of Approach Lanes | 1            | 1              | <u>NO</u>          |
| Traffic Volume (VPH) *   | 1,660        | 77             | <u></u>            |



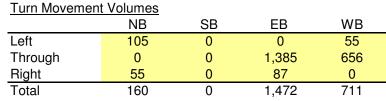
Elverta Road Rio Linda Blvd Sheet No

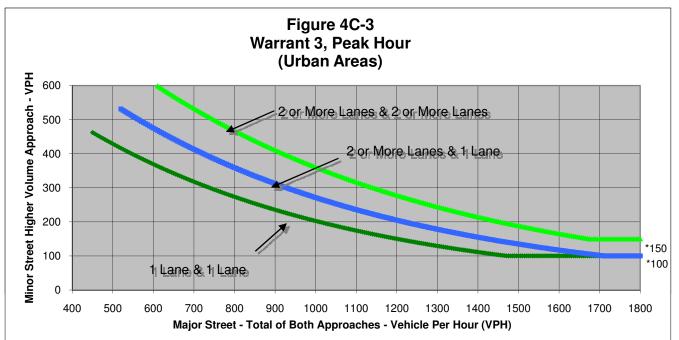
2

of

2

Project Scenario Elverta Specific Plan EIS


Peak Hour PM


Existing Plus Preferred Alternative

East/West

**Major Street Direction** 

North/South





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street   | Warrant Met |
|--------------------------|--------------|----------------|-------------|
|                          | Elverta Road | Rio Linda Blvd | warrant wet |
| Number of Approach Lanes | 1            | 1              | <u>YES</u>  |
| Traffic Volume (VPH) *   | 2,183        | 160            | <u> </u>    |



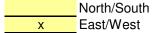
Elverta Road 9th Street Sheet No

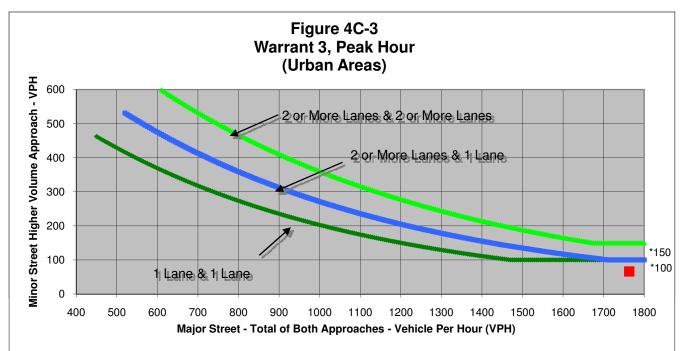
1

of

2

Project Scenario Elverta Specific Plan EIS


Peak Hour AM


Existing Plus Preferred Alternative

**Turn Movement Volumes** 

|         | NB | SB | EB  | WB    |
|---------|----|----|-----|-------|
| Left    | 0  | 0  | 0   | 162   |
| Through | 0  | 0  | 407 | 1,193 |
| Right   | 66 | 0  | 1   | 0     |
| Total   | 66 | 0  | 408 | 1,355 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met       |
|--------------------------|--------------|--------------|-------------------|
|                          | Elverta Road | 9th Street   | <u>wanani wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                |
| Traffic Volume (VPH) *   | 1,763        | 66           | <u></u>           |

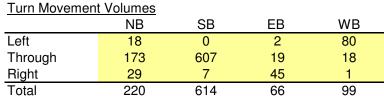


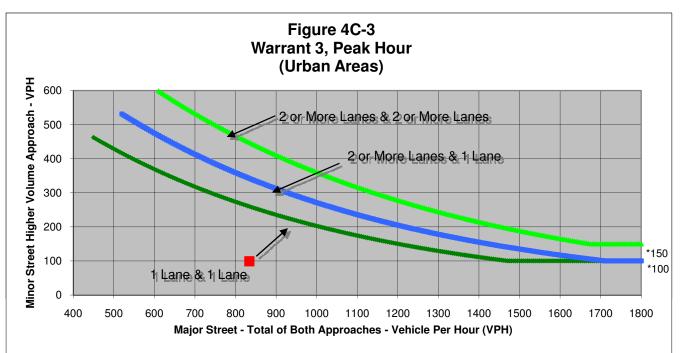
Dry Creek Road U Street Sheet No

1

of

2


Project Scenario Elverta Specific Plan EIS


Peak Hour AM

Existing Plus Preferred Alternative

Major Street Direction

x North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 834            | 99           | <u></u>            |



Dry Creek Road U Street Sheet No

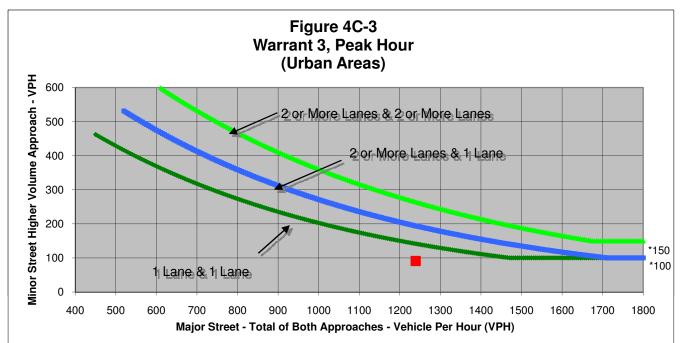
2

of

2

Project Scenario Elverta Specific Plan EIS

Peak Hour PM


Existing Plus Preferred Alternative

**Major Street Direction** 

Turn Movement Volumes

|         | NB  | SB  | EB | WB |
|---------|-----|-----|----|----|
| Left    | 53  | 1   | 8  | 64 |
| Through | 688 | 392 | 31 | 26 |
| Right   | 99  | 6   | 31 | 1  |
| Total   | 840 | 399 | 70 | 91 |

x North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 1,239          | 91           | <u> </u>           |



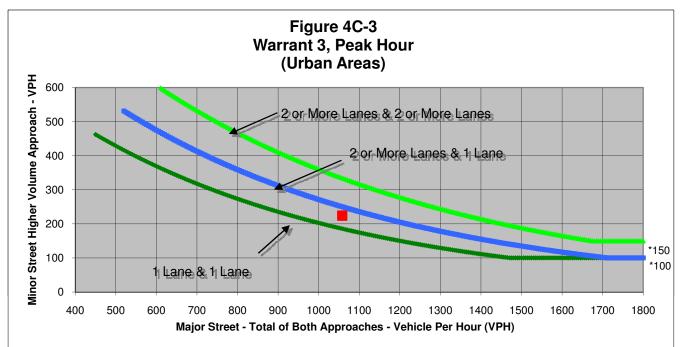
Dry Creek Road Q Street Sheet No

2

Project Scenario Elverta Specific Plan EIS

Peak Hour AM

Existing Plus Preferred Alternative


of

Major Street Direction

<u>Turn Movement Volumes</u>

|         | NB  | SB  | EB  | WB  |
|---------|-----|-----|-----|-----|
| Left    | 47  | 36  | 6   | 132 |
| Through | 208 | 696 | 56  | 77  |
| Right   | 54  | 17  | 53  | 15  |
| Total   | 309 | 749 | 115 | 224 |

x North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

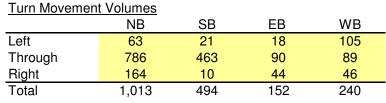
|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | Q Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1              | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 1,058          | 224          |                    |

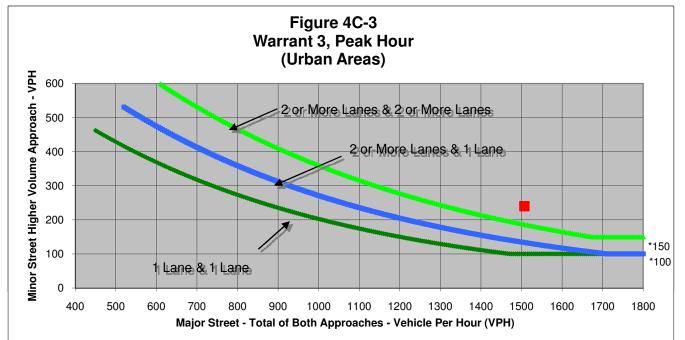


Dry Creek Road Q Street Sheet No 2

of

2


Project Scenario Elverta Specific Plan EIS


Existing Plus Preferred Alternative

Peak Hour PM

Major Street Direction

x North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met |
|--------------------------|----------------|--------------|-------------|
|                          | Dry Creek Road | Q Street     | warrant wet |
| Number of Approach Lanes | 1              | 1            | <u>YES</u>  |
| Traffic Volume (VPH) *   | 1,507          | 240          |             |

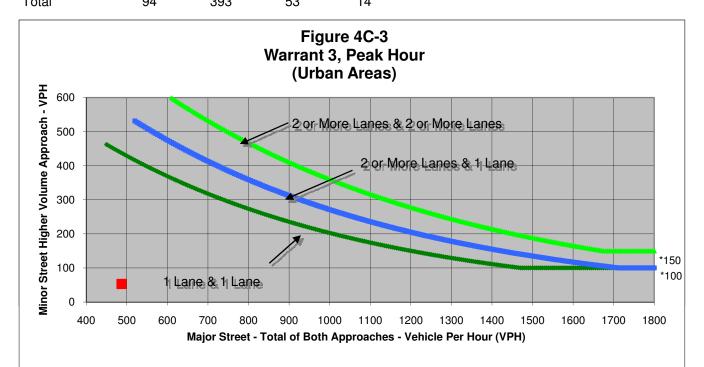


16th Street **U** Street

Sheet No

of

2


Project Scenario Elverta Specific Plan EIS

**Existing Plus Preferred Alternative** Peak Hour AM

Major Street Direction

**Turn Movement Volumes** SB EB WB Left 48 Through 86 290 2 3 Right 3 5 98 94 Total 393 53 14

North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | U Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 487          | 53           | <u> </u>           |



16th Street
U Street

Sheet No

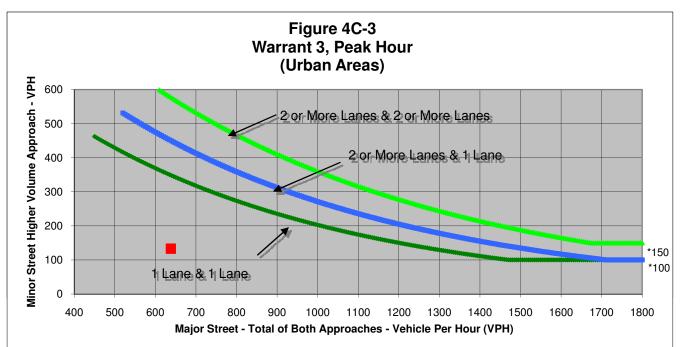
2

of

2

Project Scenario Elverta Specific Plan EIS

Peak Hour PM


Existing Plus Preferred Alternative

**Turn Movement Volumes** 

|         | NB  | SB  | EB  | WB |
|---------|-----|-----|-----|----|
| Left    | 2   | 8   | 123 | 7  |
| Through | 325 | 205 | 5   | 2  |
| Right   | 8   | 90  | 5   | 4  |
| Total   | 335 | 303 | 133 | 13 |

Major Street Direction

x North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | U Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 638          | 133          | <u></u>            |



16th Street

Q Street

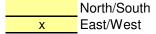
Sheet No

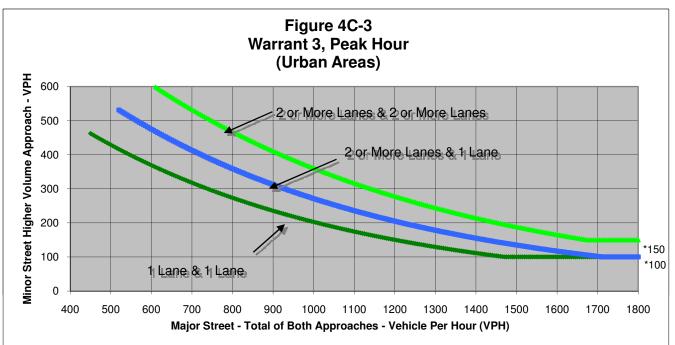
1

of

2

Project Scenario Elverta Specific Plan EIS


Existing Plus Preferred Alternative


Peak Hour AM

**Turn Movement Volumes** 

|         | NB | SB  | EB  | WB  |
|---------|----|-----|-----|-----|
| Left    | 0  | 163 | 38  | 0   |
| Through | 0  | 0   | 130 | 76  |
| Right   | 0  | 139 | 0   | 52  |
| Total   | 0  | 302 | 168 | 128 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | Q Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 296          | 302          | <u> </u>           |

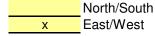


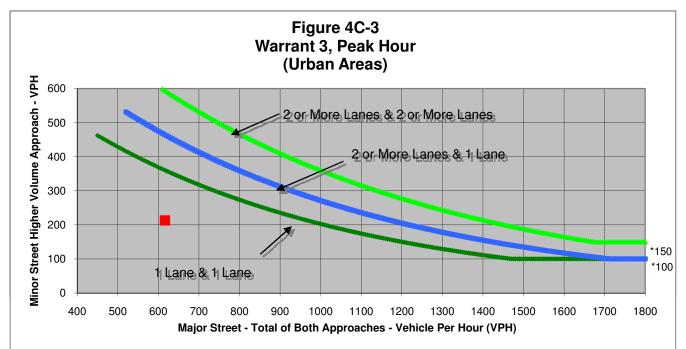
16th Street Q Street Sheet No 2

2

Project Scenario Elverta Specific Plan EIS

Peak Hour PM


Existing Plus Preferred Alternative


of

Turn Movement Volumes

|         | NB | SB  | EB  | WB  |
|---------|----|-----|-----|-----|
| Left    | 0  | 114 | 149 | 0   |
| Through | 0  | 0   | 140 | 141 |
| Right   | 0  | 99  | 0   | 186 |
| Total   | 0  | 213 | 289 | 327 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

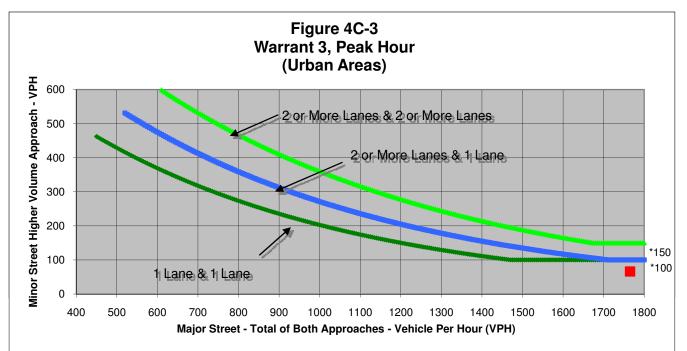
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met       |
|--------------------------|--------------|--------------|-------------------|
|                          | 16th Street  | Q Street     | <u>wanani wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                |
| Traffic Volume (VPH) *   | 616          | 213          | <u> </u>          |



Elverta Road 9th Street Sheet No 1 of 2

Project Elverta Specific Plan
Scenario Existing Plus Approved SP
Peak Hour AM


Major Street Direction

**Turn Movement Volumes** 

|         | NB | SB | EB  | WB    |
|---------|----|----|-----|-------|
| Left    | 0  | 0  | 0   | 163   |
| Through | 0  | 0  | 408 | 1,193 |
| Right   | 66 | 0  | 1   | 0     |
| Total   | 66 | 0  | 409 | 1,356 |

North/South

x East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>wairant wet</u> |
| Number of Approach Lanes | 2            | 1            | NO                 |
| Traffic Volume (VPH) *   | 1,765        | 66           | <u></u>            |



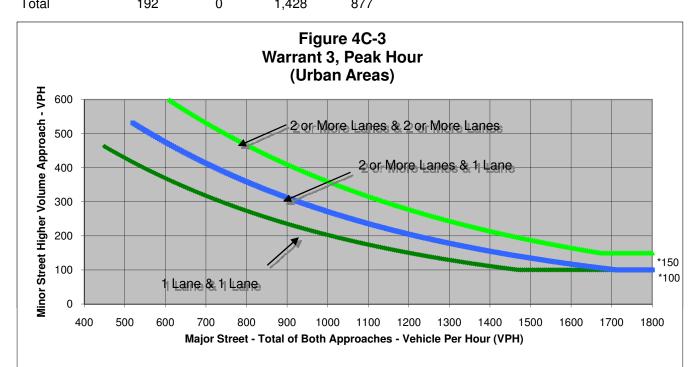
Turn Movement Volumes

Elverta Road 9th Street Sheet No

2

of

2


Project Scenario Elverta Specific Plan
Existing Plus Approved SP

Peak Hour PM

Major Street Direction

| Tarri Movernoni | VOIGITIOU |    |         |     |
|-----------------|-----------|----|---------|-----|
|                 | NB        | SB | EB      | WB  |
| Left            | 2         | 0  | 0       | 121 |
| Through         | 0         | 0  | 1,423   | 756 |
| Right           | 190       | 0  | 5       | 0   |
| Total           | 102       | Λ  | 1 // 28 | 877 |

North/South
x East/West

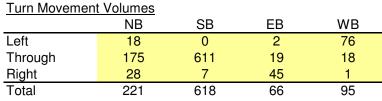


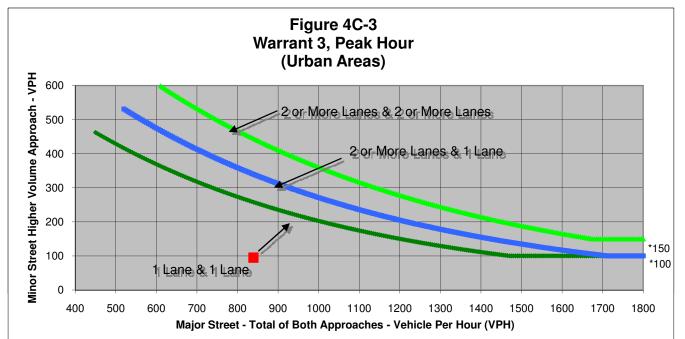
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>wairant wet</u> |
| Number of Approach Lanes | 2            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,305        | 192          | <u> </u>           |




Dry Creek Road U Street Sheet No 1 of 2


Project Elverta Specific Plan
Scenario Existing Plus Approved SP

Peak Hour AM

**Major Street Direction** 

| X | North/South |
|---|-------------|
|   | East/West   |





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 839            | 95           | <u></u>            |



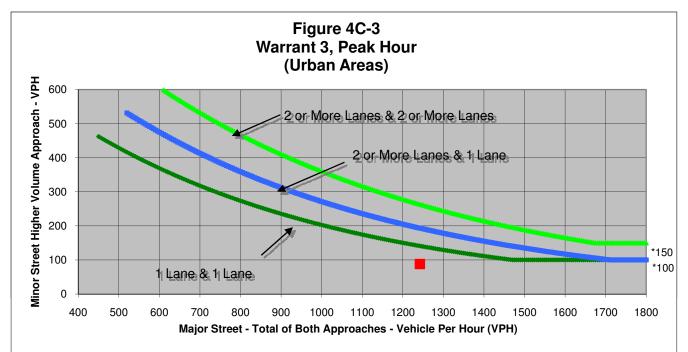
**Turn Movement Volumes** 

Dry Creek Road U Street Sheet No

2

of

2


Project Scenario Elverta Specific Plan
Existing Plus Approved SP

Peak Hour PM

Major Street Direction

|         | NB  | SB  | EB | WB |
|---------|-----|-----|----|----|
| Left    | 53  | 1   | 7  | 61 |
| Through | 692 | 396 | 31 | 26 |
| Right   | 94  | 6   | 31 | 1  |
| Total   | 839 | 403 | 69 | 88 |

x North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 1,242          | 88           | <u></u>            |

<sup>\*</sup> Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.



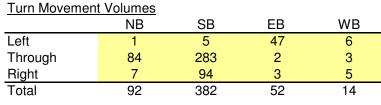
16th Street
U Street

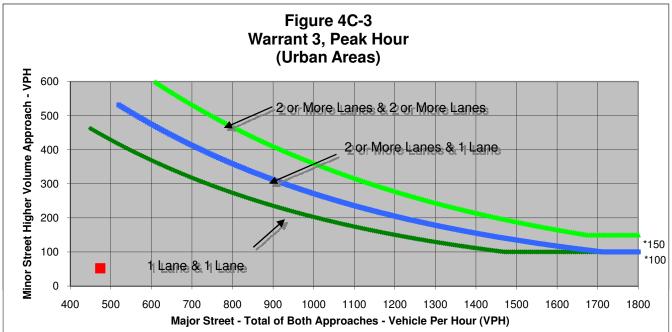
Sheet No 1

of

North/South

East/West


2


Project Scenario Elverta Specific Plan
Existing Plus Approved SP

Peak Hour AM

**Major Street Direction** 

|  |  |  |  | v |  |
|--|--|--|--|---|--|
|  |  |  |  | ^ |  |
|  |  |  |  |   |  |





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

|                          | Major Street | Minor Street | Warrant Met       |
|--------------------------|--------------|--------------|-------------------|
|                          | 16th Street  | U Street     | <u>wanani wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                |
| Traffic Volume (VPH) *   | 474          | 52           | <u></u>           |

<sup>\*</sup> Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.



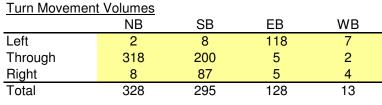
16th Street
U Street

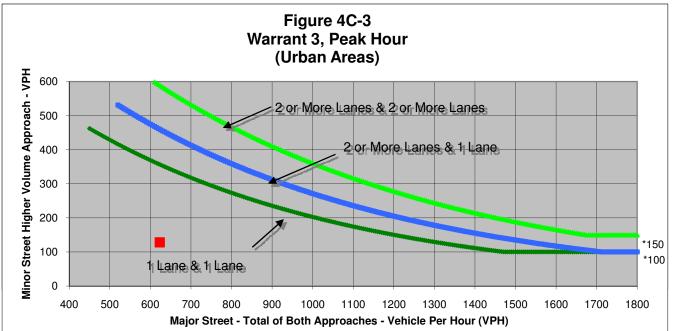
Sheet No 2

2

of

East/West


2


Project Scenario Elverta Specific Plan
Existing Plus Approved SP

Peak Hour PM

Major Street Direction

x North/South





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | U Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 623          | 128          | <u></u>            |

<sup>\*</sup> Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

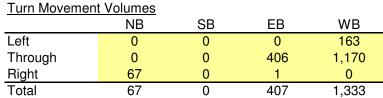
Traffic Volume for Minor Street is the Volume of High Volume Approach.

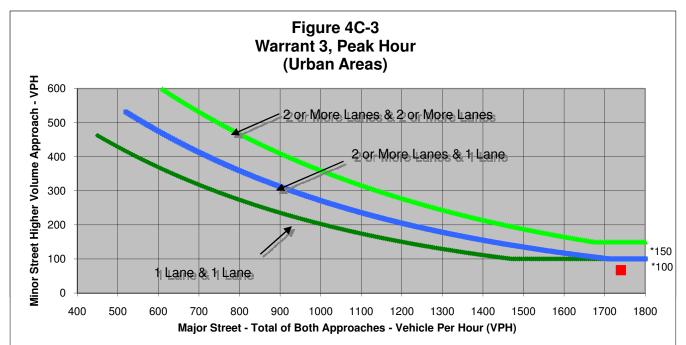


Elverta Road 9th Street Sheet No 1 of

Project Scenario

Elverta Specific Plan


Existing Plus Minimal Impact


2

Peak Hour AM

**Major Street Direction** 

North/South
East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>warrant wet</u> |
| Number of Approach Lanes | 2            | 1            | NO                 |
| Traffic Volume (VPH) *   | 1,740        | 67           | <u> </u>           |



Elverta Road 9th Street

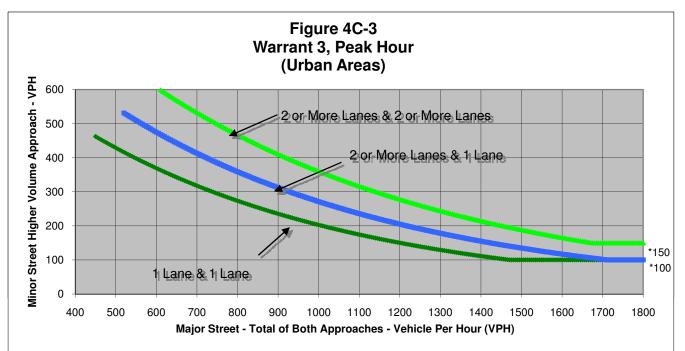
Sheet No

of

2

**Project** Scenario Elverta Specific Plan

Peak Hour PM


**Existing Plus Minimal Impact** 

**Turn Movement Volumes** 

|         | NB  | SB | EB    | WB  |
|---------|-----|----|-------|-----|
| Left    | 2   | 0  | 0     | 116 |
| Through | 0   | 0  | 1,368 | 721 |
| Right   | 183 | 0  | 5     | 0   |
| Total   | 185 | 0  | 1,373 | 837 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>warrant wet</u> |
| Number of Approach Lanes | 2            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,210        | 185          | <u> </u>           |



Dry Creek Road U Street Sheet No

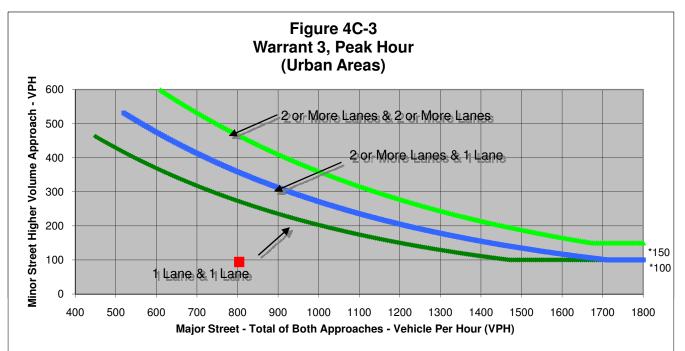
1

of

2

Project Scenario Elverta Specific Plan

Peak Hour AM


Existing Plus Minimal Impact

**Turn Movement Volumes** 

|         | NB  | SB  | EB | WB |
|---------|-----|-----|----|----|
| Left    | 18  | 0   | 2  | 75 |
| Through | 172 | 583 | 19 | 18 |
| Right   | 26  | 5   | 45 | 1  |
| Total   | 216 | 588 | 66 | 94 |

Major Street Direction

x North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

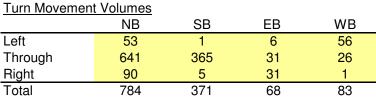
|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 804            | 94           | 130                |

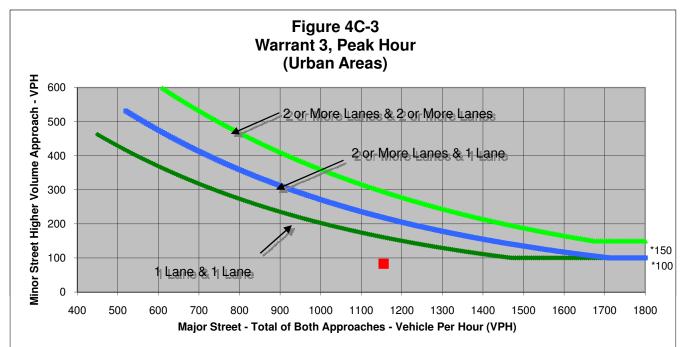


Dry Creek Road **U** Street

Sheet No

of


2


**Project** Scenario Elverta Specific Plan **Existing Plus Minimal Impact** 

Peak Hour PM

Major Street Direction

North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 1,155          | 83           | <u> </u>           |

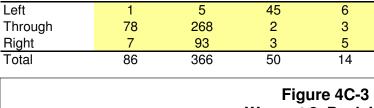


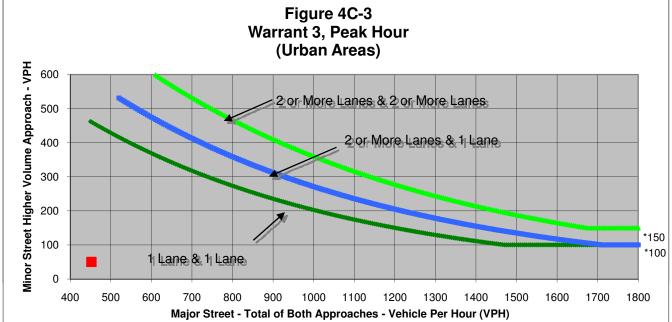
**Turn Movement Volumes** 

16th Street **U** Street

SB

EΒ


Sheet No 2 of


**Project** Scenario

Elverta Specific Plan **Existing Plus Minimal Impact** Peak Hour AM

Major Street Direction

| Х | North/South |
|---|-------------|
|   | East/West   |
|   | •"          |





WB

\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 452          | 50           | <u></u>            |



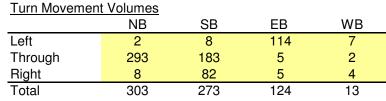
16th Street
U Street

Sheet No

of

2

Project Scenario Elverta Specific Plan


Peak Hour PM

Existing Plus Minimal Impact

**Major Street Direction** 

Major Street Direction

x North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 576          | 124          | <u></u>            |

<sup>\*</sup> Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.



0

0

65

Major Street Minor Street

Left

Right

Through

**Turn Movement Volumes** 

Elverta Road 9th Street

SB

0

0

0

EΒ

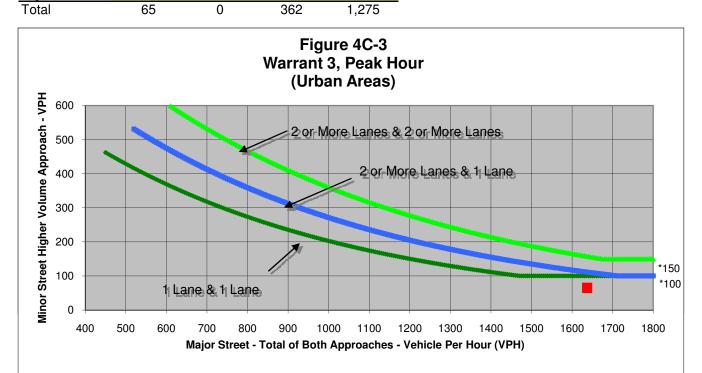
361

Sheet No

of

2

Project Scenario Elverta Specific Plan


Peak Hour AM

Existing Plus No Federal Action

Major Street Direction

| WB   |  |
|------|--|
| 171  |  |
| ,104 |  |
| 0    |  |

North/South
x East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>wairant wet</u> |
| Number of Approach Lanes | 2            | 1            | NO                 |
| Traffic Volume (VPH) *   | 1,637        | 65           | <u> </u>           |



Elverta Road 9th Street Sheet No

2

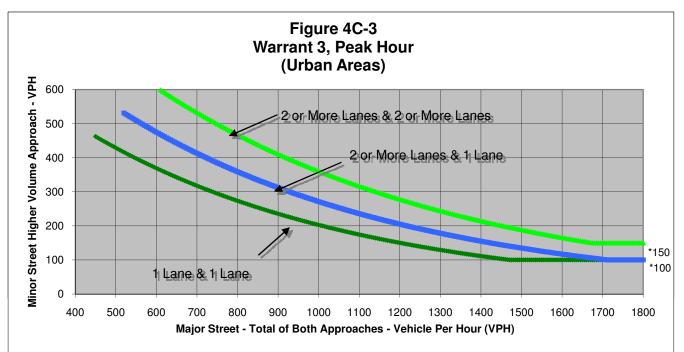
of

2

Project Scenario Elverta Specific Plan

Existing Plus No Federal Action

Peak Hour PM


\_\_\_\_

**Turn Movement Volumes** 

|         | NB  | SB | EB    | WB  |
|---------|-----|----|-------|-----|
| Left    | 2   | 0  | 0     | 113 |
| Through | 0   | 0  | 1,258 | 640 |
| Right   | 184 | 0  | 5     | 0   |
| Total   | 186 | 0  | 1,263 | 753 |

Major Street Direction

North/South
x East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>warrant wet</u> |
| Number of Approach Lanes | 2            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,016        | 186          | <u> </u>           |



**Turn Movement Volumes** 

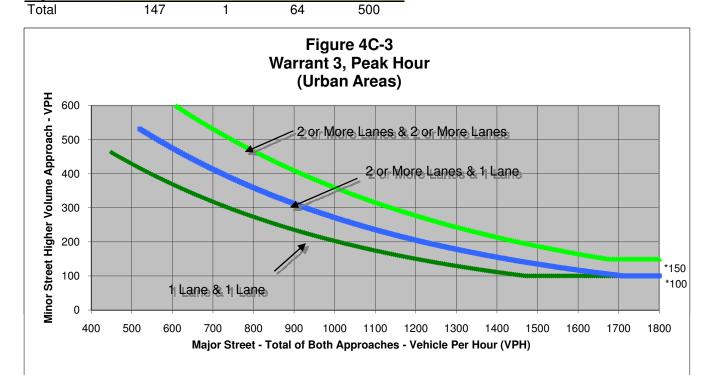
Dry Creek Road U Street Sheet No

1

of

2

Project Scenario Elverta Specific Plan


Peak Hour AM

Existing Plus No Federal Action

**Major Street Direction** 

|         | NB  | SB | EB | WB  |
|---------|-----|----|----|-----|
| Left    | 18  | 0  | 0  | 481 |
| Through | 0   | 1  | 19 | 18  |
| Right   | 129 | 0  | 45 | 1   |

x North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 148            | 500          | <u> </u>           |

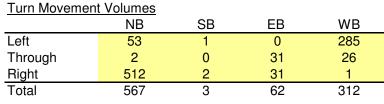


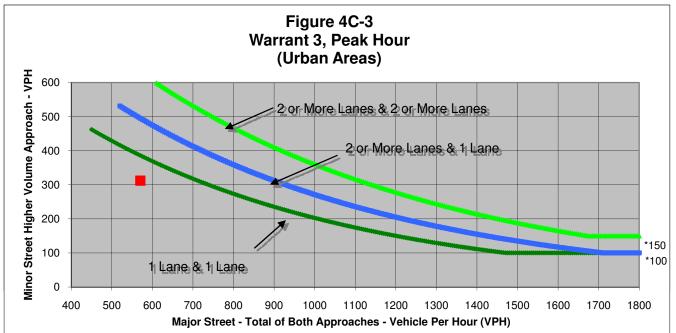
Dry Creek Road U Street Sheet No

2

of

2


Project Scenario Elverta Specific Plan


Peak Hour PM

Existing Plus No Federal Action

## Major Street Direction

| Х | North/South |
|---|-------------|
|   | East/West   |





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 570            | 312          | <u></u>            |



16th Street U Street Sheet No

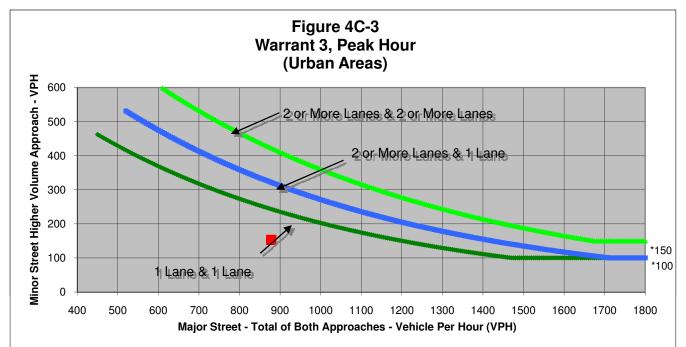
1

of

2

Project Scenario Elverta Specific Plan

Peak Hour AM


Existing Plus No Federal Action

Major Street Direction

**Turn Movement Volumes** 

|         | NB | SB  | EB  | WB |
|---------|----|-----|-----|----|
| Left    | 1  | 5   | 148 | 6  |
| Through | 77 | 289 | 2   | 3  |
| Right   | 7  | 499 | 3   | 5  |
| Total   | 85 | 793 | 153 | 14 |

x North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met |  |
|--------------------------|--------------|--------------|-------------|--|
|                          | 16th Street  | warrant wet  |             |  |
| Number of Approach Lanes | 1            | 1            | NO          |  |
| Traffic Volume (VPH) *   | 878          | 153          | <u> </u>    |  |



16th Street U Street Sheet No

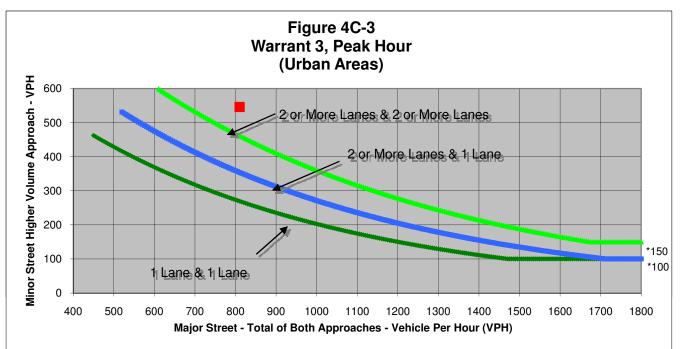
2

of

2

Project Scenario Elverta Specific Plan

Existing Plus No Federal Action


Peak Hour PM

**Turn Movement Volumes** 

|         | NB  | SB  | EB  | WB |
|---------|-----|-----|-----|----|
| Left    | 2   | 8   | 536 | 7  |
| Through | 300 | 181 | 5   | 2  |
| Right   | 8   | 311 | 5   | 4  |
| Total   | 310 | 500 | 546 | 13 |

Major Street Direction

x North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met |  |  |
|--------------------------|--------------|--------------|-------------|--|--|
|                          | 16th Street  | warrant wet  |             |  |  |
| Number of Approach Lanes | 1            | 1            | <u>YES</u>  |  |  |
| Traffic Volume (VPH) *   | 810          | 546          | <u> </u>    |  |  |

# Appendix C Cumulative Conditions

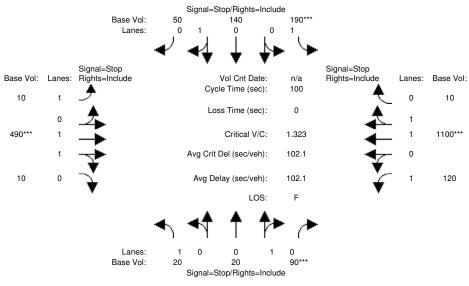
# **Appendix C-1: Intersection Operations**

Cumulative No Project Conditions

Cumulative Plus Preferred Alternative Conditions

Cumulative Plus Approved Specific Plan Conditions

Cumulative Plus Minimal Impact Conditions


Cumulative Plus No Federal Action Conditions

|                                                                   | ᄼ    | -        | ←         | •    | -         | 4              |          |     |  |
|-------------------------------------------------------------------|------|----------|-----------|------|-----------|----------------|----------|-----|--|
| Movement                                                          | EBL  | EBT      | WBT       | WBR  | SBL       | SBR            |          |     |  |
| Lane Configurations                                               |      | <b>^</b> | <b>††</b> |      | ሻ         | 7              |          |     |  |
|                                                                   | 1900 | 1900     | 1900      | 1900 | 1900      | 1900           |          |     |  |
| Total Lost time (s)                                               |      | 4.0      | 4.0       | .000 | 4.0       | 4.0            |          |     |  |
| Lane Util. Factor                                                 |      | 0.95     | 0.91      |      | 1.00      | 1.00           |          |     |  |
| Frt                                                               |      | 1.00     | 0.93      |      | 1.00      | 0.85           |          |     |  |
| Flt Protected                                                     |      | 1.00     | 1.00      |      | 0.95      | 1.00           |          |     |  |
| Satd. Flow (prot)                                                 |      | 3539     | 4731      |      | 1770      | 1583           |          |     |  |
| Flt Permitted                                                     |      | 1.00     | 1.00      |      | 0.95      | 1.00           |          |     |  |
| Satd. Flow (perm)                                                 |      | 3539     | 4731      |      | 1770      | 1583           |          |     |  |
| Volume (vph)                                                      | 0    | 480      | 1270      | 1100 | 400       | 130            |          |     |  |
| Peak-hour factor, PHF                                             | 0.97 | 0.97     | 0.97      | 0.97 | 0.97      | 0.97           |          |     |  |
| Adj. Flow (vph)                                                   | 0.07 | 495      | 1309      | 1134 | 412       | 134            |          |     |  |
| RTOR Reduction (vph)                                              | 0    | 0        | 190       | 0    | 0         | 28             |          |     |  |
| Lane Group Flow (vph)                                             | 0    | 495      | 2253      | 0    | 412       | 106            |          |     |  |
| Turn Type                                                         |      |          |           |      |           | Perm           |          |     |  |
| Protected Phases                                                  |      | 4        | 8         |      | 6         | TOTTI          |          |     |  |
| Permitted Phases                                                  |      | •        | J         |      |           | 6              |          |     |  |
| Actuated Green, G (s)                                             |      | 37.1     | 37.1      |      | 19.4      | 19.4           |          |     |  |
| Effective Green, g (s)                                            |      | 37.1     | 37.1      |      | 19.4      | 19.4           |          |     |  |
| Actuated g/C Ratio                                                |      | 0.58     | 0.58      |      | 0.30      | 0.30           |          |     |  |
| Clearance Time (s)                                                |      | 4.0      | 4.0       |      | 4.0       | 4.0            |          |     |  |
| Vehicle Extension (s)                                             |      | 3.0      | 3.0       |      | 3.0       | 3.0            |          |     |  |
| Lane Grp Cap (vph)                                                |      | 2036     | 2721      |      | 532       | 476            |          |     |  |
| v/s Ratio Prot                                                    |      | 0.14     | c0.48     |      | c0.23     | 470            |          |     |  |
| v/s Ratio Perm                                                    |      | 0.11     | 00.10     |      | 00.20     | 0.07           |          |     |  |
| v/c Ratio                                                         |      | 0.24     | 1.02dr    |      | 0.77      | 0.22           |          |     |  |
| Uniform Delay, d1                                                 |      | 6.8      | 11.1      |      | 20.6      | 16.9           |          |     |  |
| Progression Factor                                                |      | 1.00     | 1.00      |      | 1.00      | 1.00           |          |     |  |
| Incremental Delay, d2                                             |      | 0.1      | 2.2       |      | 6.9       | 0.2            |          |     |  |
| Delay (s)                                                         |      | 6.8      | 13.3      |      | 27.5      | 17.1           |          |     |  |
| Level of Service                                                  |      | A        | В         |      | C         | В              |          |     |  |
| Approach Delay (s)                                                |      | 6.8      | 13.3      |      | 25.0      |                |          |     |  |
| Approach LOS                                                      |      | Α        | В         |      | С         |                |          |     |  |
| Intersection Summary                                              |      |          |           |      |           |                |          |     |  |
| HCM Average Control De                                            | lay  |          | 14.2      | H    | ICM Lev   | vel of Service | e        | В   |  |
| <b>HCM Volume to Capacity</b>                                     |      |          | 0.81      |      |           |                |          |     |  |
| Actuated Cycle Length (s)                                         |      |          | 64.5      | S    | Sum of le | ost time (s)   |          | 8.0 |  |
| Intersection Capacity Utili                                       |      |          | 78.0%     |      |           | el of Service  | <u> </u> | D   |  |
| Analysis Period (min)                                             |      |          | 15        |      |           |                |          |     |  |
| dr Defacto Right Lane. Recode with 1 though lane as a right lane. |      |          |           |      |           |                |          |     |  |
| 0.313                                                             |      |          | 9         |      | -         |                |          |     |  |

|                              | -         | •    | •     | ←          | 1       | ~             |      |   |
|------------------------------|-----------|------|-------|------------|---------|---------------|------|---|
| Movement                     | EBT       | EBR  | WBL   | WBT        | NBL     | NBR           |      |   |
| Lane Configurations          | ተተጉ       |      |       | <b>^</b> ^ | *       | #             |      |   |
| Ideal Flow (vphpl)           | 1900      | 1900 | 1900  | 1900       | 1900    | 1900          |      |   |
| Total Lost time (s)          | 4.0       |      |       | 4.0        | 4.0     | 4.0           |      |   |
| Lane Util. Factor            | 0.91      |      |       | 0.91       | 1.00    | 1.00          |      |   |
| Frt                          | 0.98      |      |       | 1.00       | 1.00    | 0.85          |      |   |
| Flt Protected                | 1.00      |      |       | 1.00       | 0.95    | 1.00          |      |   |
| Satd. Flow (prot)            | 4973      |      |       | 5085       | 1770    | 1583          |      |   |
| Flt Permitted                | 1.00      |      |       | 1.00       | 0.95    | 1.00          |      |   |
| Satd. Flow (perm)            | 4973      |      |       | 5085       | 1770    | 1583          |      |   |
| Volume (vph)                 | 750       | 130  | 0     | 1970       | 400     | 530           |      |   |
| Peak-hour factor, PHF        | 0.97      | 0.97 | 0.97  | 0.97       | 0.97    | 0.97          |      |   |
| Adj. Flow (vph)              | 773       | 134  | 0     | 2031       | 412     | 546           |      |   |
| RTOR Reduction (vph)         | 35        | 0    | 0     | 0          | 0       | 76            |      |   |
| Lane Group Flow (vph)        | 872       | 0    | 0     | 2031       | 412     | 470           |      |   |
| Turn Type                    |           |      |       |            |         | Perm          |      |   |
| Protected Phases             | 4         |      |       | 8          | 2       |               |      |   |
| Permitted Phases             |           |      |       |            |         | 2             |      |   |
| Actuated Green, G (s)        | 28.1      |      |       | 28.1       | 20.7    | 20.7          |      |   |
| Effective Green, g (s)       | 28.1      |      |       | 28.1       | 20.7    | 20.7          |      |   |
| Actuated g/C Ratio           | 0.49      |      |       | 0.49       | 0.36    | 0.36          |      |   |
| Clearance Time (s)           | 4.0       |      |       | 4.0        | 4.0     | 4.0           |      |   |
| Vehicle Extension (s)        | 3.0       |      |       | 3.0        | 3.0     | 3.0           |      |   |
| Lane Grp Cap (vph)           | 2460      |      |       | 2516       | 645     | 577           |      |   |
| v/s Ratio Prot               | 0.18      |      |       | c0.40      | 0.23    |               |      |   |
| v/s Ratio Perm               |           |      |       |            |         | c0.30         |      |   |
| v/c Ratio                    | 0.35      |      |       | 0.81       | 0.64    | 0.82          |      |   |
| Uniform Delay, d1            | 8.8       |      |       | 12.1       | 15.0    | 16.3          |      |   |
| Progression Factor           | 1.00      |      |       | 1.00       | 1.00    | 1.00          |      |   |
| Incremental Delay, d2        | 0.1       |      |       | 2.0        | 2.1     | 8.7           |      |   |
| Delay (s)                    | 8.9       |      |       | 14.1       | 17.0    | 25.0          |      |   |
| Level of Service             | Α         |      |       | В          | В       | С             |      |   |
| Approach Delay (s)           | 8.9       |      |       | 14.1       | 21.6    |               |      |   |
| Approach LOS                 | Α         |      |       | В          | С       |               |      |   |
| Intersection Summary         |           |      |       |            |         |               |      |   |
| HCM Average Control D        |           |      | 14.7  | Н          | ICM Lev | el of Servic  | ce l | 3 |
| <b>HCM Volume to Capacit</b> |           |      | 0.81  |            |         |               |      |   |
| Actuated Cycle Length (      |           |      | 56.8  |            |         | ost time (s)  | 8.   |   |
| Intersection Capacity Uti    | ilization |      | 66.9% | IC         | CU Leve | el of Service | )    | 2 |
| Analysis Period (min)        |           |      | 15    |            |         |               |      |   |
| c Critical Lane Group        |           |      |       |            |         |               |      |   |

#### Level Of Service Computation Report 2000 HCM 4-Way Stop (Base Volume Alternative) Cumulative No Project AM

### Intersection #5: Elverta Road / East Levee Road

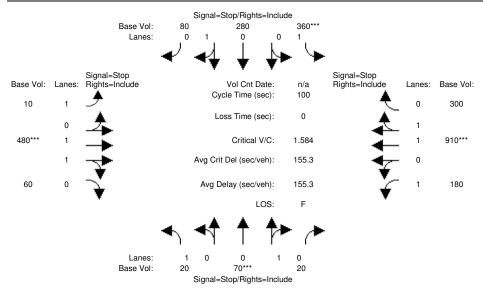


|                                                                                     | Base \                     | Vol:  | 20<br>Signal | 20<br>=Stop/Righ |      | 90***  |      |      |              |      |        |       |  |  |  |
|-------------------------------------------------------------------------------------|----------------------------|-------|--------------|------------------|------|--------|------|------|--------------|------|--------|-------|--|--|--|
| Street Name:                                                                        | reet Name: East Levee Road |       |              |                  |      |        |      |      | Elverta Road |      |        |       |  |  |  |
| Approach:                                                                           | North Bound South Bound    |       |              |                  |      |        |      |      |              |      | est Bo | ound  |  |  |  |
| Movement:                                                                           |                            |       | - R          |                  |      | - R    |      |      | - R          |      | - T    |       |  |  |  |
|                                                                                     |                            |       |              |                  |      |        |      |      |              |      |        |       |  |  |  |
| Min. Green:                                                                         |                            | 0     |              | . 0              | 0    | 0      |      | 0    |              | . 0  |        | 0     |  |  |  |
| Volume Modul                                                                        |                            |       |              |                  |      |        |      |      |              |      |        |       |  |  |  |
| Base Vol:                                                                           | 20                         | 20    | 90           | 190              | 140  | 50     | 10   | 490  | 10           | 120  | 1100   | 10    |  |  |  |
| Growth Adj:                                                                         | 1.00                       | 1.00  | 1.00         | 1.00             | 1.00 | 1.00   | 1.00 | 1.00 | 1.00         | 1.00 | 1.00   | 1.00  |  |  |  |
| Initial Bse:                                                                        | 20                         | 20    | 90           | 190              | 140  | 50     | 10   | 490  | 10           | 120  | 1100   | 10    |  |  |  |
| User Adj:                                                                           | 1.00                       | 1.00  | 1.00         | 1.00             | 1.00 | 1.00   | 1.00 | 1.00 | 1.00         | 1.00 | 1.00   | 1.00  |  |  |  |
| PHF Adj:                                                                            | 0.97 (                     | 0.97  | 0.97         | 0.97             | 0.97 | 0.97   | 0.97 | 0.97 | 0.97         | 0.97 | 0.97   | 0.97  |  |  |  |
| PHF Volume:                                                                         | 21                         | 21    | 93           | 196              | 144  | 52     | 10   | 505  | 10           | 124  | 1134   | 10    |  |  |  |
| Reduct Vol:                                                                         | 0                          | 0     | 0            | 0                | 0    | 0      | 0    | 0    | 0            | 0    | 0      | 0     |  |  |  |
| Reduced Vol:                                                                        |                            | 21    | 93           | 196              | 144  | 52     | 10   | 505  | 10           |      | 1134   | 10    |  |  |  |
| PCE Adj:                                                                            | 1.00                       | 1.00  | 1.00         | 1.00             | 1.00 | 1.00   | 1.00 | 1.00 | 1.00         | 1.00 | 1.00   | 1.00  |  |  |  |
| MLF Adj:                                                                            | 1.00                       | 1.00  | 1.00         | 1.00             | 1.00 | 1.00   | 1.00 | 1.00 | 1.00         | 1.00 | 1.00   | 1.00  |  |  |  |
| FinalVolume:                                                                        |                            | 21    | 93           | 196              | 144  | 52     | 10   |      | 10           |      | 1134   | 10    |  |  |  |
|                                                                                     |                            |       |              |                  |      |        |      |      |              |      |        |       |  |  |  |
| Saturation F                                                                        | low Mod                    | dule: |              |                  |      |        |      |      |              |      |        | ,     |  |  |  |
| Adjustment:                                                                         | 1.00                       |       | 1.00         | 1.00             | 1.00 | 1.00   | 1.00 | 1.00 | 1.00         | 1.00 | 1.00   | 1.00  |  |  |  |
| Lanes:                                                                              | 1.00 (                     |       | 0.82         |                  | 0.74 | 0.26   |      | 1.96 | 0.04         |      | 1.98   | 0.02  |  |  |  |
| Final Sat.:                                                                         | 349                        | 71    | 321          |                  | 306  | 109    | 363  | 758  | 15           | 397  | 857    | 8     |  |  |  |
|                                                                                     |                            |       |              |                  |      |        |      |      |              |      |        |       |  |  |  |
| Capacity Ana                                                                        | lysis N                    | Modul | e:           |                  |      |        |      |      |              |      |        |       |  |  |  |
| Vol/Sat:                                                                            | 0.06 (                     | 0.29  | 0.29         | 0.51             | 0.47 | 0.47   | 0.03 | 0.67 | 0.67         | 0.31 | 1.32   | 1.32  |  |  |  |
| Crit Moves:                                                                         |                            |       | ***          | ****             |      |        |      | **** |              |      | ****   |       |  |  |  |
| Delay/Veh:                                                                          | 13.2                       | 14.9  | 14.9         | 20.8             | 18.3 | 18.3   | 12.7 | 28.0 | 27.9         | 15.3 | 184    | 183.7 |  |  |  |
| Delay Adj:                                                                          | 1.00                       | 1.00  | 1.00         | 1.00             | 1.00 | 1.00   | 1.00 | 1.00 | 1.00         | 1.00 | 1.00   | 1.00  |  |  |  |
| AdjDel/Veh:                                                                         | 13.2                       | 14.9  | 14.9         | 20.8             | 18.3 | 18.3   | 12.7 | 28.0 | 27.9         | 15.3 | 184    | 183.7 |  |  |  |
| LOS by Move:                                                                        | В                          | В     | В            | С                | С    | С      | В    | D    | D            | С    | F      | F     |  |  |  |
| ApproachDel:                                                                        |                            | 14.6  |              |                  | 19.6 |        |      | 27.7 |              | 1    | 167.7  |       |  |  |  |
| Delay Adj:                                                                          |                            | 1.00  |              |                  | 1.00 |        |      | 1.00 |              |      | 1.00   |       |  |  |  |
| ApprAdjDel:                                                                         | -                          | 14.6  |              |                  | 19.6 |        |      | 27.7 |              | 1    | 167.7  |       |  |  |  |
| LOS by Appr:                                                                        |                            | В     |              |                  | С    |        |      | D    |              |      | F      |       |  |  |  |
| AllWayAvqQ:                                                                         | 0.1                        | 0.4   | 0.4          | 0.9              | 0.8  | 0.8    | 0.0  | 1.7  | 1.7          | 0.4  | 20.8   | 20.8  |  |  |  |
| Note: Queue                                                                         | reporte                    | ed is | the n        |                  |      | rs per | lane |      |              |      |        |       |  |  |  |
|                                                                                     |                            |       |              |                  |      |        |      |      | rban]        |      |        |       |  |  |  |
| Peak Hour Volume Signal Warrant Report [Urban] ************************************ |                            |       |              |                  |      |        |      |      |              |      |        |       |  |  |  |
| Intersection #5 Elverta Road / East Levee Road                                      |                            |       |              |                  |      |        |      |      |              |      |        |       |  |  |  |
| **************************************                                              |                            |       |              |                  |      |        |      |      |              |      |        |       |  |  |  |
| Base Volume Alternative: Peak Hour Warrant Met                                      |                            |       |              |                  |      |        |      |      |              |      |        |       |  |  |  |
| Approach: North Bound South Bound East Bound West Bound                             |                            |       |              |                  |      |        |      |      |              |      |        |       |  |  |  |

| Movement: | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L -

#### SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).


The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

|                          | ٠         | <b>→</b> | +           | •    | <b>\</b> | 4         |      |       |      |  |
|--------------------------|-----------|----------|-------------|------|----------|-----------|------|-------|------|--|
| Movement                 | EBL       | EBT      | WBT         | WBR  | SBL      | SBR       |      |       |      |  |
| Lane Configurations      | Ť         | ተተተ      | <b>↑</b> ↑↑ |      | 7        | 7         |      |       |      |  |
| Sign Control             |           | Free     | Free        |      | Stop     | •         |      |       |      |  |
| Grade                    |           | 0%       | 0%          |      | 0%       |           |      |       |      |  |
| Volume (veh/h)           | 90        | 630      | 1650        | 30   | 60       | 260       |      |       |      |  |
| Peak Hour Factor         | 0.97      | 0.97     | 0.97        | 0.97 | 0.97     | 0.97      |      |       |      |  |
| Hourly flow rate (vph)   | 93        | 649      | 1701        | 31   | 62       | 268       |      |       |      |  |
| Pedestrians              |           |          |             |      |          |           |      |       |      |  |
| Lane Width (ft)          |           |          |             |      |          |           |      |       |      |  |
| Walking Speed (ft/s)     |           |          |             |      |          |           |      |       |      |  |
| Percent Blockage         |           |          |             |      |          |           |      |       |      |  |
| Right turn flare (veh)   |           |          |             |      |          |           |      |       |      |  |
| Median type              |           |          |             |      | None     |           |      |       |      |  |
| Median storage veh)      |           |          |             |      |          |           |      |       |      |  |
| Upstream signal (ft)     |           |          |             |      |          |           |      |       |      |  |
| pX, platoon unblocked    |           |          |             |      |          |           |      |       |      |  |
| vC, conflicting volume   | 1732      |          |             |      | 2119     | 582       |      |       |      |  |
| vC1, stage 1 conf vol    |           |          |             |      |          |           |      |       |      |  |
| vC2, stage 2 conf vol    |           |          |             |      |          |           |      |       |      |  |
| vCu, unblocked vol       | 1732      |          |             |      | 2119     | 582       |      |       |      |  |
| tC, single (s)           | 4.1       |          |             |      | 6.8      | 6.9       |      |       |      |  |
| tC, 2 stage (s)          |           |          |             |      |          |           |      |       |      |  |
| tF (s)                   | 2.2       |          |             |      | 3.5      | 3.3       |      |       |      |  |
| p0 queue free %          | 74        |          |             |      | 0        | 41        |      |       |      |  |
| cM capacity (veh/h)      | 360       |          |             |      | 32       | 456       |      |       |      |  |
| Direction, Lane #        | EB 1      | EB 2     | EB 3        | EB 4 | WB1      | WB 2      | WB3  | SB 1  | SB 2 |  |
| Volume Total             | 93        | 216      | 216         | 216  | 680      | 680       | 371  | 62    | 268  |  |
| Volume Left              | 93        | 0        | 0           | 0    | 0        | 0         | 0    | 62    | 0    |  |
| Volume Right             | 0         | 0        | 0           | 0    | 0        | 0         | 31   | 0     | 268  |  |
| cSH                      | 360       | 1700     | 1700        | 1700 | 1700     | 1700      | 1700 | 32    | 456  |  |
| Volume to Capacity       | 0.26      | 0.13     | 0.13        | 0.13 | 0.40     | 0.40      | 0.22 | 1.92  | 0.59 |  |
| Queue Length 95th (ft)   | 25        | 0        | 0           | 0    | 0        | 0         | 0    | 175   | 92   |  |
| Control Delay (s)        | 18.4      | 0.0      | 0.0         | 0.0  | 0.0      | 0.0       | 0.0  | 699.7 | 23.5 |  |
| Lane LOS                 | С         |          |             |      |          |           |      | F     | С    |  |
| Approach Delay (s)       | 2.3       |          |             |      | 0.0      |           |      | 150.3 |      |  |
| Approach LOS             |           |          |             |      |          |           |      | F     |      |  |
| Intersection Summary     |           |          |             |      |          |           |      |       |      |  |
| Average Delay            |           |          | 18.3        |      |          |           |      |       |      |  |
| Intersection Capacity Ut | ilization |          | 55.3%       | ŀ    | CU Lev   | el of Ser | vice |       | В    |  |
| Analysis Period (min)    |           |          | 15          |      |          |           |      |       |      |  |
|                          |           |          |             |      |          |           |      |       |      |  |

|                           | ۶         | <b>→</b>   | •     | •    | +          | 4        | 1     | <b>†</b> | ~     | <b>/</b> | <b>+</b> | 4    |
|---------------------------|-----------|------------|-------|------|------------|----------|-------|----------|-------|----------|----------|------|
| Movement                  | EBL       | EBT        | EBR   | WBL  | WBT        | WBR      | NBL   | NBT      | NBR   | SBL      | SBT      | SBR  |
| Lane Configurations       | ሻ         | <b>∱</b> ⊅ |       | ሻ    | <b>∱</b> ∱ |          | ሻ     | f)       |       | ሻ        | f.       |      |
| Sign Control              |           | Free       |       |      | Free       |          |       | Stop     |       |          | Stop     |      |
| Grade                     |           | 0%         |       |      | 0%         |          |       | 0%       |       |          | 0%       |      |
| Volume (veh/h)            | 170       | 590        | 10    | 10   | 900        | 10       | 10    | 10       | 10    | 10       | 10       | 330  |
| Peak Hour Factor          | 0.97      | 0.97       | 0.97  | 0.97 | 0.97       | 0.97     | 0.97  | 0.97     | 0.97  | 0.97     | 0.97     | 0.97 |
| Hourly flow rate (vph)    | 175       | 608        | 10    | 10   | 928        | 10       | 10    | 10       | 10    | 10       | 10       | 340  |
| Pedestrians               |           |            |       |      |            |          |       |          |       |          |          |      |
| Lane Width (ft)           |           |            |       |      |            |          |       |          |       |          |          |      |
| Walking Speed (ft/s)      |           |            |       |      |            |          |       |          |       |          |          |      |
| Percent Blockage          |           |            |       |      |            |          |       |          |       |          |          |      |
| Right turn flare (veh)    |           |            |       |      |            |          |       |          |       |          |          |      |
| Median type               |           |            |       |      |            |          |       | None     |       |          | None     |      |
| Median storage veh)       |           |            |       |      |            |          |       |          |       |          |          |      |
| Upstream signal (ft)      |           |            |       |      |            |          |       |          |       |          |          |      |
| pX, platoon unblocked     |           |            |       |      |            |          |       |          |       |          |          |      |
| vC, conflicting volume    | 938       |            |       | 619  |            |          | 1794  | 1923     | 309   | 1624     | 1923     | 469  |
| vC1, stage 1 conf vol     |           |            |       |      |            |          |       |          |       |          |          |      |
| vC2, stage 2 conf vol     |           |            |       |      |            |          |       |          |       |          |          |      |
| vCu, unblocked vol        | 938       |            |       | 619  |            |          | 1794  | 1923     | 309   | 1624     | 1923     | 469  |
| tC, single (s)            | 4.1       |            |       | 4.1  |            |          | 7.5   | 6.5      | 6.9   | 7.5      | 6.5      | 6.9  |
| tC, 2 stage (s)           |           |            |       |      |            |          |       |          |       |          |          |      |
| tF (s)                    | 2.2       |            |       | 2.2  |            |          | 3.5   | 4.0      | 3.3   | 3.5      | 4.0      | 3.3  |
| p0 queue free %           | 76        |            |       | 99   |            |          | 20    | 79       | 98    | 78       | 79       | 37   |
| cM capacity (veh/h)       | 726       |            |       | 958  |            |          | 13    | 50       | 687   | 46       | 50       | 541  |
| Direction, Lane #         | EB 1      | EB 2       | EB 3  | WB 1 | WB 2       | WB3      | NB 1  | NB 2     | SB 1  | SB 2     |          |      |
| Volume Total              | 175       | 405        | 213   | 10   | 619        | 320      | 10    | 21       | 10    | 351      |          |      |
| Volume Left               | 175       | 0          | 0     | 10   | 0          | 0        | 10    | 0        | 10    | 0        |          |      |
| Volume Right              | 0         | 0          | 10    | 0    | 0          | 10       | 0     | 10       | 0     | 340      |          |      |
| cSH                       | 726       | 1700       | 1700  | 958  | 1700       | 1700     | 13    | 93       | 46    | 419      |          |      |
| Volume to Capacity        | 0.24      | 0.24       | 0.13  | 0.01 | 0.36       | 0.19     | 0.80  | 0.22     | 0.22  | 0.84     |          |      |
| Queue Length 95th (ft)    | 24        | 0          | 0     | 1    | 0          | 0        | 45    | 20       | 19    | 199      |          |      |
| Control Delay (s)         | 11.5      | 0.0        | 0.0   | 8.8  | 0.0        | 0.0      | 561.9 | 54.6     | 105.0 | 44.6     |          |      |
| Lane LOS                  | В         |            |       | Α    |            |          | F     | F        | F     | Е        |          |      |
| Approach Delay (s)        | 2.5       |            |       | 0.1  |            |          | 223.7 |          | 46.3  |          |          |      |
| Approach LOS              |           |            |       |      |            |          | F     |          | Е     |          |          |      |
| Intersection Summary      |           |            |       |      |            |          |       |          |       |          |          |      |
| Average Delay             | _         |            | 12.1  |      |            |          |       |          | _     |          |          | _    |
| Intersection Capacity Uti | ilization |            | 65.6% | I    | CU Lev     | el of Se | rvice |          | С     |          |          |      |
| Analysis Period (min)     |           |            | 15    |      |            |          |       |          |       |          |          |      |
|                           |           |            |       |      |            |          |       |          |       |          |          |      |

### Level Of Service Computation Report 2000 HCM 4-Way Stop (Base Volume Alternative) Cumulative No Project AM

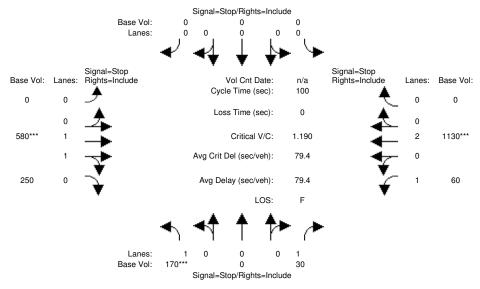
# Intersection #8: Elverta Road / Elwyn Road



| Movement:     | Noi<br>L - | rth Bo<br>- T | - R  | Soi<br>L - | - T  | und<br>– R | L -       | ast Bo<br>- T | - R   | We<br>L - | est Bo<br>- T | - R   |
|---------------|------------|---------------|------|------------|------|------------|-----------|---------------|-------|-----------|---------------|-------|
| Min. Green:   | 0          | 0             | 0    | 0          | 0    | 0          | 0         | 0             | 0     | 0         | 0             | 0     |
| Volume Module |            |               | 1    | 1          |      | 1          | 1         |               |       | 1         |               | ı     |
| Base Vol:     | 20         | 70            | 20   | 360        | 280  | 80         | 10        | 480           | 60    | 180       | 910           | 300   |
| Growth Adj:   |            |               | 1.00 |            | 1.00 | 1.00       |           | 1.00          | 1.00  |           | 1.00          | 1.00  |
| Initial Bse:  |            | 70            | 20   | 360        | 280  | 80         | 10        | 480           | 60    | 180       | 910           | 300   |
|               | 0.97       | 0.97          | 0.97 | 0.97       | 0.97 | 0.97       | 0.97      | 0.97          | 0.97  | 0.97      | 0.97          | 0.97  |
| PHF Adi:      |            |               | 0.97 |            | 0.97 | 0.97       |           | 0.97          | 0.97  |           | 0.97          | 0.97  |
| PHF Volume:   | 20         | 70            | 20   | 360        | 280  | 80         | 10        | 480           | 60    | 180       | 910           | 300   |
| Reduct Vol:   | 0          | 0             | 0    | 0          | 0    | 0          | 0         | 0             | 0     | 0         | 0             | 0     |
| Reduced Vol:  |            | 70            | 20   | 360        | 280  | 80         | 10        | 480           | 60    | 180       | 910           | 300   |
| PCE Adj:      | 1.00       | 1.00          | 1.00 | 1.00       | 1.00 | 1.00       | 1.00      | 1.00          | 1.00  | 1.00      | 1.00          | 1.00  |
| MLF Adj:      | 1.00       | 1.00          | 1.00 | 1.00       | 1.00 | 1.00       | 1.00      | 1.00          | 1.00  | 1.00      | 1.00          | 1.00  |
| FinalVolume:  | 20         | 70            | 20   | 360        | 280  | 80         | 10        | 480           | 60    | 180       | 910           | 300   |
|               |            |               |      |            |      |            |           |               |       |           |               |       |
| Saturation Fi | low Mo     | odule:        |      |            |      |            |           |               |       |           |               |       |
| Adjustment:   | 1.00       | 1.00          | 1.00 | 1.00       | 1.00 | 1.00       | 1.00      | 1.00          | 1.00  | 1.00      | 1.00          | 1.00  |
| Lanes:        | 1.00       | 0.78          | 0.22 | 1.00       | 0.78 | 0.22       | 1.00      | 1.78          | 0.22  | 1.00      | 1.50          | 0.50  |
| Final Sat.:   |            |               | 74   | 376        | 314  |            | 306       |               | 74    |           |               | 194   |
|               |            |               |      |            |      |            |           |               |       |           |               |       |
| Capacity Anal | lysis      | Modul         | e:   |            |      |            |           |               |       |           |               |       |
| Vol/Sat:      | 0.06       | 0.27          | 0.27 | 0.96       | 0.89 | 0.89       | 0.03      | 0.82          | 0.81  | 0.52      | 1.58          | 1.55  |
| Crit Moves:   |            | ****          |      | ****       |      |            |           | ****          |       |           | ****          |       |
| Delay/Veh:    | 14.6       | 16.9          | 16.9 | 67.1       | 51.5 | 51.5       | 14.5      | 47.0          | 45.8  | 22.5      | 299           | 281.4 |
| Delay Adj:    | 1.00       | 1.00          | 1.00 | 1.00       | 1.00 | 1.00       | 1.00      | 1.00          | 1.00  |           | 1.00          | 1.00  |
| AdjDel/Veh:   | 14.6       | 16.9          | 16.9 | 67.1       | 51.5 | 51.5       | 14.5      | 47.0          | 45.8  | 22.5      |               | 281.4 |
| LOS by Move:  |            |               | С    | F          | F    | F          | В         | E             | E     |           | F             | F     |
| ApproachDel:  |            | 16.5          |      |            | 59.3 |            |           | 46.3          |       | 4         | 259.2         |       |
| Delay Adj:    |            | 1.00          |      |            | 1.00 |            |           | 1.00          |       |           | 1.00          |       |
| ApprAdjDel:   |            | 16.5          |      |            | 59.3 |            |           | 46.3          |       | 4         | 259.2         |       |
| LOS by Appr:  |            |               |      |            | F    |            |           | E             |       |           | F             |       |
| AllWayAvgQ:   |            |               |      |            |      |            |           |               | 3.0   | 0.9       | 30.9          | 29.3  |
| Note: Queue   |            |               |      |            |      |            |           |               |       |           |               |       |
|               |            |               |      |            |      | Warran     |           |               |       |           |               |       |
| *****         |            |               |      |            |      |            | ****      | *****         | ***** | ****      | ****          | ***** |
| Intersection  |            |               |      |            | 4    |            | ****      | *****         | ****  | ****      | ****          | ***** |
| Base Volume A |            |               |      |            |      |            | l <b></b> |               | '     | 1         |               |       |
|               |            |               |      |            |      | und        |           |               |       | W-        |               |       |

-----||-----||------| -----||-----||-----| Major Street Volume: 1940 Minor Approach Volume: 720 Minor Approach Volume Threshold: 89 [less than minimum of 150]

\_\_\_\_\_\_


#### SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

## Level Of Service Computation Report 2000 HCM 4-Way Stop (Base Volume Alternative) Cumulative No Project AM

# Intersection #9: Elverta Road / Rio Linda Boulevard



| Street Name: Approach: |       | Rio<br>rth Bo |        |       |         | und    | E:     | ast Bo |        | a Road<br>West E | Sound |
|------------------------|-------|---------------|--------|-------|---------|--------|--------|--------|--------|------------------|-------|
| Movement:              | L ·   | - T           | - R    | L -   | - T     | - R    | L ·    | - T    | - R    | L - T            | - R   |
| Min. Green:            | 0     | 0             | 0      | . 0   | 0       | 0      | . 0    | 0      | 0      | . 0 0            | 0     |
| Volume Module          |       |               |        | ı     |         | 1      | ı      |        |        | 1                | I     |
| Base Vol:              | 170   | 0             | 30     | 0     | 0       | 0      | 0      | 580    | 250    | 60 1130          | 0     |
| Growth Adj:            | 1.00  | 1.00          | 1.00   | 1.00  | 1.00    | 1.00   | 1.00   | 1.00   | 1.00   | 1.00 1.00        | 1.00  |
| Initial Bse:           | 170   | 0             | 30     | 0     | 0       | 0      | 0      | 580    | 250    | 60 1130          | 0     |
| User Adj:              | 1.00  | 1.00          | 1.00   | 1.00  | 1.00    | 1.00   | 1.00   | 1.00   | 1.00   | 1.00 1.00        | 1.00  |
| PHF Adj:               | 0.97  | 0.97          | 0.97   | 0.97  | 0.97    | 0.97   | 0.97   | 0.97   | 0.97   | 0.97 0.97        | 0.97  |
| PHF Volume:            | 175   | 0             | 31     | 0     | 0       | 0      | 0      | 598    | 258    | 62 1165          | 0     |
| Reduct Vol:            | 0     | 0             | 0      | 0     | 0       | 0      | 0      | 0      | 0      | 0 0              | 0     |
| Reduced Vol:           | 175   | 0             | 31     | 0     | 0       | 0      | 0      | 598    | 258    | 62 1165          | 0     |
| PCE Adj:               | 1.00  | 1.00          | 1.00   | 1.00  | 1.00    | 1.00   | 1.00   | 1.00   | 1.00   | 1.00 1.00        | 1.00  |
| MLF Adj:               | 1.00  | 1.00          | 1.00   | 1.00  | 1.00    | 1.00   | 1.00   | 1.00   | 1.00   | 1.00 1.00        | 1.00  |
| FinalVolume:           | 175   | 0             | 31     | 0     | 0       | 0      | 0      | 598    | 258    | 62 1165          | 0     |
|                        |       |               |        |       |         |        |        |        |        |                  |       |
| Saturation F           | low M | odule:        |        |       |         |        |        |        |        |                  |       |
| Adjustment:            | 1.00  | 1.00          | 1.00   | 1.00  | 1.00    | 1.00   | 1.00   | 1.00   | 1.00   | 1.00 1.00        | 1.00  |
| Lanes:                 | 1.00  | 0.00          | 1.00   | 0.00  | 0.00    | 0.00   | 0.00   | 1.40   | 0.60   | 1.00 2.00        | 0.00  |
| Final Sat.:            | 397   | 0             | 451    | 0     | 0       | 0      | 0      | 729    | 328    | 451 979          | 0     |
|                        |       |               |        |       |         |        |        |        |        |                  |       |
| Capacity Ana           | lysis | Modul         | .e:    |       |         |        |        |        |        |                  |       |
| Vol/Sat:               | 0.44  | XXXX          | 0.07   | XXXX  | XXXX    | XXXX   | XXXX   | 0.82   | 0.78   | 0.14 1.19        | XXXX  |
| Crit Moves:            | ***   |               |        |       |         |        |        | ****   |        | ***              |       |
| Delay/Veh:             | 18.1  | 0.0           | 10.9   | 0.0   | 0.0     | 0.0    | 0.0    | 33.7   | 29.0   | 11.8 129         | 0.0   |
| Delay Adj:             | 1.00  | 1.00          | 1.00   | 1.00  | 1.00    | 1.00   | 1.00   | 1.00   | 1.00   | 1.00 1.00        | 1.00  |
| AdjDel/Veh:            | 18.1  | 0.0           | 10.9   | 0.0   | 0.0     | 0.0    | 0.0    | 33.7   | 29.0   | 11.8 129         | 0.0   |
| LOS by Move:           | С     | *             | В      | *     | *       | *      | *      | D      | D      | B F              | *     |
| ApproachDel:           |       | 17.0          |        | X     | XXXXX   |        |        | 32.3   |        | 122.7            | 1     |
| Delay Adj:             |       | 1.00          |        | 2     | XXXXX   |        |        | 1.00   |        | 1.00             |       |
| ApprAdjDel:            |       | 17.0          |        | X     | XXXXX   |        |        | 32.3   |        | 122.7            | 1     |
| LOS by Appr:           |       | С             |        |       | *       |        |        | D      |        | F                |       |
| AllWayAvgQ:            | 0.7   | 0.0           | 0.1    | 0.0   | 0.0     | 0.0    | 0.0    | 3.7    | 3.0    | 0.2 16.1         | 0.0   |
| Note: Queue            |       |               |        |       |         |        |        |        |        |                  |       |
|                        | P     | eak Ho        | ur Vol | ume S | ignal   | Warran | t Repo | ort [U | Jrban] |                  |       |
| *****                  | ****  | ****          | ****   | ****  | ****    | ****   | ****   | *****  | *****  | *****            | ***** |
| Intersection ******    |       |               |        | ,     |         |        |        | *****  | *****  | ******           | ***** |
| Base Volume            |       |               |        |       |         |        |        |        |        | 1                | 1     |
|                        |       |               |        |       |         |        |        |        |        |                  |       |
| Approach:              | 140.  | L CII DC      | ullu   | 301   | JUII DO | unu    | E c    | ast DC | Juliu  | West E           | ound  |

Movement: L - T - R L - T - R L - T - R L - T - R Control: Stop Sign Stop Si

\_\_\_\_\_\_

#### SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

|                           | <b>→</b>   | •    | •     | <b>←</b> | 4       | <b>/</b>  |      |   |  |
|---------------------------|------------|------|-------|----------|---------|-----------|------|---|--|
| Movement                  | EBT        | EBR  | WBL   | WBT      | NBL     | NBR       |      |   |  |
| Lane Configurations       | <b>↑</b> Ъ |      | ኻ     | <b>^</b> | ሻ       | 7         |      |   |  |
| Sign Control              | Free       |      | ·     | Free     | Stop    |           |      |   |  |
| Grade                     | 0%         |      |       | 0%       | 0%      |           |      |   |  |
| Volume (veh/h)            | 660        | 10   | 270   | 1190     | 10      | 80        |      |   |  |
| Peak Hour Factor          | 0.97       | 0.97 | 0.97  | 0.97     | 0.97    | 0.97      |      |   |  |
| Hourly flow rate (vph)    | 680        | 10   | 278   | 1227     | 10      | 82        |      |   |  |
| Pedestrians               |            |      |       |          |         |           |      |   |  |
| Lane Width (ft)           |            |      |       |          |         |           |      |   |  |
| Walking Speed (ft/s)      |            |      |       |          |         |           |      |   |  |
| Percent Blockage          |            |      |       |          |         |           |      |   |  |
| Right turn flare (veh)    |            |      |       |          |         |           |      |   |  |
| Median type               |            |      |       |          | None    |           |      |   |  |
| Median storage veh)       |            |      |       |          |         |           |      |   |  |
| Upstream signal (ft)      |            |      |       |          |         |           |      |   |  |
| pX, platoon unblocked     |            |      |       |          |         |           |      |   |  |
| vC, conflicting volume    |            |      | 691   |          | 1856    | 345       |      |   |  |
| vC1, stage 1 conf vol     |            |      |       |          |         |           |      |   |  |
| vC2, stage 2 conf vol     |            |      |       |          |         |           |      |   |  |
| vCu, unblocked vol        |            |      | 691   |          | 1856    | 345       |      |   |  |
| tC, single (s)            |            |      | 4.1   |          | 6.8     | 6.9       |      |   |  |
| tC, 2 stage (s)           |            |      |       |          |         |           |      |   |  |
| tF (s)                    |            |      | 2.2   |          | 3.5     | 3.3       |      |   |  |
| p0 queue free %           |            |      | 69    |          | 77      | 87        |      |   |  |
| cM capacity (veh/h)       |            |      | 900   |          | 45      | 651       |      |   |  |
| Direction, Lane #         | EB 1       | EB 2 | WB 1  | WB2      | WB3     | NB 1      | NB 2 |   |  |
| Volume Total              | 454        | 237  | 278   | 613      | 613     | 10        | 82   |   |  |
| Volume Left               | 0          | 0    | 278   | 0        | 0       | 10        | 0    |   |  |
| Volume Right              | 0          | 10   | 0     | 0        | 0       | 0         | 82   |   |  |
| cSH                       | 1700       | 1700 | 900   | 1700     | 1700    | 45        | 651  |   |  |
| Volume to Capacity        | 0.27       | 0.14 | 0.31  | 0.36     | 0.36    | 0.23      | 0.13 |   |  |
| Queue Length 95th (ft)    | 0          | 0    | 33    | 0        | 0       | 19        | 11   |   |  |
| Control Delay (s)         | 0.0        | 0.0  | 10.8  | 0.0      | 0.0     | 107.2     | 11.3 |   |  |
| Lane LOS                  |            |      | В     |          |         | F         | В    |   |  |
| Approach Delay (s)        | 0.0        |      | 2.0   |          |         | 22.0      |      |   |  |
| Approach LOS              |            |      |       |          |         | С         |      |   |  |
| Intersection Summary      |            |      |       |          |         |           |      |   |  |
| Average Delay             |            |      | 2.2   |          |         |           |      |   |  |
| Intersection Capacity Uti | ilization  |      | 46.9% | Į.       | CU Leve | el of Ser | vice | Α |  |
| Analysis Period (min)     |            |      | 15    |          |         |           |      |   |  |
|                           |            |      |       |          |         |           |      |   |  |

|                           | ۶         | <b>→</b> | <b>←</b> | •    | <b>&gt;</b> | 4      |      |   |  |
|---------------------------|-----------|----------|----------|------|-------------|--------|------|---|--|
| Movement                  | EBL       | EBT      | WBT      | WBR  | SBL         | SBR    |      |   |  |
| Lane Configurations       | Ĭ         | <b>^</b> | ħβ       |      | 7           | 7      |      |   |  |
| Sign Control              |           | Free     | Free     |      | Stop        |        |      |   |  |
| Grade                     |           | 0%       | 0%       |      | 0%          |        |      |   |  |
| Volume (veh/h)            | 70        | 670      | 960      | 10   | 10          | 500    |      |   |  |
| Peak Hour Factor          | 0.97      | 0.97     | 0.97     | 0.97 | 0.97        | 0.97   |      |   |  |
| Hourly flow rate (vph)    | 72        | 691      | 990      | 10   | 10          | 515    |      |   |  |
| Pedestrians               |           |          |          |      |             |        |      |   |  |
| Lane Width (ft)           |           |          |          |      |             |        |      |   |  |
| Walking Speed (ft/s)      |           |          |          |      |             |        |      |   |  |
| Percent Blockage          |           |          |          |      |             |        |      |   |  |
| Right turn flare (veh)    |           |          |          |      |             |        |      |   |  |
| Median type               |           |          |          |      | None        |        |      |   |  |
| Median storage veh)       |           |          |          |      |             |        |      |   |  |
| Upstream signal (ft)      |           |          |          |      |             |        |      |   |  |
| pX, platoon unblocked     |           |          |          |      |             |        |      |   |  |
| vC, conflicting volume    | 1000      |          |          |      | 1485        | 500    |      |   |  |
| vC1, stage 1 conf vol     |           |          |          |      |             |        |      |   |  |
| vC2, stage 2 conf vol     |           |          |          |      |             |        |      |   |  |
| vCu, unblocked vol        | 1000      |          |          |      | 1485        | 500    |      |   |  |
| tC, single (s)            | 4.1       |          |          |      | 6.8         | 6.9    |      |   |  |
| tC, 2 stage (s)           |           |          |          |      |             |        |      |   |  |
| tF (s)                    | 2.2       |          |          |      | 3.5         | 3.3    |      |   |  |
| p0 queue free %           | 90        |          |          |      | 90          | 0      |      |   |  |
| cM capacity (veh/h)       | 688       |          |          |      | 103         | 516    |      |   |  |
| Direction, Lane #         | EB 1      | EB 2     | EB 3     | WB 1 | WB 2        | SB 1   | SB 2 |   |  |
| Volume Total              | 72        | 345      | 345      | 660  | 340         | 10     | 515  |   |  |
| Volume Left               | 72        | 0        | 0        | 0    | 0           | 10     | 0    |   |  |
| Volume Right              | 0         | 0        | 0        | 0    | 10          | 0      | 515  |   |  |
| cSH                       | 688       | 1700     | 1700     | 1700 | 1700        | 103    | 516  |   |  |
| Volume to Capacity        | 0.10      | 0.20     | 0.20     | 0.39 | 0.20        | 0.10   | 1.00 |   |  |
| Queue Length 95th (ft)    | 9         | 0.20     | 0.20     | 0.00 | 0.20        | 8      | 346  |   |  |
| Control Delay (s)         | 10.8      | 0.0      | 0.0      | 0.0  | 0.0         | 43.7   | 67.6 |   |  |
| Lane LOS                  | В         |          | - 0.0    | 0.0  | 0.0         | E      | F    |   |  |
| Approach Delay (s)        | 1.0       |          |          | 0.0  |             | 67.1   | •    |   |  |
| Approach LOS              |           |          |          |      |             | F      |      |   |  |
| Intersection Summary      |           |          |          |      |             |        |      |   |  |
| Average Delay             |           |          | 15.8     |      |             |        |      |   |  |
| Intersection Capacity Uti | ilization |          | 64.5%    | Į.   | CU Leve     | of Ser | vice | С |  |
|                           |           |          | 15       |      |             |        |      |   |  |

|                           | ۶        | <b>→</b> | •     | •     | •       | •         | 4    | †    | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|-------|---------|-----------|------|------|----------|-------------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT     | WBR       | NBL  | NBT  | NBR      | SBL         | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |       | 4       |           |      | 4    |          |             | 4        |      |
| Sign Control              |          | Stop     |       |       | Stop    |           |      | Stop |          |             | Stop     |      |
| Volume (vph)              | 10       | 50       | 110   | 230   | 30      | 10        | 20   | 10   | 190      | 10          | 10       | 10   |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97  | 0.97  | 0.97    | 0.97      | 0.97 | 0.97 | 0.97     | 0.97        | 0.97     | 0.97 |
| Hourly flow rate (vph)    | 10       | 52       | 113   | 237   | 31      | 10        | 21   | 10   | 196      | 10          | 10       | 10   |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |         |           |      |      |          |             |          |      |
| Volume Total (vph)        | 175      | 278      | 227   | 31    |         |           |      |      |          |             |          |      |
| Volume Left (vph)         | 10       | 237      | 21    | 10    |         |           |      |      |          |             |          |      |
| Volume Right (vph)        | 113      | 10       | 196   | 10    |         |           |      |      |          |             |          |      |
| Hadj (s)                  | -0.34    | 0.18     | -0.47 | -0.10 |         |           |      |      |          |             |          |      |
| Departure Headway (s)     | 4.6      | 4.9      | 4.6   | 5.2   |         |           |      |      |          |             |          |      |
| Degree Utilization, x     | 0.22     | 0.38     | 0.29  | 0.04  |         |           |      |      |          |             |          |      |
| Capacity (veh/h)          | 730      | 693      | 715   | 602   |         |           |      |      |          |             |          |      |
| Control Delay (s)         | 8.8      | 10.9     | 9.4   | 8.5   |         |           |      |      |          |             |          |      |
| Approach Delay (s)        | 8.8      | 10.9     | 9.4   | 8.5   |         |           |      |      |          |             |          |      |
| Approach LOS              | Α        | В        | Α     | Α     |         |           |      |      |          |             |          |      |
| Intersection Summary      |          |          |       |       |         |           |      |      |          |             |          |      |
| Delay                     |          |          | 9.8   |       |         |           |      |      |          |             |          |      |
| HCM Level of Service      |          |          | Α     |       |         |           |      |      |          |             |          |      |
| Intersection Capacity Uti | lization |          | 48.9% | ŀ     | CU Leve | el of Ser | vice |      | Α        |             |          |      |
| Analysis Period (min)     |          |          | 15    |       |         |           |      |      |          |             |          |      |
|                           |          |          |       |       |         |           |      |      |          |             |          |      |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •          | 4    | †    | /    | <b>&gt;</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|-------|----------|------------|------|------|------|-------------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR        | NBL  | NBT  | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |       | 4        |            |      | 4    |      |             | 4        |      |
| Sign Control              |          | Stop     |       |       | Stop     |            |      | Stop |      |             | Stop     |      |
| Volume (vph)              | 20       | 90       | 60    | 210   | 100      | 10         | 50   | 180  | 30   | 20          | 280      | 50   |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97  | 0.97  | 0.97     | 0.97       | 0.97 | 0.97 | 0.97 | 0.97        | 0.97     | 0.97 |
| Hourly flow rate (vph)    | 21       | 93       | 62    | 216   | 103      | 10         | 52   | 186  | 31   | 21          | 289      | 52   |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |            |      |      |      |             |          |      |
| Volume Total (vph)        | 175      | 330      | 268   | 361   |          |            |      |      |      |             |          |      |
| Volume Left (vph)         | 21       | 216      | 52    | 21    |          |            |      |      |      |             |          |      |
| Volume Right (vph)        | 62       | 10       | 31    | 52    |          |            |      |      |      |             |          |      |
| Hadj (s)                  | -0.15    | 0.15     | 0.00  | -0.04 |          |            |      |      |      |             |          |      |
| Departure Headway (s)     | 6.6      | 6.5      | 6.4   | 6.2   |          |            |      |      |      |             |          |      |
| Degree Utilization, x     | 0.32     | 0.59     | 0.48  | 0.62  |          |            |      |      |      |             |          |      |
| Capacity (veh/h)          | 463      | 508      | 508   | 538   |          |            |      |      |      |             |          |      |
| Control Delay (s)         | 12.7     | 18.4     | 15.1  | 18.6  |          |            |      |      |      |             |          |      |
| Approach Delay (s)        | 12.7     | 18.4     | 15.1  | 18.6  |          |            |      |      |      |             |          |      |
| Approach LOS              | В        | С        | С     | С     |          |            |      |      |      |             |          |      |
| Intersection Summary      |          |          |       |       |          |            |      |      |      |             |          |      |
| Delay                     |          |          | 16.8  |       |          |            |      |      |      |             |          |      |
| HCM Level of Service      |          |          | С     |       |          |            |      |      |      |             |          |      |
| Intersection Capacity Uti | lization |          | 66.3% | - 10  | CU Leve  | el of Serv | vice |      | С    |             |          |      |
| Analysis Period (min)     |          |          | 15    |       |          |            |      |      |      |             |          |      |
|                           |          |          |       |       |          |            |      |      |      |             |          |      |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •         | 4      | †        | /    | <b>/</b> | ţ        | 4    |
|---------------------------|----------|----------|-------|-------|----------|-----------|--------|----------|------|----------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations       | 44       | ተተተ      | 7     | 44    | ተተተ      | 7         | Ĭ      | <b>†</b> | 7    | 7        | <b>^</b> | 7    |
| Ideal Flow (vphpl)        | 1900     | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900 | 1900     | 1900     | 1900 |
| Total Lost time (s)       | 4.0      | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0  | 4.0      | 4.0      | 4.0  |
| Lane Util. Factor         | 0.97     | 0.91     | 1.00  | 0.97  | 0.91     | 1.00      | 1.00   | 1.00     | 1.00 | 1.00     | 0.95     | 1.00 |
| Frt                       | 1.00     | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85 | 1.00     | 1.00     | 0.85 |
| Flt Protected             | 0.95     | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00 | 0.95     | 1.00     | 1.00 |
| Satd. Flow (prot)         | 3433     | 5085     | 1583  | 3433  | 5085     | 1583      | 1770   | 1863     | 1583 | 1770     | 3539     | 1583 |
| Flt Permitted             | 0.95     | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00 | 0.95     | 1.00     | 1.00 |
| Satd. Flow (perm)         | 3433     | 5085     | 1583  | 3433  | 5085     | 1583      | 1770   | 1863     | 1583 | 1770     | 3539     | 1583 |
| Volume (vph)              | 120      | 570      | 210   | 150   | 950      | 90        | 100    | 240      | 190  | 140      | 480      | 50   |
| Peak-hour factor, PHF     | 0.97     | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97   | 0.97     | 0.97 | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)           | 124      | 588      | 216   | 155   | 979      | 93        | 103    | 247      | 196  | 144      | 495      | 52   |
| RTOR Reduction (vph)      | 0        | 0        | 150   | 0     | 0        | 65        | 0      | 0        | 153  | 0        | 0        | 38   |
| Lane Group Flow (vph)     | 124      | 588      | 66    | 155   | 979      | 28        | 103    | 247      | 43   | 144      | 495      | 14   |
| Turn Type                 | Prot     |          | Perm  | Prot  |          | Perm      | Prot   |          | Perm | Prot     |          | Perm |
| Protected Phases          | 1        | 6        |       | 5     | 2        |           | 3      | 8        |      | 7        | 4        |      |
| Permitted Phases          |          |          | 6     |       |          | 2         |        |          | 8    |          |          | 4    |
| Actuated Green, G (s)     | 4.3      | 17.8     | 17.8  | 3.2   | 17.0     | 17.0      | 3.8    | 12.5     | 12.5 | 6.9      | 15.4     | 15.4 |
| Effective Green, g (s)    | 5.1      | 18.9     | 18.9  | 4.7   | 18.5     | 18.5      | 5.3    | 13.6     | 13.6 | 8.4      | 16.7     | 16.7 |
| Actuated g/C Ratio        | 0.08     | 0.31     | 0.31  | 0.08  | 0.30     | 0.30      | 0.09   | 0.22     | 0.22 | 0.14     | 0.27     | 0.27 |
| Clearance Time (s)        | 4.8      | 5.1      | 5.1   | 5.5   | 5.5      | 5.5       | 5.5    | 5.1      | 5.1  | 5.5      | 5.3      | 5.3  |
| Vehicle Extension (s)     | 1.0      | 1.0      | 1.0   | 1.0   | 1.0      | 1.0       | 1.0    | 1.0      | 1.0  | 1.0      | 1.0      | 1.0  |
| Lane Grp Cap (vph)        | 284      | 1560     | 486   | 262   | 1527     | 475       | 152    | 411      | 349  | 241      | 959      | 429  |
| v/s Ratio Prot            | 0.04     | 0.12     |       | c0.05 | c0.19    |           | 0.06   | 0.13     |      | c0.08    | c0.14    |      |
| v/s Ratio Perm            |          |          | 0.04  |       |          | 0.02      |        |          | 0.03 |          |          | 0.01 |
| v/c Ratio                 | 0.44     | 0.38     | 0.14  | 0.59  | 0.64     | 0.06      | 0.68   | 0.60     | 0.12 | 0.60     | 0.52     | 0.03 |
| Uniform Delay, d1         | 26.9     | 16.7     | 15.4  | 27.5  | 18.7     | 15.3      | 27.3   | 21.6     | 19.2 | 25.0     | 19.0     | 16.5 |
| Progression Factor        | 1.00     | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Incremental Delay, d2     | 0.4      | 0.1      | 0.0   | 2.4   | 0.7      | 0.0       | 9.0    | 1.7      | 0.1  | 2.6      | 0.2      | 0.0  |
| Delay (s)                 | 27.3     | 16.8     | 15.5  | 29.9  | 19.4     | 15.4      | 36.4   | 23.3     | 19.3 | 27.7     | 19.2     | 16.5 |
| Level of Service          | С        | В        | В     | С     | В        | В         | D      | С        | В    | С        | В        | В    |
| Approach Delay (s)        |          | 17.9     |       |       | 20.4     |           |        | 24.3     |      |          | 20.8     |      |
| Approach LOS              |          | В        |       |       | С        |           |        | С        |      |          | С        |      |
| Intersection Summary      |          |          |       |       |          |           |        |          |      |          |          |      |
| HCM Average Control D     |          |          | 20.4  | H     | HCM Le   | vel of Se | ervice |          | С    |          |          |      |
| HCM Volume to Capacit     |          |          | 0.60  |       |          |           |        |          |      |          |          |      |
| Actuated Cycle Length (   | ,        |          | 61.6  |       |          | ost time  |        |          | 16.0 |          |          |      |
| Intersection Capacity Uti | lization |          | 55.5% | ŀ     | CU Leve  | el of Ser | vice   |          | В    |          |          |      |
| Analysis Period (min)     |          |          | 15    |       |          |           |        |          |      |          |          |      |
| c Critical Lane Group     |          |          |       |       |          |           |        |          |      |          |          |      |

|                          | ٠         | <b>→</b>   | *     | •    | <b>←</b>   | 4         | 4    | <b>†</b> | ~    | <b>&gt;</b> | <b></b> | 1    |
|--------------------------|-----------|------------|-------|------|------------|-----------|------|----------|------|-------------|---------|------|
| Movement                 | EBL       | EBT        | EBR   | WBL  | WBT        | WBR       | NBL  | NBT      | NBR  | SBL         | SBT     | SBR  |
| Lane Configurations      | ¥         | <b>↑</b> ↑ |       | ሻ    | <b>↑</b> ↑ |           | ř    | ĵ»       |      | ¥           | ĵ»      |      |
| Sign Control             |           | Free       |       |      | Free       |           |      | Stop     |      |             | Stop    |      |
| Grade                    |           | 0%         |       |      | 0%         |           |      | 0%       |      |             | 0%      |      |
| Volume (veh/h)           | 70        | 590        | 30    | 150  | 840        | 190       | 20   | 210      | 60   | 330         | 420     | 90   |
| Peak Hour Factor         | 0.97      | 0.97       | 0.97  | 0.97 | 0.97       | 0.97      | 0.97 | 0.97     | 0.97 | 0.97        | 0.97    | 0.97 |
| Hourly flow rate (vph)   | 72        | 608        | 31    | 155  | 866        | 196       | 21   | 216      | 62   | 340         | 433     | 93   |
| Pedestrians              |           |            |       |      |            |           |      |          |      |             |         |      |
| Lane Width (ft)          |           |            |       |      |            |           |      |          |      |             |         |      |
| Walking Speed (ft/s)     |           |            |       |      |            |           |      |          |      |             |         |      |
| Percent Blockage         |           |            |       |      |            |           |      |          |      |             |         |      |
| Right turn flare (veh)   |           |            |       |      |            |           |      |          |      |             |         |      |
| Median type              |           |            |       |      |            |           |      | None     |      |             | None    |      |
| Median storage veh)      |           |            |       |      |            |           |      |          |      |             |         |      |
| Upstream signal (ft)     |           |            |       |      |            |           |      |          |      |             |         |      |
| pX, platoon unblocked    |           |            |       |      |            |           |      |          |      |             |         |      |
| vC, conflicting volume   | 1062      |            |       | 639  |            |           | 1820 | 2139     | 320  | 1892        | 2057    | 531  |
| vC1, stage 1 conf vol    |           |            |       |      |            |           |      |          |      |             |         |      |
| vC2, stage 2 conf vol    |           |            |       |      |            |           |      |          |      |             |         |      |
| vCu, unblocked vol       | 1062      |            |       | 639  |            |           | 1820 | 2139     | 320  | 1892        | 2057    | 531  |
| tC, single (s)           | 4.1       |            |       | 4.1  |            |           | 7.5  | 6.5      | 6.9  | 7.5         | 6.5     | 6.9  |
| tC, 2 stage (s)          |           |            |       |      |            |           |      |          |      |             |         |      |
| tF (s)                   | 2.2       |            |       | 2.2  |            |           | 3.5  | 4.0      | 3.3  | 3.5         | 4.0     | 3.3  |
| p0 queue free %          | 89        |            |       | 84   |            |           | 0    | 0        | 91   | 0           | 0       | 81   |
| cM capacity (veh/h)      | 652       |            |       | 941  |            |           | 0    | 36       | 676  | 0           | 41      | 493  |
| Direction, Lane #        | EB 1      | EB 2       | EB 3  | WB 1 | WB 2       | WB3       | NB 1 | NB 2     | SB 1 | SB 2        |         |      |
| Volume Total             | 72        | 405        | 234   | 155  | 577        | 485       | 21   | 278      | 340  | 526         |         |      |
| Volume Left              | 72        | 0          | 0     | 155  | 0          | 0         | 21   | 0        | 340  | 0           |         |      |
| Volume Right             | 0         | 0          | 31    | 0    | 0          | 196       | 0    | 62       | 0    | 93          |         |      |
| cSH                      | 652       | 1700       | 1700  | 941  | 1700       | 1700      | 0    | 45       | 0    | 48          |         |      |
| Volume to Capacity       | 0.11      | 0.24       | 0.14  | 0.16 | 0.34       | 0.29      | Err  | 6.12     | Err  | 10.88       |         |      |
| Queue Length 95th (ft)   | 9         | 0.24       | 0.14  | 15   | 0.04       | 0.23      | Err  | Err      | Err  | Err         |         |      |
| Control Delay (s)        | 11.2      | 0.0        | 0.0   | 9.6  | 0.0        | 0.0       | Err  | Err      | Err  | Err         |         |      |
| Lane LOS                 | В         | 0.0        | 0.0   | A    | 0.0        | 0.0       | F    | F        | F    | F           |         |      |
| Approach Delay (s)       | 1.1       |            |       | 1.2  |            |           | Err  |          | Err  |             |         |      |
| Approach LOS             | •••       |            |       |      |            |           | F    |          | F    |             |         |      |
| Intersection Summary     |           |            |       |      |            |           |      |          |      |             |         |      |
| Average Delay            |           |            | Err   |      |            |           |      |          |      |             |         |      |
| Intersection Capacity Ut | ilization |            | 79.5% | I    | CU Lev     | el of Ser | vice |          | D    |             |         |      |
| Analysis Period (min)    |           |            | 15    |      |            |           |      |          |      |             |         |      |
|                          |           |            |       |      |            |           |      |          |      |             |         |      |

|                           | ٠        | <b>→</b> | •     | •     | <b>←</b> | •          | •    | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ    | 4    |
|---------------------------|----------|----------|-------|-------|----------|------------|------|----------|----------|-------------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR        | NBL  | NBT      | NBR      | SBL         | SBT  | SBR  |
| Lane Configurations       |          | 4        |       |       | 4        |            |      | 4        |          |             | 4    |      |
| Sign Control              |          | Stop     |       |       | Stop     |            |      | Stop     |          |             | Stop |      |
| Volume (vph)              | 230      | 10       | 40    | 30    | 10       | 10         | 10   | 50       | 10       | 10          | 290  | 310  |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97  | 0.97  | 0.97     | 0.97       | 0.97 | 0.97     | 0.97     | 0.97        | 0.97 | 0.97 |
| Hourly flow rate (vph)    | 237      | 10       | 41    | 31    | 10       | 10         | 10   | 52       | 10       | 10          | 299  | 320  |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |            |      |          |          |             |      |      |
| Volume Total (vph)        | 289      | 52       | 72    | 629   |          |            |      |          |          |             |      |      |
| Volume Left (vph)         | 237      | 31       | 10    | 10    |          |            |      |          |          |             |      |      |
| Volume Right (vph)        | 41       | 10       | 10    | 320   |          |            |      |          |          |             |      |      |
| Hadj (s)                  | 0.11     | 0.03     | -0.02 | -0.27 |          |            |      |          |          |             |      |      |
| Departure Headway (s)     | 5.9      | 6.4      | 5.9   | 4.8   |          |            |      |          |          |             |      |      |
| Degree Utilization, x     | 0.47     | 0.09     | 0.12  | 0.84  |          |            |      |          |          |             |      |      |
| Capacity (veh/h)          | 575      | 516      | 564   | 733   |          |            |      |          |          |             |      |      |
| Control Delay (s)         | 14.1     | 10.0     | 9.7   | 27.8  |          |            |      |          |          |             |      |      |
| Approach Delay (s)        | 14.1     | 10.0     | 9.7   | 27.8  |          |            |      |          |          |             |      |      |
| Approach LOS              | В        | Α        | Α     | D     |          |            |      |          |          |             |      |      |
| Intersection Summary      |          |          |       |       |          |            |      |          |          |             |      |      |
| Delay                     |          |          | 21.9  |       |          |            |      |          |          |             |      |      |
| HCM Level of Service      |          |          | С     |       |          |            |      |          |          |             |      |      |
| Intersection Capacity Uti | lization |          | 64.0% | - 10  | CU Leve  | el of Serv | vice |          | В        |             |      |      |
| Analysis Period (min)     |          |          | 15    |       |          |            |      |          |          |             |      |      |
|                           |          |          |       |       |          |            |      |          |          |             |      |      |

|                           | ۶        | <b>→</b> | <b>←</b> | •    | -       | 4            |  |
|---------------------------|----------|----------|----------|------|---------|--------------|--|
| Movement                  | EBL      | EBT      | WBT      | WBR  | SBL     | SBR          |  |
| Lane Configurations       |          | 4        | 1>       |      | W       |              |  |
| Sign Control              |          | Free     | Free     |      | Stop    |              |  |
| Grade                     |          | 0%       | 0%       |      | 0%      |              |  |
| Volume (veh/h)            | 20       | 140      | 70       | 40   | 100     | 260          |  |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97     | 0.97 | 0.97    | 0.97         |  |
| Hourly flow rate (vph)    | 21       | 144      | 72       | 41   | 103     | 268          |  |
| Pedestrians               |          |          |          |      |         |              |  |
| Lane Width (ft)           |          |          |          |      |         |              |  |
| Walking Speed (ft/s)      |          |          |          |      |         |              |  |
| Percent Blockage          |          |          |          |      |         |              |  |
| Right turn flare (veh)    |          |          |          |      |         |              |  |
| Median type               |          |          |          |      | None    |              |  |
| Median storage veh)       |          |          |          |      |         |              |  |
| Upstream signal (ft)      |          |          |          |      |         |              |  |
| pX, platoon unblocked     |          |          |          |      |         |              |  |
| vC, conflicting volume    | 113      |          |          |      | 278     | 93           |  |
| vC1, stage 1 conf vol     |          |          |          |      |         |              |  |
| vC2, stage 2 conf vol     |          |          |          |      |         |              |  |
| vCu, unblocked vol        | 113      |          |          |      | 278     | 93           |  |
| tC, single (s)            | 4.1      |          |          |      | 6.4     | 6.2          |  |
| tC, 2 stage (s)           |          |          |          |      |         |              |  |
| tF (s)                    | 2.2      |          |          |      | 3.5     | 3.3          |  |
| p0 queue free %           | 99       |          |          |      | 85      | 72           |  |
| cM capacity (veh/h)       | 1476     |          |          |      | 702     | 964          |  |
| Direction, Lane #         | EB 1     | WB 1     | SB 1     |      |         |              |  |
| Volume Total              | 165      | 113      | 371      |      |         |              |  |
| Volume Left               | 21       | 0        | 103      |      |         |              |  |
| Volume Right              | 0        | 41       | 268      |      |         |              |  |
| cSH                       | 1476     | 1700     | 873      |      |         |              |  |
| Volume to Capacity        | 0.01     | 0.07     | 0.42     |      |         |              |  |
| Queue Length 95th (ft)    | 1        | 0        | 54       |      |         |              |  |
| Control Delay (s)         | 1.0      | 0.0      | 12.1     |      |         |              |  |
| Lane LOS                  | Α        |          | В        |      |         |              |  |
| Approach Delay (s)        | 1.0      | 0.0      | 12.1     |      |         |              |  |
| Approach LOS              |          |          | В        |      |         |              |  |
| Intersection Summary      |          |          |          |      |         |              |  |
| Average Delay             |          |          | 7.2      |      |         |              |  |
| Intersection Capacity Uti | lization |          | 43.4%    | 10   | CU Leve | I of Service |  |
| Analysis Period (min)     |          |          | 15       |      |         |              |  |
|                           |          |          |          |      |         |              |  |

|                              | <b></b>   | <b>→</b> | •     | •     | <b>←</b> | 4         | <i>&gt;</i> |     |
|------------------------------|-----------|----------|-------|-------|----------|-----------|-------------|-----|
| Movement                     | EBU       | EBT      | EBR   | WBL   | WBT      | NBL       | NBR         |     |
| Lane Configurations          | Đ         | <b>^</b> | 7     | ች     | ተተተ      | ሻ         | 7           |     |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900        |     |
| Total Lost time (s)          | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0         |     |
| Lane Util. Factor            | 1.00      | 0.91     | 1.00  | 1.00  | 0.91     | 1.00      | 1.00        |     |
| Frt                          | 1.00      | 1.00     | 0.85  | 1.00  | 1.00     | 1.00      | 0.85        |     |
| Flt Protected                | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 0.95      | 1.00        |     |
| Satd. Flow (prot)            | 1770      | 5085     | 1583  | 1770  | 5085     | 1770      | 1583        |     |
| Flt Permitted                | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 0.95      | 1.00        |     |
| Satd. Flow (perm)            | 1770      | 5085     | 1583  | 1770  | 5085     | 1770      | 1583        |     |
| Volume (vph)                 | 10        | 730      | 140   | 610   | 1140     | 60        | 290         |     |
| Peak-hour factor, PHF        | 0.97      | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97        |     |
| Adj. Flow (vph)              | 10        | 753      | 144   | 629   | 1175     | 62        | 299         |     |
| RTOR Reduction (vph)         | 0         | 0        | 87    | 0     | 0        | 0         | 254         |     |
| Lane Group Flow (vph)        | 10        | 753      | 57    | 629   | 1175     | 62        | 45          |     |
| Turn Type                    | Prot      |          | Perm  | Prot  |          |           | Perm        |     |
| Protected Phases             | 1         | 6        |       | 4 5   | 2        | 3         |             |     |
| Permitted Phases             |           |          | 6     |       |          |           | 3           |     |
| Actuated Green, G (s)        | 0.3       | 21.7     | 21.7  | 14.2  | 28.6     | 7.3       | 7.3         |     |
| Effective Green, g (s)       | 1.0       | 22.8     | 22.8  | 14.2  | 29.7     | 8.7       | 8.7         |     |
| Actuated g/C Ratio           | 0.02      | 0.40     | 0.40  | 0.25  | 0.51     | 0.15      | 0.15        |     |
| Clearance Time (s)           | 4.7       | 5.1      | 5.1   |       | 5.1      | 5.4       | 5.4         |     |
| Vehicle Extension (s)        | 1.0       | 4.9      | 4.9   |       | 4.9      | 1.0       | 1.0         |     |
| Lane Grp Cap (vph)           | 31        | 2009     | 626   | 436   | 2617     | 267       | 239         |     |
| v/s Ratio Prot               | 0.01      | 0.15     |       | c0.36 | c0.23    | c0.04     |             |     |
| v/s Ratio Perm               |           |          | 0.04  |       |          |           | 0.03        |     |
| v/c Ratio                    | 0.32      | 0.37     | 0.09  | 1.44  | 0.45     | 0.23      | 0.19        |     |
| Uniform Delay, d1            | 28.0      | 12.4     | 10.9  | 21.8  | 8.8      | 21.6      | 21.4        |     |
| Progression Factor           | 1.00      | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00        |     |
| Incremental Delay, d2        | 2.2       | 0.2      | 0.1   | 211.8 | 0.2      | 0.2       | 0.1         |     |
| Delay (s)                    | 30.2      | 12.6     | 11.1  | 233.6 | 9.1      | 21.7      | 21.6        |     |
| Level of Service             | С         | В        | В     | F     | Α        | С         | С           |     |
| Approach Delay (s)           |           | 12.6     |       |       | 87.4     | 21.6      |             |     |
| Approach LOS                 |           | В        |       |       | F        | С         |             |     |
| Intersection Summary         |           |          |       |       |          |           |             |     |
| HCM Average Control D        |           |          | 57.6  | H     | ICM Le   | vel of Se | ervice      | E   |
| <b>HCM Volume to Capacit</b> | •         |          | 0.68  |       |          |           |             |     |
| Actuated Cycle Length (      |           |          | 57.7  |       | Sum of l |           |             | 8.0 |
| Intersection Capacity Uti    | ilization |          | 61.2% | Į(    | CU Leve  | el of Ser | vice        | В   |
| Analysis Period (min)        |           |          | 15    |       |          |           |             |     |
| c Critical Lane Group        |           |          |       |       |          |           |             |     |

|                          | -          | •    | •     | ←        | 1       | <b>/</b>      |   |  |
|--------------------------|------------|------|-------|----------|---------|---------------|---|--|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL     | NBR           |   |  |
| Lane Configurations      | <b>↑</b> ↑ |      | *     | <b>^</b> | *       | 7             |   |  |
| Ideal Flow (vphpl)       | 1900       | 1900 | 1900  | 1900     | 1900    | 1900          |   |  |
| Total Lost time (s)      | 4.0        |      | 4.0   | 4.0      | 4.0     | 4.0           |   |  |
| Lane Util. Factor        | 0.95       |      | 1.00  | 0.95     | 1.00    | 1.00          |   |  |
| Frt                      | 0.98       |      | 1.00  | 1.00     | 1.00    | 0.85          |   |  |
| Flt Protected            | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00          |   |  |
| Satd. Flow (prot)        | 3452       |      | 1770  | 3539     | 1770    | 1583          |   |  |
| Flt Permitted            | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00          |   |  |
| Satd. Flow (perm)        | 3452       |      | 1770  | 3539     | 1770    | 1583          |   |  |
| Volume (vph)             | 1010       | 200  | 360   | 1280     | 30      | 250           |   |  |
| Peak-hour factor, PHF    | 0.97       | 0.97 | 0.97  | 0.97     | 0.97    | 0.97          |   |  |
| Adj. Flow (vph)          | 1041       | 206  | 371   | 1320     | 31      | 258           |   |  |
| RTOR Reduction (vph)     | 11         | 0    | 0     | 0        | 0       | 247           |   |  |
| Lane Group Flow (vph)    | 1236       | 0    | 371   | 1320     | 31      | 11            |   |  |
| Turn Type                |            |      | Split |          |         | Perm          |   |  |
| Protected Phases         | 2          |      | 1     | 1        | 3       |               |   |  |
| Permitted Phases         |            |      |       |          |         | 3             |   |  |
| Actuated Green, G (s)    | 55.3       |      | 57.4  | 57.4     | 6.6     | 6.6           |   |  |
| Effective Green, g (s)   | 56.3       |      | 58.2  | 58.2     | 6.1     | 6.1           |   |  |
| Actuated g/C Ratio       | 0.41       |      | 0.42  | 0.42     | 0.04    | 0.04          |   |  |
| Clearance Time (s)       | 5.0        |      | 4.8   | 4.8      | 3.5     | 3.5           |   |  |
| Vehicle Extension (s)    | 6.8        |      | 6.3   | 6.3      | 2.0     | 2.0           |   |  |
| Lane Grp Cap (vph)       | 1403       |      | 744   | 1487     | 78      | 70            |   |  |
| v/s Ratio Prot           | c0.36      |      | 0.21  | c0.37    | c0.02   |               |   |  |
| v/s Ratio Perm           |            |      |       |          |         | 0.01          |   |  |
| v/c Ratio                | 0.88       |      | 0.50  | 0.89     | 0.40    | 0.16          |   |  |
| Uniform Delay, d1        | 38.0       |      | 29.4  | 37.1     | 64.4    | 63.7          |   |  |
| Progression Factor       | 1.00       |      | 1.00  | 1.00     | 1.00    | 1.00          |   |  |
| Incremental Delay, d2    | 7.9        |      | 1.6   | 7.7      | 1.2     | 0.4           |   |  |
| Delay (s)                | 45.9       |      | 31.0  | 44.8     | 65.6    | 64.1          |   |  |
| Level of Service         | D          |      | С     | D        | Е       | Е             |   |  |
| Approach Delay (s)       | 45.9       |      |       | 41.8     | 64.3    |               |   |  |
| Approach LOS             | D          |      |       | D        | E       |               |   |  |
| Intersection Summary     |            |      |       |          |         |               |   |  |
| HCM Average Control D    |            |      | 45.4  | H        | ICM Lev | el of Servic  | е |  |
| HCM Volume to Capaci     |            |      | 0.86  |          |         |               |   |  |
| Actuated Cycle Length (  | . ,        |      | 138.5 |          |         | ost time (s)  |   |  |
| Intersection Capacity Ut | ilization  |      | 67.6% | 10       | CU Leve | el of Service |   |  |
| Analysis Period (min)    |            |      | 15    |          |         |               |   |  |
| c Critical Lane Group    |            |      |       |          |         |               |   |  |

|                           | ۶         | <b>→</b> | •     | •     | <b>←</b> | •         | 4      | †     | <b>/</b> | <b>/</b> | ţ          | 4    |
|---------------------------|-----------|----------|-------|-------|----------|-----------|--------|-------|----------|----------|------------|------|
| Movement                  | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT   | NBR      | SBL      | SBT        | SBR  |
| Lane Configurations       | 44        | ተተተ      | 7     | 44    | ተተተ      | 7         | 7      | 44    | 7        | ሻ        | <b>†</b> † | 7    |
| Ideal Flow (vphpl)        | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900  | 1900     | 1900     | 1900       | 1900 |
| Total Lost time (s)       | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0   | 4.0      | 4.0      | 4.0        | 4.0  |
| Lane Util. Factor         | 0.97      | 0.91     | 1.00  | 0.97  | 0.91     | 1.00      | 1.00   | 0.95  | 1.00     | 1.00     | 0.95       | 1.00 |
| Frt                       | 1.00      | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00  | 0.85     | 1.00     | 1.00       | 0.85 |
| Flt Protected             | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00  | 1.00     | 0.95     | 1.00       | 1.00 |
| Satd. Flow (prot)         | 3433      | 5085     | 1583  | 3433  | 5085     | 1583      | 1770   | 3539  | 1583     | 1770     | 3539       | 1583 |
| Flt Permitted             | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00  | 1.00     | 0.95     | 1.00       | 1.00 |
| Satd. Flow (perm)         | 3433      | 5085     | 1583  | 3433  | 5085     | 1583      | 1770   | 3539  | 1583     | 1770     | 3539       | 1583 |
| Volume (vph)              | 340       | 1080     | 40    | 410   | 1520     | 10        | 40     | 490   | 190      | 10       | 610        | 500  |
| Peak-hour factor, PHF     | 0.97      | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97   | 0.97  | 0.97     | 0.97     | 0.97       | 0.97 |
| Adj. Flow (vph)           | 351       | 1113     | 41    | 423   | 1567     | 10        | 41     | 505   | 196      | 10       | 629        | 515  |
| RTOR Reduction (vph)      | 0         | 0        | 27    | 0     | 0        | 6         | 0      | 0     | 91       | 0        | 0          | 287  |
| Lane Group Flow (vph)     | 351       | 1113     | 14    | 423   | 1567     | 4         | 41     | 505   | 105      | 10       | 629        | 228  |
| Turn Type                 | Prot      |          | Perm  | Prot  |          | Perm      | Prot   | i     | om+ov    | Prot     |            | Perm |
| Protected Phases          | 5         | 2        |       | 1     | 6        |           | 4      | 8     | 1        | 7        | 3          |      |
| Permitted Phases          |           |          | 2     |       |          | 6         |        |       | 8        |          |            | 3    |
| Actuated Green, G (s)     | 8.9       | 20.1     | 20.1  | 10.1  | 20.9     | 20.9      | 3.6    | 17.9  | 28.0     | 0.7      | 13.4       | 13.4 |
| Effective Green, g (s)    | 8.9       | 22.1     | 22.1  | 9.7   | 22.9     | 22.9      | 3.9    | 16.9  | 26.6     | 0.7      | 13.7       | 13.7 |
| Actuated g/C Ratio        | 0.14      | 0.34     | 0.34  | 0.15  | 0.35     | 0.35      | 0.06   | 0.26  | 0.41     | 0.01     | 0.21       | 0.21 |
| Clearance Time (s)        | 4.0       | 6.0      | 6.0   | 3.6   | 6.0      | 6.0       | 4.3    | 3.0   | 3.6      | 4.0      | 4.3        | 4.3  |
| Vehicle Extension (s)     | 3.0       | 2.0      | 2.0   | 1.0   | 2.0      | 2.0       | 1.0    | 0.2   | 1.0      | 3.0      | 1.0        | 1.0  |
| Lane Grp Cap (vph)        | 467       | 1718     | 535   | 509   | 1781     | 554       | 106    | 915   | 741      | 19       | 741        | 332  |
| v/s Ratio Prot            | 0.10      | 0.22     |       | c0.12 | c0.31    |           | 0.02   | c0.14 | 0.02     | 0.01     | c0.18      |      |
| v/s Ratio Perm            |           |          | 0.01  |       |          | 0.00      |        |       | 0.05     |          |            | 0.14 |
| v/c Ratio                 | 0.75      | 0.65     | 0.03  | 0.83  | 0.88     | 0.01      | 0.39   | 0.55  | 0.14     | 0.53     | 0.85       | 0.69 |
| Uniform Delay, d1         | 27.2      | 18.4     | 14.5  | 27.1  | 20.0     | 13.8      | 29.6   | 21.0  | 12.2     | 32.2     | 24.9       | 23.9 |
| Progression Factor        | 1.00      | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00  | 1.00     | 1.00     | 1.00       | 1.00 |
| Incremental Delay, d2     | 6.7       | 0.6      | 0.0   | 10.6  | 5.2      | 0.0       | 0.9    | 0.4   | 0.0      | 23.9     | 8.6        | 4.7  |
| Delay (s)                 | 33.9      | 19.0     | 14.5  | 37.6  | 25.1     | 13.8      | 30.5   | 21.4  | 12.2     | 56.0     | 33.5       | 28.5 |
| Level of Service          | С         | В        | В     | D     | С        | В         | С      | С     | В        | E        | С          | С    |
| Approach Delay (s)        |           | 22.3     |       |       | 27.7     |           |        | 19.5  |          |          | 31.5       |      |
| Approach LOS              |           | С        |       |       | С        |           |        | В     |          |          | С          |      |
| Intersection Summary      |           |          |       |       |          |           |        |       |          |          |            |      |
| HCM Average Control D     |           |          | 25.9  | F     | ICM Le   | vel of Se | ervice |       | С        |          |            |      |
| HCM Volume to Capacit     |           |          | 0.76  |       |          |           |        |       |          |          |            |      |
| Actuated Cycle Length (   | ,         |          | 65.4  |       |          | ost time  |        |       | 8.0      |          |            |      |
| Intersection Capacity Uti | ilization |          | 73.7% | ŀ     | CU Leve  | el of Ser | vice   |       | D        |          |            |      |
| Analysis Period (min)     |           |          | 15    |       |          |           |        |       |          |          |            |      |
| c Critical Lane Group     |           |          |       |       |          |           |        |       |          |          |            |      |

|                          | ۶         | <b>→</b> | •     | •     | <b>←</b> | •         | 4      | †     | <i>&gt;</i> | <b>/</b> | ţ     | 4    |
|--------------------------|-----------|----------|-------|-------|----------|-----------|--------|-------|-------------|----------|-------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT   | NBR         | SBL      | SBT   | SBR  |
| Lane Configurations      | 77        | ተተተ      | 7     | ሻሻ    | ተተተ      | 7         | ሻሻ     | ተተተ   | 7           | 1,1      | ተተተ   | 7    |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900  | 1900        | 1900     | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0   | 4.0         | 4.0      | 4.0   | 4.0  |
| Lane Util. Factor        | 0.97      | 0.91     | 1.00  | 0.97  | 0.91     | 1.00      | 0.97   | 0.91  | 1.00        | 0.97     | 0.91  | 1.00 |
| Frt                      | 1.00      | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00  | 0.85        | 1.00     | 1.00  | 0.85 |
| Flt Protected            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00  | 1.00        | 0.95     | 1.00  | 1.00 |
| Satd. Flow (prot)        | 3433      | 5085     | 1583  | 3433  | 5085     | 1583      | 3433   | 5085  | 1583        | 3433     | 5085  | 1583 |
| Flt Permitted            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00  | 1.00        | 0.95     | 1.00  | 1.00 |
| Satd. Flow (perm)        | 3433      | 5085     | 1583  | 3433  | 5085     | 1583      | 3433   | 5085  | 1583        | 3433     | 5085  | 1583 |
| Volume (vph)             | 520       | 140      | 640   | 430   | 470      | 350       | 860    | 1270  | 90          | 120      | 1870  | 540  |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97   | 0.97  | 0.97        | 0.97     | 0.97  | 0.97 |
| Adj. Flow (vph)          | 536       | 144      | 660   | 443   | 485      | 361       | 887    | 1309  | 93          | 124      | 1928  | 557  |
| RTOR Reduction (vph)     | 0         | 0        | 211   | 0     | 0        | 97        | 0      | 0     | 50          | 0        | 0     | 165  |
| Lane Group Flow (vph)    | 536       | 144      | 449   | 443   | 485      | 264       | 887    | 1309  | 43          | 124      | 1928  | 392  |
| Turn Type                | Prot      |          | Perm  | Prot  |          | Perm      | Prot   |       | Perm        | Prot     |       | Perm |
| Protected Phases         | 7         | 4        |       | 3     | 8        |           | 5      | 2     |             | 1        | 6     |      |
| Permitted Phases         |           |          | 4     |       |          | 8         |        |       | 2           |          |       | 6    |
| Actuated Green, G (s)    | 16.5      | 38.1     | 38.1  | 13.5  | 35.0     | 35.0      | 27.5   | 68.5  | 68.5        | 7.8      | 48.4  | 48.4 |
| Effective Green, g (s)   | 18.0      | 39.7     | 39.7  | 15.0  | 36.7     | 36.7      | 29.0   | 70.0  | 70.0        | 9.3      | 50.3  | 50.3 |
| Actuated g/C Ratio       | 0.12      | 0.26     | 0.26  | 0.10  | 0.24     | 0.24      | 0.19   | 0.47  | 0.47        | 0.06     | 0.34  | 0.34 |
| Clearance Time (s)       | 5.5       | 5.6      | 5.6   | 5.5   | 5.7      | 5.7       | 5.5    | 5.5   | 5.5         | 5.5      | 5.9   | 5.9  |
| Vehicle Extension (s)    | 1.0       | 5.0      | 5.0   | 1.0   | 5.9      | 5.9       | 1.0    | 5.4   | 5.4         | 1.0      | 5.4   | 5.4  |
| Lane Grp Cap (vph)       | 412       | 1346     | 419   | 343   | 1244     | 387       | 664    | 2373  | 739         | 213      | 1705  | 531  |
| v/s Ratio Prot           | c0.16     | 0.03     |       | 0.13  | 0.10     |           | c0.26  | 0.26  |             | 0.04     | c0.38 |      |
| v/s Ratio Perm           |           |          | c0.28 |       |          | 0.17      |        |       | 0.03        |          |       | 0.25 |
| v/c Ratio                | 1.30      | 0.11     | 1.07  | 1.29  | 0.39     | 0.68      | 1.34   | 0.55  | 0.06        | 0.58     | 1.13  | 0.74 |
| Uniform Delay, d1        | 66.0      | 41.7     | 55.1  | 67.5  | 47.3     | 51.3      | 60.5   | 28.7  | 21.9        | 68.5     | 49.9  | 44.0 |
| Progression Factor       | 1.00      | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00  | 1.00        | 1.00     | 1.00  | 1.00 |
| Incremental Delay, d2    | 152.2     | 0.1      | 64.4  | 151.3 | 0.6      | 7.2       | 161.2  | 0.5   | 0.1         | 2.6      | 66.9  | 6.8  |
| Delay (s)                | 218.2     | 41.8     | 119.5 | 218.8 | 47.9     | 58.6      | 221.7  | 29.3  | 22.0        | 71.1     | 116.7 | 50.8 |
| Level of Service         | F         | D        | F     | F     | D        | Е         | F      | С     | С           | Е        | F     | D    |
| Approach Delay (s)       |           | 150.7    |       |       | 109.6    |           |        | 103.5 |             |          | 100.5 |      |
| Approach LOS             |           | F        |       |       | F        |           |        | F     |             |          | F     |      |
| Intersection Summary     |           |          |       |       |          |           |        |       |             |          |       |      |
| HCM Average Control D    |           |          | 111.9 | F     | ICM Le   | vel of S  | ervice |       | F           |          |       |      |
| HCM Volume to Capacit    | ty ratio  |          | 1.19  |       |          |           |        |       |             |          |       |      |
| Actuated Cycle Length (  |           |          | 150.0 |       |          | ost time  |        |       | 16.0        |          |       |      |
| Intersection Capacity Ut | ilization |          | 98.0% | [(    | CU Leve  | el of Sei | rvice  |       | F           |          |       |      |
| Analysis Period (min)    |           |          | 15    |       |          |           |        |       |             |          |       |      |
| c Critical Lane Group    |           |          |       |       |          |           |        |       |             |          |       |      |

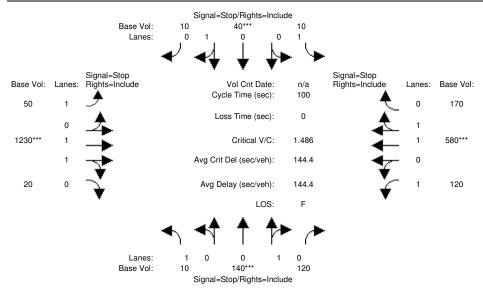
|                          | ۶         | <b>→</b> | •     | •    | <b>←</b> | •         | 4      | †     | <i>&gt;</i> | <b>/</b> | ţ     | 4    |
|--------------------------|-----------|----------|-------|------|----------|-----------|--------|-------|-------------|----------|-------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL    | NBT   | NBR         | SBL      | SBT   | SBR  |
| Lane Configurations      | 77        | ተተተ      | 7     | 1,1  | ተተተ      | 7         | ሻሻ     | ተተተ   | 7           | ሻሻ       | ተተተ   | 7    |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900 | 1900     | 1900      | 1900   | 1900  | 1900        | 1900     | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   | 4.0  | 4.0      | 4.0       | 4.0    | 4.0   | 4.0         | 4.0      | 4.0   | 4.0  |
| Lane Util. Factor        | 0.97      | 0.91     | 1.00  | 0.97 | 0.91     | 1.00      | 0.97   | 0.91  | 1.00        | 0.97     | 0.91  | 1.00 |
| Frt                      | 1.00      | 1.00     | 0.85  | 1.00 | 1.00     | 0.85      | 1.00   | 1.00  | 0.85        | 1.00     | 1.00  | 0.85 |
| Flt Protected            | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00  | 1.00        | 0.95     | 1.00  | 1.00 |
| Satd. Flow (prot)        | 3433      | 5085     | 1583  | 3433 | 5085     | 1583      | 3433   | 5085  | 1583        | 3433     | 5085  | 1583 |
| Flt Permitted            | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00  | 1.00        | 0.95     | 1.00  | 1.00 |
| Satd. Flow (perm)        | 3433      | 5085     | 1583  | 3433 | 5085     | 1583      | 3433   | 5085  | 1583        | 3433     | 5085  | 1583 |
| Volume (vph)             | 330       | 670      | 270   | 270  | 1000     | 280       | 380    | 930   | 50          | 270      | 1750  | 470  |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.97  | 0.97 | 0.97     | 0.97      | 0.97   | 0.97  | 0.97        | 0.97     | 0.97  | 0.97 |
| Adj. Flow (vph)          | 340       | 691      | 278   | 278  | 1031     | 289       | 392    | 959   | 52          | 278      | 1804  | 485  |
| RTOR Reduction (vph)     | 0         | 0        | 167   | 0    | 0        | 177       | 0      | 0     | 30          | 0        | 0     | 168  |
| Lane Group Flow (vph)    | 340       | 691      | 111   | 278  | 1031     | 112       | 392    | 959   | 22          | 278      | 1804  | 317  |
| Turn Type                | Prot      |          | Perm  | Prot |          | Perm      | Prot   |       | Perm        | Prot     |       | Perm |
| Protected Phases         | 7         | 4        |       | 3    | 8        |           | 5      | 2     |             | 1        | 6     |      |
| Permitted Phases         |           |          | 4     |      |          | 8         |        |       | 2           |          |       | 6    |
| Actuated Green, G (s)    | 14.9      | 31.4     | 31.4  | 14.0 | 30.7     | 30.7      | 17.0   | 56.9  | 56.9        | 14.0     | 53.9  | 53.9 |
| Effective Green, g (s)   | 16.4      | 33.1     | 33.1  | 15.5 | 32.2     | 32.2      | 18.5   | 58.5  | 58.5        | 15.5     | 55.5  | 55.5 |
| Actuated g/C Ratio       | 0.12      | 0.24     | 0.24  | 0.11 | 0.23     | 0.23      | 0.13   | 0.42  | 0.42        | 0.11     | 0.40  | 0.40 |
| Clearance Time (s)       | 5.5       | 5.7      | 5.7   | 5.5  | 5.5      | 5.5       | 5.5    | 5.6   | 5.6         | 5.5      | 5.6   | 5.6  |
| Vehicle Extension (s)    | 1.0       | 4.9      | 4.9   | 1.0  | 4.9      | 4.9       | 1.0    | 4.9   | 4.9         | 1.0      | 4.9   | 4.9  |
| Lane Grp Cap (vph)       | 406       | 1214     | 378   | 384  | 1181     | 368       | 458    | 2146  | 668         | 384      | 2036  | 634  |
| v/s Ratio Prot           | c0.10     | 0.14     |       | 0.08 | c0.20    |           | c0.11  | c0.19 |             | 0.08     | c0.35 |      |
| v/s Ratio Perm           |           |          | 0.07  |      |          | 0.07      |        |       | 0.01        |          |       | 0.20 |
| v/c Ratio                | 0.84      | 0.57     | 0.29  | 0.72 | 0.87     | 0.31      | 0.86   | 0.45  | 0.03        | 0.72     | 0.89  | 0.50 |
| Uniform Delay, d1        | 59.8      | 46.5     | 43.2  | 59.5 | 51.2     | 44.0      | 58.7   | 28.5  | 23.5        | 59.5     | 38.6  | 31.1 |
| Progression Factor       | 1.00      | 1.00     | 1.00  | 1.00 | 1.00     | 1.00      | 1.00   | 1.00  | 1.00        | 1.00     | 1.00  | 1.00 |
| Incremental Delay, d2    | 13.4      | 1.0      | 0.9   | 5.6  | 7.9      | 1.0       | 14.0   | 0.3   | 0.0         | 5.6      | 5.4   | 1.2  |
| Delay (s)                | 73.2      | 47.5     | 44.0  | 65.1 | 59.1     | 44.9      | 72.8   | 28.8  | 23.5        | 65.1     | 44.0  | 32.4 |
| Level of Service         | Е         | D        | D     | E    | Е        | D         | E      | С     | С           | E        | D     | С    |
| Approach Delay (s)       |           | 53.4     |       |      | 57.6     |           |        | 40.9  |             |          | 44.1  |      |
| Approach LOS             |           | D        |       |      | Е        |           |        | D     |             |          | D     |      |
| Intersection Summary     |           |          |       |      |          |           |        |       |             |          |       |      |
| HCM Average Control D    |           |          | 48.4  | F    | ICM Le   | vel of Se | ervice |       | D           |          |       |      |
| HCM Volume to Capacit    |           |          | 0.89  |      |          |           |        |       |             |          |       |      |
| Actuated Cycle Length (  | ,         |          | 138.6 |      |          | ost time  |        |       | 20.0        |          |       |      |
| Intersection Capacity Ut | ilization |          | 86.7% | 10   | CU Leve  | el of Sei | vice   |       | Е           |          |       |      |
| Analysis Period (min)    |           |          | 15    |      |          |           |        |       |             |          |       |      |
| c Critical Lane Group    |           |          |       |      |          |           |        |       |             |          |       |      |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •         | 4      | †    | <b>/</b> | <b>/</b> | ţ     | 4    |
|---------------------------|----------|----------|-------|-------|----------|-----------|--------|------|----------|----------|-------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT  | NBR      | SBL      | SBT   | SBR  |
| Lane Configurations       | 44       | <b>^</b> | 7     | ሻ     | ተተተ      | 7         | 14.54  | ተተተ  | 7        | ሻ        | 1111  | 7    |
| Ideal Flow (vphpl)        | 1900     | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900 | 1900     | 1900     | 1900  | 1900 |
| Total Lost time (s)       | 4.0      | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0  | 4.0      | 4.0      | 4.0   | 4.0  |
| Lane Util. Factor         | 0.97     | 0.95     | 1.00  | 1.00  | 0.91     | 1.00      | 0.97   | 0.91 | 1.00     | 1.00     | 0.86  | 1.00 |
| Frt                       | 1.00     | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00 | 0.85     | 1.00     | 1.00  | 0.85 |
| Flt Protected             | 0.95     | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00 | 1.00     | 0.95     | 1.00  | 1.00 |
| Satd. Flow (prot)         | 3433     | 3539     | 1583  | 1770  | 5085     | 1583      | 3433   | 5085 | 1583     | 1770     | 6408  | 1583 |
| Flt Permitted             | 0.95     | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00 | 1.00     | 0.95     | 1.00  | 1.00 |
| Satd. Flow (perm)         | 3433     | 3539     | 1583  | 1770  | 5085     | 1583      | 3433   | 5085 | 1583     | 1770     | 6408  | 1583 |
| Volume (vph)              | 130      | 550      | 810   | 90    | 350      | 170       | 370    | 1100 | 50       | 140      | 1810  | 110  |
| Peak-hour factor, PHF     | 0.97     | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97   | 0.97 | 0.97     | 0.97     | 0.97  | 0.97 |
| Adj. Flow (vph)           | 134      | 567      | 835   | 93    | 361      | 175       | 381    | 1134 | 52       | 144      | 1866  | 113  |
| RTOR Reduction (vph)      | 0        | 0        | 170   | 0     | 0        | 110       | 0      | 0    | 35       | 0        | 0     | 68   |
| Lane Group Flow (vph)     | 134      | 567      | 665   | 93    | 361      | 65        | 381    | 1134 | 17       | 144      | 1866  | 45   |
| Turn Type                 | Prot     |          | Perm  | Prot  |          | Perm      | Prot   |      | Perm     | Prot     |       | Perm |
| Protected Phases          | 7        | 4        |       | 3     | 8        |           | 5      | 2    |          | 1        | 6     |      |
| Permitted Phases          |          |          | 4     |       |          | 8         |        |      | 2        |          |       | 6    |
| Actuated Green, G (s)     | 8.2      | 44.0     | 44.0  | 7.0   | 43.8     | 43.8      | 14.0   | 37.0 | 37.0     | 12.0     | 35.0  | 35.0 |
| Effective Green, g (s)    | 8.2      | 46.0     | 46.0  | 7.0   | 44.8     | 44.8      | 14.0   | 39.0 | 39.0     | 12.0     | 37.0  | 37.0 |
| Actuated g/C Ratio        | 0.07     | 0.38     | 0.38  | 0.06  | 0.37     | 0.37      | 0.12   | 0.32 | 0.32     | 0.10     | 0.31  | 0.31 |
| Clearance Time (s)        | 4.0      | 6.0      | 6.0   | 4.0   | 5.0      | 5.0       | 4.0    | 6.0  | 6.0      | 4.0      | 6.0   | 6.0  |
| Vehicle Extension (s)     | 2.0      | 4.5      | 4.5   | 2.0   | 5.0      | 5.0       | 2.0    | 3.4  | 3.4      | 2.0      | 4.1   | 4.1  |
| Lane Grp Cap (vph)        | 235      | 1357     | 607   | 103   | 1898     | 591       | 401    | 1653 | 514      | 177      | 1976  | 488  |
| v/s Ratio Prot            | 0.04     | 0.16     |       | c0.05 | 0.07     |           | c0.11  | 0.22 |          | 0.08     | c0.29 |      |
| v/s Ratio Perm            |          |          | c0.42 |       |          | 0.04      |        |      | 0.01     |          |       | 0.03 |
| v/c Ratio                 | 0.57     | 0.42     | 1.10  | 0.90  | 0.19     | 0.11      | 0.95   | 0.69 | 0.03     | 0.81     | 0.94  | 0.09 |
| Uniform Delay, d1         | 54.2     | 27.2     | 37.0  | 56.2  | 25.4     | 24.6      | 52.7   | 35.2 | 27.6     | 52.9     | 40.5  | 29.5 |
| Progression Factor        | 1.00     | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00 | 1.00     | 1.00     | 1.00  | 1.00 |
| Incremental Delay, d2     | 2.1      | 0.4      | 65.6  | 57.5  | 0.1      | 0.2       | 32.0   | 2.3  | 0.1      | 22.9     | 10.8  | 0.4  |
| Delay (s)                 | 56.3     | 27.5     | 102.6 | 113.7 | 25.5     | 24.8      | 84.7   | 37.5 | 27.8     | 75.8     | 51.3  | 29.9 |
| Level of Service          | Е        | С        | F     | F     | С        | С         | F      | D    | С        | Е        | D     | С    |
| Approach Delay (s)        |          | 70.8     |       |       | 38.3     |           |        | 48.7 |          |          | 51.8  |      |
| Approach LOS              |          | Е        |       |       | D        |           |        | D    |          |          | D     |      |
| Intersection Summary      |          |          |       |       |          |           |        |      |          |          |       |      |
| HCM Average Control D     |          |          | 54.5  | F     | ICM Le   | vel of Se | ervice |      | D        |          |       |      |
| HCM Volume to Capacit     |          |          | 0.97  |       |          |           |        |      |          |          |       |      |
| Actuated Cycle Length (   | ,        |          | 120.0 |       |          | ost time  |        |      | 12.0     |          |       |      |
| Intersection Capacity Uti | lization |          | 91.4% | [0    | CU Leve  | el of Sei | vice   |      | F        |          |       |      |
| Analysis Period (min)     |          |          | 15    |       |          |           |        |      |          |          |       |      |
| c Critical Lane Group     |          |          |       |       |          |           |        |      |          |          |       |      |

|                               | ۶       | <b>→</b>    | •     | •    | <b>—</b>   | •         | •      | <b>†</b> | ~    | <b>&gt;</b> | ţ    | 4     |
|-------------------------------|---------|-------------|-------|------|------------|-----------|--------|----------|------|-------------|------|-------|
| Movement                      | EBL     | EBT         | EBR   | WBL  | WBT        | WBR       | NBL    | NBT      | NBR  | SBL         | SBT  | SBR   |
| Lane Configurations           |         | <b>∱</b> î≽ |       |      | <b>∱</b> ∱ |           |        |          |      | ሻ           |      | 7     |
| Ideal Flow (vphpl)            | 1900    | 1900        | 1900  | 1900 | 1900       | 1900      | 1900   | 1900     | 1900 | 1900        | 1900 | 1900  |
| Total Lost time (s)           |         | 4.0         |       |      | 4.0        |           |        |          |      | 4.0         |      | 4.0   |
| Lane Util. Factor             |         | 0.95        |       |      | 0.95       |           |        |          |      | 1.00        |      | 1.00  |
| Frt                           |         | 0.98        |       |      | 0.95       |           |        |          |      | 1.00        |      | 0.85  |
| Flt Protected                 |         | 1.00        |       |      | 1.00       |           |        |          |      | 0.95        |      | 1.00  |
| Satd. Flow (prot)             |         | 3463        |       |      | 3351       |           |        |          |      | 1770        |      | 1583  |
| Flt Permitted                 |         | 1.00        |       |      | 1.00       |           |        |          |      | 0.95        |      | 1.00  |
| Satd. Flow (perm)             |         | 3463        |       |      | 3351       |           |        |          |      | 1770        |      | 1583  |
| Volume (vph)                  | 0       | 180         | 30    | 0    | 1200       | 660       | 0      | 0        | 0    | 40          | 0    | 610   |
| Peak-hour factor, PHF         | 0.97    | 0.97        | 0.97  | 0.97 | 0.97       | 0.97      | 0.97   | 0.97     | 0.97 | 0.97        | 0.97 | 0.97  |
| Adj. Flow (vph)               | 0       | 186         | 31    | 0    | 1237       | 680       | 0      | 0        | 0    | 41          | 0    | 629   |
| RTOR Reduction (vph)          | 0       | 13          | 0     | 0    | 75         | 0         | 0      | 0        | 0    | 0           | 0    | 31    |
| Lane Group Flow (vph)         | 0       | 204         | 0     | 0    | 1842       | 0         | 0      | 0        | 0    | 41          | 0    | 598   |
| Turn Type                     |         |             |       |      |            |           |        |          |      | Prot        | С    | ustom |
| Protected Phases              |         | 4           |       |      | 8          |           |        |          |      | 2           |      |       |
| Permitted Phases              |         |             |       |      |            |           |        |          |      |             |      | 2     |
| Actuated Green, G (s)         |         | 54.0        |       |      | 54.0       |           |        |          |      | 38.0        |      | 38.0  |
| Effective Green, g (s)        |         | 54.0        |       |      | 54.0       |           |        |          |      | 38.0        |      | 38.0  |
| Actuated g/C Ratio            |         | 0.54        |       |      | 0.54       |           |        |          |      | 0.38        |      | 0.38  |
| Clearance Time (s)            |         | 4.0         |       |      | 4.0        |           |        |          |      | 4.0         |      | 4.0   |
| Vehicle Extension (s)         |         | 3.0         |       |      | 3.0        |           |        |          |      | 3.0         |      | 3.0   |
| Lane Grp Cap (vph)            |         | 1870        |       |      | 1810       |           |        |          |      | 673         |      | 602   |
| v/s Ratio Prot                |         | 0.06        |       |      | c0.55      |           |        |          |      | 0.02        |      |       |
| v/s Ratio Perm                |         |             |       |      |            |           |        |          |      |             |      | c0.38 |
| v/c Ratio                     |         | 0.11        |       |      | 1.02       |           |        |          |      | 0.06        |      | 0.99  |
| Uniform Delay, d1             |         | 11.2        |       |      | 23.0       |           |        |          |      | 19.7        |      | 30.9  |
| Progression Factor            |         | 1.00        |       |      | 1.00       |           |        |          |      | 1.00        |      | 1.00  |
| Incremental Delay, d2         |         | 0.0         |       |      | 25.8       |           |        |          |      | 0.0         |      | 34.8  |
| Delay (s)                     |         | 11.3        |       |      | 48.8       |           |        |          |      | 19.7        |      | 65.7  |
| Level of Service              |         | В           |       |      | D          |           |        |          |      | В           |      | Ε     |
| Approach Delay (s)            |         | 11.3        |       |      | 48.8       |           |        | 0.0      |      |             | 62.9 |       |
| Approach LOS                  |         | В           |       |      | D          |           |        | Α        |      |             | Ε    |       |
| Intersection Summary          |         |             |       |      |            |           |        |          |      |             |      |       |
| HCM Average Control De        | ,       |             | 49.2  | H    | ICM Lev    | vel of Se | ervice |          | D    |             |      |       |
| <b>HCM Volume to Capacity</b> |         |             | 1.01  |      |            |           |        |          |      |             |      |       |
| Actuated Cycle Length (s      |         |             | 100.0 |      |            | ost time  |        |          | 8.0  |             |      |       |
| Intersection Capacity Util    | ization |             | 98.7% | 10   | CU Leve    | el of Ser | vice   |          | F    |             |      |       |
| Analysis Period (min)         |         |             | 15    |      |            |           |        |          |      |             |      |       |
| c Critical Lane Group         |         |             |       |      |            |           |        |          |      |             |      |       |

|                               | ۶        | <b>→</b>    | •     | •    | <b>←</b>   | •         | 4      | <b>†</b> | ~     | -    | <b>↓</b> | 4    |
|-------------------------------|----------|-------------|-------|------|------------|-----------|--------|----------|-------|------|----------|------|
| Movement                      | EBL      | EBT         | EBR   | WBL  | WBT        | WBR       | NBL    | NBT      | NBR   | SBL  | SBT      | SBR  |
| Lane Configurations           |          | <b>∱</b> î≽ |       |      | <b>∱</b> ∱ |           | 7      |          | 7     |      |          |      |
| Ideal Flow (vphpl)            | 1900     | 1900        | 1900  | 1900 | 1900       | 1900      | 1900   | 1900     | 1900  | 1900 | 1900     | 1900 |
| Total Lost time (s)           |          | 4.0         |       |      | 4.0        |           | 4.0    |          | 4.0   |      |          |      |
| Lane Util. Factor             |          | 0.95        |       |      | 0.95       |           | 1.00   |          | 1.00  |      |          |      |
| Frt                           |          | 0.96        |       |      | 0.99       |           | 1.00   |          | 0.85  |      |          |      |
| Flt Protected                 |          | 1.00        |       |      | 1.00       |           | 0.95   |          | 1.00  |      |          |      |
| Satd. Flow (prot)             |          | 3394        |       |      | 3512       |           | 1770   |          | 1583  |      |          |      |
| Flt Permitted                 |          | 1.00        |       |      | 1.00       |           | 0.95   |          | 1.00  |      |          |      |
| Satd. Flow (perm)             |          | 3394        |       |      | 3512       |           | 1770   |          | 1583  |      |          |      |
| Volume (vph)                  | 0        | 160         | 60    | 0    | 1500       | 80        | 360    | 0        | 300   | 0    | 0        | 0    |
| Peak-hour factor, PHF         | 0.97     | 0.97        | 0.97  | 0.97 | 0.97       | 0.97      | 0.97   | 0.97     | 0.97  | 0.97 | 0.97     | 0.97 |
| Adj. Flow (vph)               | 0        | 165         | 62    | 0    | 1546       | 82        | 371    | 0        | 309   | 0    | 0        | 0    |
| RTOR Reduction (vph)          | 0        | 28          | 0     | 0    | 6          | 0         | 0      | 0        | 218   | 0    | 0        | 0    |
| Lane Group Flow (vph)         | 0        | 199         | 0     | 0    | 1622       | 0         | 371    | 0        | 91    | 0    | 0        | 0    |
| Turn Type                     |          |             |       |      |            |           | Prot   | С        | ustom |      |          |      |
| Protected Phases              |          | 4           |       |      | 8          |           | 2      |          |       |      |          |      |
| Permitted Phases              |          |             |       |      |            |           |        |          | 2     |      |          |      |
| Actuated Green, G (s)         |          | 28.5        |       |      | 28.5       |           | 15.3   |          | 15.3  |      |          |      |
| Effective Green, g (s)        |          | 28.5        |       |      | 28.5       |           | 15.3   |          | 15.3  |      |          |      |
| Actuated g/C Ratio            |          | 0.55        |       |      | 0.55       |           | 0.30   |          | 0.30  |      |          |      |
| Clearance Time (s)            |          | 4.0         |       |      | 4.0        |           | 4.0    |          | 4.0   |      |          |      |
| Vehicle Extension (s)         |          | 3.0         |       |      | 3.0        |           | 3.0    |          | 3.0   |      |          |      |
| Lane Grp Cap (vph)            |          | 1867        |       |      | 1932       |           | 523    |          | 468   |      |          |      |
| v/s Ratio Prot                |          | 0.06        |       |      | c0.46      |           | c0.21  |          |       |      |          |      |
| v/s Ratio Perm                |          |             |       |      |            |           |        |          | 0.06  |      |          |      |
| v/c Ratio                     |          | 0.11        |       |      | 0.84       |           | 0.71   |          | 0.20  |      |          |      |
| Uniform Delay, d1             |          | 5.6         |       |      | 9.7        |           | 16.3   |          | 13.6  |      |          |      |
| Progression Factor            |          | 1.00        |       |      | 1.00       |           | 1.00   |          | 1.00  |      |          |      |
| Incremental Delay, d2         |          | 0.0         |       |      | 3.4        |           | 4.4    |          | 0.2   |      |          |      |
| Delay (s)                     |          | 5.6         |       |      | 13.1       |           | 20.7   |          | 13.9  |      |          |      |
| Level of Service              |          | Α           |       |      | В          |           | С      |          | В     |      |          |      |
| Approach Delay (s)            |          | 5.6         |       |      | 13.1       |           |        | 17.6     |       |      | 0.0      |      |
| Approach LOS                  |          | Α           |       |      | В          |           |        | В        |       |      | Α        |      |
| Intersection Summary          |          |             |       |      |            |           |        |          |       |      |          |      |
| HCM Average Control De        |          |             | 13.6  | H    | ICM Lev    | vel of Se | ervice |          | В     |      |          |      |
| <b>HCM Volume to Capacity</b> |          |             | 0.79  |      |            |           |        |          |       |      |          |      |
| Actuated Cycle Length (s      |          |             | 51.8  |      |            | ost time  |        |          | 8.0   |      |          |      |
| Intersection Capacity Util    | lization |             | 70.6% | 10   | CU Leve    | el of Ser | vice   |          | С     |      |          |      |
| Analysis Period (min)         |          |             | 15    |      |            |           |        |          |       |      |          |      |
| c Critical Lane Group         |          |             |       |      |            |           |        |          |       |      |          |      |

|                               | ۶        | -               | •     | •    | <b>←</b>    | •         | 4      | †    | ~    | <b>&gt;</b> | ļ    | 4     |
|-------------------------------|----------|-----------------|-------|------|-------------|-----------|--------|------|------|-------------|------|-------|
| Movement                      | EBL      | EBT             | EBR   | WBL  | WBT         | WBR       | NBL    | NBT  | NBR  | SBL         | SBT  | SBR   |
| Lane Configurations           |          | ተተ <sub>ጉ</sub> |       |      | <b>↑</b> ↑↑ |           |        |      |      | 7           |      | 7     |
| Ideal Flow (vphpl)            | 1900     | 1900            | 1900  | 1900 | 1900        | 1900      | 1900   | 1900 | 1900 | 1900        | 1900 | 1900  |
| Total Lost time (s)           |          | 4.0             |       |      | 4.0         |           |        |      |      | 4.0         |      | 4.0   |
| Lane Util. Factor             |          | 0.91            |       |      | 0.91        |           |        |      |      | 1.00        |      | 1.00  |
| Frt                           |          | 0.95            |       |      | 0.92        |           |        |      |      | 1.00        |      | 0.85  |
| Flt Protected                 |          | 1.00            |       |      | 1.00        |           |        |      |      | 0.95        |      | 1.00  |
| Satd. Flow (prot)             |          | 4815            |       |      | 4655        |           |        |      |      | 1770        |      | 1583  |
| Flt Permitted                 |          | 1.00            |       |      | 1.00        |           |        |      |      | 0.95        |      | 1.00  |
| Satd. Flow (perm)             |          | 4815            |       |      | 4655        |           |        |      |      | 1770        |      | 1583  |
| Volume (vph)                  | 0        | 110             | 60    | 0    | 580         | 750       | 0      | 0    | 0    | 320         | 0    | 280   |
| Peak-hour factor, PHF         | 0.97     | 0.97            | 0.97  | 0.97 | 0.97        | 0.97      | 0.97   | 0.97 | 0.97 | 0.97        | 0.97 | 0.97  |
| Adj. Flow (vph)               | 0        | 113             | 62    | 0    | 598         | 773       | 0      | 0    | 0    | 330         | 0    | 289   |
| RTOR Reduction (vph)          | 0        | 37              | 0     | 0    | 416         | 0         | 0      | 0    | 0    | 0           | 0    | 57    |
| Lane Group Flow (vph)         | 0        | 138             | 0     | 0    | 955         | 0         | 0      | 0    | 0    | 330         | 0    | 232   |
| Turn Type                     |          |                 |       |      |             |           |        |      |      | Prot        | С    | ustom |
| Protected Phases              |          | 4               |       |      | 8           |           |        |      |      | 1           |      |       |
| Permitted Phases              |          |                 |       |      |             |           |        |      |      |             |      | 1     |
| Actuated Green, G (s)         |          | 13.8            |       |      | 13.8        |           |        |      |      | 13.1        |      | 13.1  |
| Effective Green, g (s)        |          | 13.8            |       |      | 13.8        |           |        |      |      | 13.1        |      | 13.1  |
| Actuated g/C Ratio            |          | 0.40            |       |      | 0.40        |           |        |      |      | 0.38        |      | 0.38  |
| Clearance Time (s)            |          | 4.0             |       |      | 4.0         |           |        |      |      | 4.0         |      | 4.0   |
| Vehicle Extension (s)         |          | 3.0             |       |      | 3.0         |           |        |      |      | 3.0         |      | 3.0   |
| Lane Grp Cap (vph)            |          | 1904            |       |      | 1841        |           |        |      |      | 664         |      | 594   |
| v/s Ratio Prot                |          | 0.03            |       |      | c0.21       |           |        |      |      | c0.19       |      |       |
| v/s Ratio Perm                |          |                 |       |      |             |           |        |      |      |             |      | 0.15  |
| v/c Ratio                     |          | 0.07            |       |      | 0.52        |           |        |      |      | 0.50        |      | 0.39  |
| Uniform Delay, d1             |          | 6.6             |       |      | 8.0         |           |        |      |      | 8.4         |      | 8.0   |
| Progression Factor            |          | 1.00            |       |      | 1.00        |           |        |      |      | 1.00        |      | 1.00  |
| Incremental Delay, d2         |          | 0.0             |       |      | 0.2         |           |        |      |      | 0.6         |      | 0.4   |
| Delay (s)                     |          | 6.6             |       |      | 8.3         |           |        |      |      | 9.0         |      | 8.4   |
| Level of Service              |          | Α               |       |      | Α           |           |        |      |      | Α           |      | Α     |
| Approach Delay (s)            |          | 6.6             |       |      | 8.3         |           |        | 0.0  |      |             | 8.7  |       |
| Approach LOS                  |          | Α               |       |      | Α           |           |        | Α    |      |             | Α    |       |
| Intersection Summary          |          |                 |       |      |             |           |        |      |      |             |      |       |
| HCM Average Control De        |          |                 | 8.3   | F    | ICM Le      | vel of Se | ervice |      | Α    |             |      |       |
| <b>HCM Volume to Capacity</b> |          |                 | 0.51  |      |             |           |        |      |      |             |      |       |
| Actuated Cycle Length (s      | ,        |                 | 34.9  |      |             | ost time  |        |      | 8.0  |             |      |       |
| Intersection Capacity Util    | lization |                 | 52.5% | [(   | CU Leve     | el of Ser | vice   |      | Α    |             |      |       |
| Analysis Period (min)         |          |                 | 15    |      |             |           |        |      |      |             |      |       |
| c Critical Lane Group         |          |                 |       |      |             |           |        |      |      |             |      |       |


|                               | ᄼ       | -               | $\rightarrow$ | •    | <b>←</b>    | •         | •     | <b>†</b> | /     | <b>&gt;</b> | ļ    | 4    |
|-------------------------------|---------|-----------------|---------------|------|-------------|-----------|-------|----------|-------|-------------|------|------|
| Movement                      | EBL     | EBT             | EBR           | WBL  | WBT         | WBR       | NBL   | NBT      | NBR   | SBL         | SBT  | SBR  |
| Lane Configurations           |         | ተተ <sub>ጉ</sub> |               |      | <b>↑</b> ↑↑ |           | ň     |          | 7     |             |      |      |
| Ideal Flow (vphpl)            | 1900    | 1900            | 1900          | 1900 | 1900        | 1900      | 1900  | 1900     | 1900  | 1900        | 1900 | 1900 |
| Total Lost time (s)           |         | 4.0             |               |      | 4.0         |           | 4.0   |          | 4.0   |             |      |      |
| Lane Util. Factor             |         | 0.91            |               |      | 0.91        |           | 1.00  |          | 1.00  |             |      |      |
| Frt                           |         | 0.99            |               |      | 0.99        |           | 1.00  |          | 0.85  |             |      |      |
| Flt Protected                 |         | 1.00            |               |      | 1.00        |           | 0.95  |          | 1.00  |             |      |      |
| Satd. Flow (prot)             |         | 5049            |               |      | 5031        |           | 1770  |          | 1583  |             |      |      |
| Flt Permitted                 |         | 1.00            |               |      | 1.00        |           | 0.95  |          | 1.00  |             |      |      |
| Satd. Flow (perm)             |         | 5049            |               |      | 5031        |           | 1770  |          | 1583  |             |      |      |
| Volume (vph)                  | 0       | 410             | 20            | 0    | 1180        | 90        | 150   | 0        | 600   | 0           | 0    | 0    |
| Peak-hour factor, PHF         | 0.97    | 0.97            | 0.97          | 0.97 | 0.97        | 0.97      | 0.97  | 0.97     | 0.97  | 0.97        | 0.97 | 0.97 |
| Adj. Flow (vph)               | 0       | 423             | 21            | 0    | 1216        | 93        | 155   | 0        | 619   | 0           | 0    | 0    |
| RTOR Reduction (vph)          | 0       | 10              | 0             | 0    | 16          | 0         | 0     | 0        | 112   | 0           | 0    | 0    |
| Lane Group Flow (vph)         | 0       | 434             | 0             | 0    | 1293        | 0         | 155   | 0        | 507   | 0           | 0    | 0    |
| Turn Type                     |         |                 |               |      |             |           | Prot  | С        | ustom |             |      |      |
| Protected Phases              |         | 4               |               |      | 8           |           | 2     |          |       |             |      |      |
| Permitted Phases              |         |                 |               |      |             |           |       |          | 2     |             |      |      |
| Actuated Green, G (s)         |         | 15.3            |               |      | 15.3        |           | 17.0  |          | 17.0  |             |      |      |
| Effective Green, g (s)        |         | 15.3            |               |      | 15.3        |           | 17.0  |          | 17.0  |             |      |      |
| Actuated g/C Ratio            |         | 0.38            |               |      | 0.38        |           | 0.42  |          | 0.42  |             |      |      |
| Clearance Time (s)            |         | 4.0             |               |      | 4.0         |           | 4.0   |          | 4.0   |             |      |      |
| Vehicle Extension (s)         |         | 3.0             |               |      | 3.0         |           | 3.0   |          | 3.0   |             |      |      |
| Lane Grp Cap (vph)            |         | 1917            |               |      | 1910        |           | 747   |          | 668   |             |      |      |
| v/s Ratio Prot                |         | 0.09            |               |      | c0.26       |           | 0.09  |          |       |             |      |      |
| v/s Ratio Perm                |         |                 |               |      |             |           |       |          | c0.32 |             |      |      |
| v/c Ratio                     |         | 0.23            |               |      | 0.68        |           | 0.21  |          | 0.76  |             |      |      |
| Uniform Delay, d1             |         | 8.5             |               |      | 10.4        |           | 7.4   |          | 9.9   |             |      |      |
| Progression Factor            |         | 1.00            |               |      | 1.00        |           | 1.00  |          | 1.00  |             |      |      |
| Incremental Delay, d2         |         | 0.1             |               |      | 1.0         |           | 0.1   |          | 5.0   |             |      |      |
| Delay (s)                     |         | 8.5             |               |      | 11.4        |           | 7.5   |          | 14.9  |             |      |      |
| Level of Service              |         | Α               |               |      | В           |           | Α     |          | В     |             |      |      |
| Approach Delay (s)            |         | 8.5             |               |      | 11.4        |           |       | 13.4     |       |             | 0.0  |      |
| Approach LOS                  |         | Α               |               |      | В           |           |       | В        |       |             | Α    |      |
| Intersection Summary          |         |                 |               |      |             |           |       |          |       |             |      |      |
| HCM Average Control De        |         |                 | 11.5          | F    | ICM Le      | vel of Se | rvice |          | В     |             |      |      |
| <b>HCM Volume to Capacity</b> |         |                 | 0.72          |      |             |           |       |          |       |             |      |      |
| Actuated Cycle Length (s      |         |                 | 40.3          |      |             | ost time  | ` '   |          | 8.0   |             |      |      |
| Intersection Capacity Util    | ization |                 | 52.2%         | 10   | CU Leve     | el of Ser | vice  |          | Α     |             |      |      |
| Analysis Period (min)         |         |                 | 15            |      |             |           |       |          |       |             |      |      |
| c Critical Lane Group         |         |                 |               |      |             |           |       |          |       |             |      |      |

|                              | ۶        | -        | ←          | •    | <b>&gt;</b> | ✓             |    |     |
|------------------------------|----------|----------|------------|------|-------------|---------------|----|-----|
| Movement                     | EBL      | EBT      | WBT        | WBR  | SBL         | SBR           |    |     |
| Lane Configurations          |          | <b>*</b> | <b>441</b> |      |             | 7             |    |     |
| Ideal Flow (vphpl)           | 1900     | 1900     | 1900       | 1900 | 1900        | 1900          |    |     |
| Total Lost time (s)          |          | 4.0      | 4.0        |      | 4.0         | 4.0           |    |     |
| Lane Util. Factor            |          | 1.00     | 0.91       |      | 1.00        | 1.00          |    |     |
| Frt                          |          | 1.00     | 0.93       |      | 1.00        | 0.85          |    |     |
| Flt Protected                |          | 1.00     | 1.00       |      | 0.95        | 1.00          |    |     |
| Satd. Flow (prot)            |          | 1863     | 4712       |      | 1770        | 1583          |    |     |
| Flt Permitted                |          | 1.00     | 1.00       |      | 0.95        | 1.00          |    |     |
| Satd. Flow (perm)            |          | 1863     | 4712       |      | 1770        | 1583          |    |     |
| Volume (vph)                 | 0        | 900      | 690        | 660  | 380         | 160           |    |     |
| Peak-hour factor, PHF        | 0.97     | 0.97     | 0.97       | 0.97 | 0.97        | 0.97          |    |     |
| Adj. Flow (vph)              | 0        | 928      | 711        | 680  | 392         | 165           |    |     |
| RTOR Reduction (vph)         | 0        | 0        | 220        | 0    | 0           | 115           |    |     |
| Lane Group Flow (vph)        | 0        | 928      | 1171       | 0    | 392         | 50            |    |     |
| Turn Type                    |          |          |            |      |             | Perm          |    |     |
| Protected Phases             |          | 4        | 8          |      | 6           |               |    |     |
| Permitted Phases             |          |          |            |      |             | 6             |    |     |
| Actuated Green, G (s)        |          | 33.8     | 33.8       |      | 18.0        | 18.0          |    |     |
| Effective Green, g (s)       |          | 33.8     | 33.8       |      | 18.0        | 18.0          |    |     |
| Actuated g/C Ratio           |          | 0.57     | 0.57       |      | 0.30        | 0.30          |    |     |
| Clearance Time (s)           |          | 4.0      | 4.0        |      | 4.0         | 4.0           |    |     |
| Vehicle Extension (s)        |          | 3.0      | 3.0        |      | 3.0         | 3.0           |    |     |
| Lane Grp Cap (vph)           |          | 1053     | 2663       |      | 533         | 476           |    |     |
| v/s Ratio Prot               |          | c0.50    | 0.25       |      | c0.22       |               |    |     |
| v/s Ratio Perm               |          |          |            |      |             | 0.03          |    |     |
| v/c Ratio                    |          | 0.88     | 0.44       |      | 0.74        | 0.10          |    |     |
| Uniform Delay, d1            |          | 11.3     | 7.5        |      | 18.8        | 15.1          |    |     |
| Progression Factor           |          | 1.00     | 1.00       |      | 1.00        | 1.00          |    |     |
| Incremental Delay, d2        |          | 8.8      | 0.1        |      | 5.2         | 0.1           |    |     |
| Delay (s)                    |          | 20.1     | 7.6        |      | 24.0        | 15.2          |    |     |
| Level of Service             |          | С        | Α          |      | С           | В             |    |     |
| Approach Delay (s)           |          | 20.1     | 7.6        |      | 21.4        |               |    |     |
| Approach LOS                 |          | С        | Α          |      | С           |               |    |     |
| Intersection Summary         |          |          |            |      |             |               |    |     |
| HCM Average Control D        |          |          | 14.3       | H    | ICM Le      | vel of Servi  | ce | В   |
| <b>HCM Volume to Capacit</b> |          |          | 0.83       |      |             |               |    |     |
| Actuated Cycle Length (      |          |          | 59.8       |      |             | ost time (s)  |    | 8.0 |
| Intersection Capacity Uti    | lization |          | 75.1%      | 10   | CU Leve     | el of Service | 9  | D   |
| Analysis Period (min)        |          |          | 15         |      |             |               |    |     |
| c Critical Lane Group        |          |          |            |      |             |               |    |     |

|                              | -        | •    | •     | ←    | 1         | <b>/</b>       |    |    |
|------------------------------|----------|------|-------|------|-----------|----------------|----|----|
| Movement                     | EBT      | EBR  | WBL   | WBT  | NBL       | NBR            |    |    |
| Lane Configurations          | ተተጉ      |      |       | ተተተ  | *         | 1              |    |    |
| Ideal Flow (vphpl)           | 1900     | 1900 | 1900  | 1900 | 1900      | 1900           |    |    |
| Total Lost time (s)          | 4.0      |      |       | 4.0  | 4.0       | 4.0            |    |    |
| Lane Util. Factor            | 0.91     |      |       | 0.91 | 1.00      | 1.00           |    |    |
| Frt                          | 0.98     |      |       | 1.00 | 1.00      | 0.85           |    |    |
| Flt Protected                | 1.00     |      |       | 1.00 | 0.95      | 1.00           |    |    |
| Satd. Flow (prot)            | 4996     |      |       | 5085 | 1770      | 1583           |    |    |
| Flt Permitted                | 1.00     |      |       | 1.00 | 0.95      | 1.00           |    |    |
| Satd. Flow (perm)            | 4996     |      |       | 5085 | 1770      | 1583           |    |    |
| Volume (vph)                 | 1130     | 150  | 0     | 1060 | 290       | 1350           |    |    |
| Peak-hour factor, PHF        | 0.97     | 0.97 | 0.97  | 0.97 | 0.97      | 0.97           |    |    |
| Adj. Flow (vph)              | 1165     | 155  | 0     | 1093 | 299       | 1392           |    |    |
| RTOR Reduction (vph)         | 26       | 0    | 0     | 0    | 0         | 0              |    |    |
| Lane Group Flow (vph)        | 1294     | 0    | 0     | 1093 | 299       | 1392           |    |    |
| Turn Type                    |          |      |       |      |           | Perm           |    |    |
| Protected Phases             | 4        |      |       | 8    | 2         |                |    |    |
| Permitted Phases             | ·        |      |       |      | _         | 2              |    |    |
| Actuated Green, G (s)        | 16.0     |      |       | 16.0 | 41.0      | 41.0           |    |    |
| Effective Green, g (s)       | 16.0     |      |       | 16.0 | 41.0      | 41.0           |    |    |
| Actuated g/C Ratio           | 0.25     |      |       | 0.25 | 0.63      | 0.63           |    |    |
| Clearance Time (s)           | 4.0      |      |       | 4.0  | 4.0       | 4.0            |    |    |
| Vehicle Extension (s)        | 3.0      |      |       | 3.0  | 3.0       | 3.0            |    |    |
| Lane Grp Cap (vph)           | 1230     |      |       | 1252 | 1116      | 999            |    |    |
| v/s Ratio Prot               | c0.26    |      |       | 0.21 | 0.17      |                |    |    |
| v/s Ratio Perm               |          |      |       |      |           | c0.88          |    |    |
| v/c Ratio                    | 1.05     |      |       | 0.87 | 0.27      | 1.39           |    |    |
| Uniform Delay, d1            | 24.5     |      |       | 23.5 | 5.3       | 12.0           |    |    |
| Progression Factor           | 1.00     |      |       | 1.00 | 1.00      | 1.00           |    |    |
| Incremental Delay, d2        | 40.4     |      |       | 7.0  | 0.1       | 183.0          |    |    |
| Delay (s)                    | 64.9     |      |       | 30.5 | 5.5       | 195.0          |    |    |
| Level of Service             | Е        |      |       | С    | Α         | F              |    |    |
| Approach Delay (s)           | 64.9     |      |       | 30.5 | 161.5     |                |    |    |
| Approach LOS                 | Е        |      |       | С    | F         |                |    |    |
| Intersection Summary         |          |      |       |      |           |                |    |    |
| HCM Average Control D        | elay     |      | 95.6  | F    | ICM Lev   | vel of Service | )  | F  |
| <b>HCM Volume to Capacit</b> | ty ratio |      | 1.30  |      |           |                |    |    |
| Actuated Cycle Length (      | (s)      |      | 65.0  | 5    | Sum of lo | ost time (s)   | 8. | .0 |
| Intersection Capacity Ut     |          | 1    | 15.4% | [0   | CU Leve   | el of Service  |    | Н  |
| Analysis Period (min)        |          |      | 15    |      |           |                |    |    |
| c Critical Lane Group        |          |      |       |      |           |                |    |    |

### Level Of Service Computation Report 2000 HCM 4-Way Stop (Base Volume Alternative) Cumulative No Project PM

# Intersection #5: Elverta Road / East Levee Road



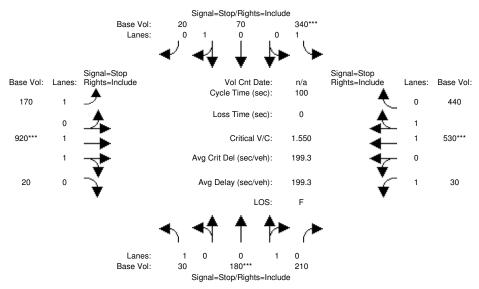
| Movement:                 | Nor<br>L - | th Bo<br>T | - R          | Soi<br>L - | uth Bo<br>- T |        | L -  | - T      | ound<br>– R   | ta Road  West Bound  L - T - R |              |              |  |
|---------------------------|------------|------------|--------------|------------|---------------|--------|------|----------|---------------|--------------------------------|--------------|--------------|--|
| Min. Green:               | 0          | 0          | 0            | 0          | 0             | 0      | 0    | 0        | 0             | 0                              | 0            | 0            |  |
| Volume Module             |            |            | ı            | 1          |               | 1      | 1    |          | ,             | 1                              |              | ı            |  |
| Base Vol:                 | 10         | 140        | 120          | 10         | 40            | 10     | 50   | 1230     | 20            | 120                            | 580          | 170          |  |
| Growth Adj:               | 1.00       | 1.00       | 1.00         | 1.00       | 1.00          | 1.00   | 1.00 | 1.00     | 1.00          | 1.00                           | 1.00         | 1.00         |  |
| Initial Bse:              |            | 140        | 120          | 10         | 40            | 10     |      | 1230     | 20            | 120                            | 580          | 170          |  |
| User Adj:                 | 1.00       | 1.00       | 1.00         | 1.00       | 1.00          | 1.00   | 1.00 | 1.00     | 1.00          | 1.00                           | 1.00         | 1.00         |  |
| PHF Adj:                  | 0.97       | 0.97       | 0.97         | 0.97       | 0.97          | 0.97   | 0.97 | 0.97     | 0.97          | 0.97                           | 0.97         | 0.97         |  |
| PHF Volume:               | 10         | 144        | 124          | 10         | 41            | 10     | 52   | 1268     | 21            | 124                            | 598          | 175          |  |
| Reduct Vol:               | 0          | 0          | 0            | 0          | 0             | 0      | 0    | 0        | 0             | 0                              | 0            | 0            |  |
| Reduced Vol:              | 10         | 144        | 124          | 10         | 41            | 10     | 52   | 1268     | 21            | 124                            | 598          | 175          |  |
| PCE Adj:                  | 1.00       | 1.00       | 1.00         | 1.00       | 1.00          | 1.00   | 1.00 | 1.00     | 1.00          | 1.00                           | 1.00         | 1.00         |  |
| MLF Adj:                  | 1.00       | 1.00       | 1.00         | 1.00       | 1.00          | 1.00   | 1.00 | 1.00     | 1.00          | 1.00                           | 1.00         | 1.00         |  |
| FinalVolume:              |            |            |              | 10         |               |        | 52   |          |               | 124                            |              | 175          |  |
|                           |            |            |              |            |               |        |      |          |               |                                |              |              |  |
| Saturation Fi             |            |            |              |            |               |        |      |          |               |                                |              |              |  |
| Adjustment:               |            |            |              |            |               |        |      |          |               |                                | 1.00         | 1.00         |  |
| Lanes:                    |            |            |              |            |               | 0.20   | 1.00 |          |               |                                | 1.55         | 0.45         |  |
| Final Sat.:               |            |            | 191          | 344        |               | 74     |      |          |               |                                |              | 203          |  |
|                           |            |            |              |            |               |        |      |          |               |                                |              |              |  |
| Capacity Anal             | _          |            |              |            | 0 1 1         | 0 1 4  | 0 10 |          | 4 40          | 0 01                           | 0 00         | 0 0 0        |  |
| Vol/Sat:                  |            | U.65       | 0.65         | 0.03       | 0.14<br>****  | 0.14   | 0.13 | 1.49     | 1.48          | 0.31                           | 0.89         | 0.87         |  |
| Crit Moves:               |            |            | 25 2         | 12 0       |               | 12 (   | 10 0 |          | 051 (         | 1 = 1                          |              | 12 7         |  |
| Delay/Veh:                |            |            | 25.2         |            |               | 13.6   |      |          | 251.6         |                                | 48.1         | 43.7         |  |
| Delay Adj:<br>AdjDel/Veh: |            |            | 1.00<br>25.2 |            | 1.00<br>13.6  | 13.6   | 12.8 | 1.00     | 1.00<br>251.6 |                                | 1.00<br>48.1 | 1.00<br>43.7 |  |
| LOS by Move:              |            |            | 23.2<br>D    |            | 13.0          | 13.0   |      | 233<br>F | 231.0<br>F    |                                | 40.1<br>E    | 43.7<br>E    |  |
| ApproachDel:              | Ь          | 24.7       | ע            |            | 13.5          | D      |      | 243.3    |               | C                              | 42.7         | E            |  |
| Delay Adj:                |            | 1.00       |              |            | 1.00          |        |      | 1.00     |               |                                | 1.00         |              |  |
| ApprAdjDel:               |            |            |              |            | 13.5          |        |      | 243.3    |               |                                | 42.7         |              |  |
| LOS by Appr:              |            |            |              |            | В             |        |      | F        |               |                                | 12 • 7<br>E  |              |  |
| AllWayAvgQ:               |            |            | 1.6          | 0.0        |               | 0.1    |      | _        | 29.0          | 0.4                            |              | 4.1          |  |
| Note: Queue               |            |            |              |            |               |        |      |          | 23.0          | •••                            | - • •        |              |  |
| noco, gacac               |            |            |              |            |               | Warran |      |          | Urbanl        |                                |              |              |  |
| *****                     |            |            |              |            |               |        |      |          |               | ****                           | *****        | *****        |  |
| Intersection *******      |            |            |              | ,          |               |        |      | ****     | *****         | ****                           | *****        | *****        |  |
| Base Volume A             |            |            |              |            |               |        | ı    |          | 1             |                                |              | 1            |  |
|                           |            |            |              |            |               |        |      |          | ound          |                                |              |              |  |

Movement: L - T - R L - T - R L - T - R L - T - R Control: Stop Sign Stop Si

\_\_\_\_\_\_

#### SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).


The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

|                           | ۶         | <b>→</b> | <b>←</b> | •    | <b>/</b> | 4         |      |       |      |  |
|---------------------------|-----------|----------|----------|------|----------|-----------|------|-------|------|--|
| Movement                  | EBL       | EBT      | WBT      | WBR  | SBL      | SBR       |      |       |      |  |
| Lane Configurations       | Ť         | ተተተ      | ተተኈ      |      | 7        | 7         |      |       |      |  |
| Sign Control              |           | Free     | Free     |      | Stop     |           |      |       |      |  |
| Grade                     |           | 0%       | 0%       |      | 0%       |           |      |       |      |  |
| Volume (veh/h)            | 240       | 1860     | 830      | 90   | 40       | 140       |      |       |      |  |
| Peak Hour Factor          | 0.97      | 0.97     | 0.97     | 0.97 | 0.97     | 0.97      |      |       |      |  |
| Hourly flow rate (vph)    | 247       | 1918     | 856      | 93   | 41       | 144       |      |       |      |  |
| Pedestrians               |           |          |          |      |          |           |      |       |      |  |
| Lane Width (ft)           |           |          |          |      |          |           |      |       |      |  |
| Walking Speed (ft/s)      |           |          |          |      |          |           |      |       |      |  |
| Percent Blockage          |           |          |          |      |          |           |      |       |      |  |
| Right turn flare (veh)    |           |          |          |      |          |           |      |       |      |  |
| Median type               |           |          |          |      | None     |           |      |       |      |  |
| Median storage veh)       |           |          |          |      |          |           |      |       |      |  |
| Upstream signal (ft)      |           |          |          |      |          |           |      |       |      |  |
| pX, platoon unblocked     |           |          |          |      |          |           |      |       |      |  |
| vC, conflicting volume    | 948       |          |          |      | 2036     | 332       |      |       |      |  |
| vC1, stage 1 conf vol     |           |          |          |      |          |           |      |       |      |  |
| vC2, stage 2 conf vol     |           |          |          |      |          |           |      |       |      |  |
| vCu, unblocked vol        | 948       |          |          |      | 2036     | 332       |      |       |      |  |
| tC, single (s)            | 4.1       |          |          |      | 6.8      | 6.9       |      |       |      |  |
| tC, 2 stage (s)           |           |          |          |      |          |           |      |       |      |  |
| tF (s)                    | 2.2       |          |          |      | 3.5      | 3.3       |      |       |      |  |
| p0 queue free %           | 66        |          |          |      | 0        | 78        |      |       |      |  |
| cM capacity (veh/h)       | 720       |          |          |      | 32       | 664       |      |       |      |  |
| Direction, Lane #         | EB 1      | EB 2     | EB3      | EB 4 | WB 1     | WB2       | WB3  | SB 1  | SB 2 |  |
| Volume Total              | 247       | 639      | 639      | 639  | 342      | 342       | 264  | 41    | 144  |  |
| Volume Left               | 247       | 0        | 0        | 0    | 0        | 0         | 0    | 41    | 0    |  |
| Volume Right              | 0         | 0        | 0        | 0    | 0        | 0         | 93   | 0     | 144  |  |
| cSH                       | 720       | 1700     | 1700     | 1700 | 1700     | 1700      | 1700 | 32    | 664  |  |
| Volume to Capacity        | 0.34      | 0.38     | 0.38     | 0.38 | 0.20     | 0.20      | 0.16 | 1.28  | 0.22 |  |
| Queue Length 95th (ft)    | 38        | 0        | 0        | 0    | 0        | 0         | 0    | 113   | 21   |  |
| Control Delay (s)         | 12.6      | 0.0      | 0.0      | 0.0  | 0.0      | 0.0       | 0.0  | 438.8 | 11.9 |  |
| Lane LOS                  | В         |          |          |      |          |           |      | F     | В    |  |
| Approach Delay (s)        | 1.4       |          |          |      | 0.0      |           |      | 106.8 |      |  |
| Approach LOS              |           |          |          |      |          |           |      | F     |      |  |
| Intersection Summary      |           |          |          |      |          |           |      |       |      |  |
| Average Delay             |           |          | 7.0      |      |          |           |      |       |      |  |
| Intersection Capacity Uti | ilization |          | 45.9%    | Į.   | CU Leve  | el of Sei | vice |       | Α    |  |
| Analysis Period (min)     |           |          | 15       |      |          |           |      |       |      |  |
|                           |           |          |          |      |          |           |      |       |      |  |

|                           | ۶        | <b>→</b>   | •     | •    | +          | •         | 4      | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>+</b> | 4    |
|---------------------------|----------|------------|-------|------|------------|-----------|--------|----------|-------------|----------|----------|------|
| Movement                  | EBL      | EBT        | EBR   | WBL  | WBT        | WBR       | NBL    | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations       | ሻ        | <b>∱</b> } |       | ሻ    | <b>∱</b> } |           | ሻ      | ą.       |             | ሻ        | ĵ.       |      |
| Sign Control              |          | Free       |       | ·    | Free       |           |        | Stop     |             |          | Stop     |      |
| Grade                     |          | 0%         |       |      | 0%         |           |        | 0%       |             |          | 0%       |      |
| Volume (veh/h)            | 310      | 1040       | 10    | 10   | 600        | 10        | 10     | 10       | 10          | 10       | 10       | 260  |
| Peak Hour Factor          | 0.97     | 0.97       | 0.97  | 0.97 | 0.97       | 0.97      | 0.97   | 0.97     | 0.97        | 0.97     | 0.97     | 0.97 |
| Hourly flow rate (vph)    | 320      | 1072       | 10    | 10   | 619        | 10        | 10     | 10       | 10          | 10       | 10       | 268  |
| Pedestrians               |          |            |       |      |            |           |        |          |             |          |          |      |
| Lane Width (ft)           |          |            |       |      |            |           |        |          |             |          |          |      |
| Walking Speed (ft/s)      |          |            |       |      |            |           |        |          |             |          |          |      |
| Percent Blockage          |          |            |       |      |            |           |        |          |             |          |          |      |
| Right turn flare (veh)    |          |            |       |      |            |           |        |          |             |          |          |      |
| Median type               |          |            |       |      |            |           |        | None     |             |          | None     |      |
| Median storage veh)       |          |            |       |      |            |           |        |          |             |          |          |      |
| Upstream signal (ft)      |          |            |       |      |            |           |        |          |             |          |          |      |
| pX, platoon unblocked     |          |            |       |      |            |           |        |          |             |          |          |      |
| vC, conflicting volume    | 629      |            |       | 1082 |            |           | 2320   | 2366     | 541         | 1835     | 2366     | 314  |
| vC1, stage 1 conf vol     |          |            |       |      |            |           |        |          |             |          |          |      |
| vC2, stage 2 conf vol     |          |            |       |      |            |           |        |          |             |          |          |      |
| vCu, unblocked vol        | 629      |            |       | 1082 |            |           | 2320   | 2366     | 541         | 1835     | 2366     | 314  |
| tC, single (s)            | 4.1      |            |       | 4.1  |            |           | 7.5    | 6.5      | 6.9         | 7.5      | 6.5      | 6.9  |
| tC, 2 stage (s)           |          |            |       |      |            |           |        |          |             |          |          |      |
| tF (s)                    | 2.2      |            |       | 2.2  |            |           | 3.5    | 4.0      | 3.3         | 3.5      | 4.0      | 3.3  |
| p0 queue free %           | 66       |            |       | 98   |            |           | 0      | 54       | 98          | 54       | 54       | 61   |
| cM capacity (veh/h)       | 949      |            |       | 640  |            |           | 6      | 23       | 485         | 22       | 23       | 681  |
| Direction, Lane #         | EB 1     | EB 2       | EB3   | WB 1 | WB 2       | WB3       | NB 1   | NB 2     | SB 1        | SB 2     |          |      |
| Volume Total              | 320      | 715        | 368   | 10   | 412        | 216       | 10     | 21       | 10          | 278      |          |      |
| Volume Left               | 320      | 0          | 0     | 10   | 0          | 0         | 10     | 0        | 10          | 0        |          |      |
| Volume Right              | 0        | 0          | 10    | 0    | 0          | 10        | 0      | 10       | 0           | 268      |          |      |
| cSH                       | 949      | 1700       | 1700  | 640  | 1700       | 1700      | 6      | 43       | 22          | 328      |          |      |
| Volume to Capacity        | 0.34     | 0.42       | 0.22  | 0.02 | 0.24       | 0.13      | 1.75   | 0.48     | 0.46        | 0.85     |          |      |
| Queue Length 95th (ft)    | 37       | 0          | 0     | 1    | 0          | 0         | 57     | 43       | 34          | 190      |          |      |
| Control Delay (s)         | 10.7     | 0.0        | 0.0   | 10.7 | 0.0        | 0.0       | 1502.8 | 148.9    | 265.7       | 55.3     |          |      |
| Lane LOS                  | В        |            |       | В    |            |           | F      | F        | F           | F        |          |      |
| Approach Delay (s)        | 2.4      |            |       | 0.2  |            |           | 600.2  |          | 62.8        |          |          |      |
| Approach LOS              |          |            |       |      |            |           | F      |          | F           |          |          |      |
| Intersection Summary      |          |            |       |      |            |           |        |          |             |          |          |      |
| Average Delay             |          |            | 17.0  |      |            |           |        |          |             |          |          |      |
| Intersection Capacity Uti | lization |            | 60.7% | I    | CU Lev     | el of Sei | vice   |          | В           |          |          |      |
| Analysis Period (min)     |          |            | 15    |      |            |           |        |          |             |          |          |      |

### Level Of Service Computation Report 2000 HCM 4-Way Stop (Base Volume Alternative) Cumulative No Project PM

# Intersection #8: Elverta Road / Elwyn Road

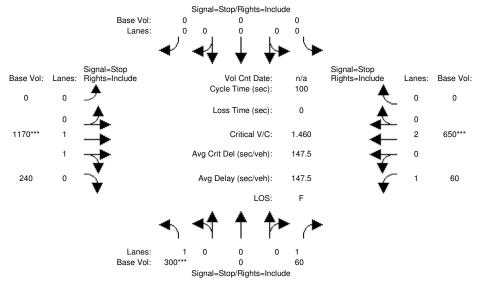


| Street Name:<br>Approach:  | North E   | Elwyr<br>Bound | n Road<br>Soi | uth Bo | und    | Eas           | st Bo     | d<br>est Bound       |                        |                  |                                           |
|----------------------------|-----------|----------------|---------------|--------|--------|---------------|-----------|----------------------|------------------------|------------------|-------------------------------------------|
| Movement:                  | L – T     | - R            | L -           | - T    | - R    | L -           | Τ         | - R                  | L -                    | T                | - R                                       |
| Min. Green:                | 0 0       | 0              | 0             | 0      | 0      | 0             | 0         | 0                    | 0                      | 0                | 0                                         |
| Volume Module              |           |                |               |        |        |               |           |                      |                        |                  |                                           |
| Base Vol:                  | 30 180    | 210            | 340           | 70     | 20     | 170           | 920       | 20                   | 30                     | 530              | 440                                       |
| Growth Adj:                | 1.00 1.00 | 1.00           | 1.00          | 1.00   | 1.00   | 1.00 1        | 1.00      | 1.00                 | 1.00                   | 1.00             | 1.00                                      |
| Initial Bse:               | 30 180    |                | 340           | 70     | 20     | 170           | 920       | 20                   | 30                     |                  | 440                                       |
| User Adj:                  |           |                |               | 1.00   | 1.00   | 1.00 1        |           | 1.00                 | 1.00                   |                  | 1.00                                      |
| PHF Adj:                   |           |                | 0.97          |        | 0.97   | 0.97 0        |           | 0.97                 | 0.97                   |                  | 0.97                                      |
| PHF Volume:                |           |                | 351           | 72     | 21     | 175           | 948       | 21                   | 31                     | 546              | 454                                       |
| Reduct Vol:                |           |                | 0             | 0      | 0      | 0             |           |                      | 0                      | 0                | 0                                         |
| Reduced Vol:               |           |                | 351           |        | 21     |               |           |                      |                        |                  | 454                                       |
| PCE Adj:                   |           |                |               | 1.00   | 1.00   | 1.00 1        |           |                      | 1.00                   |                  | 1.00                                      |
| MLF Adj:                   |           |                |               | 1.00   | 1.00   | 1.00 1        |           | 1.00                 |                        |                  | 1.00                                      |
| FinalVolume:               |           |                | 351           |        |        | 175           |           |                      | 31                     |                  | 454                                       |
| Saturation Fi              | •         |                |               |        |        |               |           |                      |                        |                  |                                           |
| Adjustment:                |           |                | 1 00          | 1 00   | 1 00   | 1 00 1        | 00        | 1 00                 | 1 00                   | 1 00             | 1.00                                      |
| Lanes:                     |           |                |               |        |        | 1.00 1        |           |                      | 1.00                   |                  |                                           |
| Final Sat.:                |           |                |               |        |        |               |           |                      | 307                    |                  |                                           |
|                            |           |                |               |        |        |               |           |                      |                        |                  |                                           |
| Capacity Anal              |           |                | 1             |        |        | '             |           |                      | '                      |                  | '                                         |
| Vol/Sat:                   | 0.10 1.14 | 1.14           | 1.08          | 0.27   | 0.27   | 0.55 1        | 1.46      | 1.46                 | 0.10                   | 1.55             | 1.47                                      |
| Crit Moves:                | ***       |                | ****          |        |        | *             | ***       |                      |                        | ****             |                                           |
| Delay/Veh:                 | 15.0 125  | 125.2          | 105.1         | 16.8   | 16.8   | 27.2          | 249       | 248.3                | 15.7                   | 288              | 252.4                                     |
| Delay Adj:                 | 1.00 1.00 | 1.00           | 1.00          | 1.00   | 1.00   | 1.00 1        | 1.00      | 1.00                 | 1.00                   | 1.00             | 1.00                                      |
| AdjDel/Veh:                | 15.0 125  | 125.2          | 105.1         | 16.8   | 16.8   |               |           | 248.3                |                        |                  | 252.4                                     |
| LOS by Move:               |           |                |               | С      | С      | D             | F         | F                    | С                      | F                | F                                         |
| ApproachDel:<br>Delay Adj: | 117.3     | 3              |               | 86.6   |        |               | 15.2      |                      | 2                      | 64.4             |                                           |
| Delay Adj:                 | 1.00      | )              |               | 1.00   |        |               | 1.00      |                      |                        | 1.00             |                                           |
| ApprAdjDel:                | 117.3     | 3              |               | 86.6   |        |               | 15.2      |                      | 2                      |                  |                                           |
| LOS by Appr:               | F         | •              |               | F      |        |               |           |                      |                        | F                |                                           |
| AllWayAvgQ:                |           |                |               |        |        |               | 21.8      | 21.7                 | 0.1                    | 24.8             | 22.6                                      |
| Note: Queue                |           |                |               |        |        |               |           |                      |                        |                  |                                           |
| *****                      | Peak F    | lour Vol       | ume Si        | ıgnal  | Warran | t Repor       | rt [[     | Jrban]               | ale ale ale ale al . C | ale ale ale at 1 | to all all all all all all all all all al |
| Intersection               |           |                |               |        |        | ^ * * * * * * | · * * * ; | ^ <i>*</i> * * * * * | ^ * * * * *            | ****             |                                           |
| ******                     |           |                |               |        |        | *****         | ***       | *****                | ****                   | ****             | *****                                     |
| Base Volume A              |           |                |               |        |        |               |           |                      |                        |                  |                                           |
|                            | I         |                |               |        |        |               |           |                      |                        |                  |                                           |
| Approach:                  | North E   |                |               |        |        | Eas           |           |                      |                        |                  | ound                                      |

 
 COMPARE
 Tue Nov 23 09:56:29 2010

 Movement:
 L
 T
 R
 L
 T
 R
 L
 T
 R
 L
 T
 R
 L
 T
 R
 -----||-----||------| -----||-----||-----| Major Street Volume: 2110
Minor Approach Volume: 430 Minor Approach Volume Threshold: 53 [less than minimum of 150]

\_\_\_\_\_\_


#### SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

### Level Of Service Computation Report 2000 HCM 4-Way Stop (Base Volume Alternative) Cumulative No Project PM

# Intersection #9: Elverta Road / Rio Linda Boulevard



|                                 | Noi    | rth Bo | und    | Sou  | ıth Bo | und    |      |          | ound       | ta Road<br>West Bound<br>L - T - R |       |      |  |
|---------------------------------|--------|--------|--------|------|--------|--------|------|----------|------------|------------------------------------|-------|------|--|
|                                 |        |        |        |      |        |        |      |          |            |                                    |       |      |  |
| Min. Green:                     |        |        |        |      |        |        |      |          | 0          |                                    |       |      |  |
| Volume Module                   |        |        | I      | 1    |        | ı      | ı    |          | I          | 1                                  |       | ı    |  |
| Base Vol:                       | 300    | 0      | 60     | 0    | 0      | 0      | 0    | 1170     | 240        | 60                                 | 650   | 0    |  |
| Growth Adj:                     | 1.00   | 1.00   | 1.00   | 1.00 | 1.00   | 1.00   | 1.00 | 1.00     | 1.00       | 1.00                               | 1.00  | 1.00 |  |
| Initial Bse:                    | 300    | 0      | 60     | 0    | 0      | 0      | 0    | 1170     | 240        | 60                                 | 650   | 0    |  |
| User Adj:                       |        |        | 1.00   | 1.00 | 1.00   | 1.00   | 1.00 | 1.00     | 1.00       | 1.00                               | 1.00  | 1.00 |  |
| PHF Adj:                        | 0.97   | 0.97   | 0.97   | 0.97 | 0.97   | 0.97   | 0.97 | 0.97     | 0.97       | 0.97                               | 0.97  | 0.97 |  |
| PHF Volume:                     |        | 0      | 62     | 0    | 0      | 0      | 0    |          | 247        | 62                                 | 670   | 0    |  |
| Reduct Vol:                     |        | 0      | 0      | 0    | 0      | 0      | 0    | 0        | 0          | 0                                  |       | 0    |  |
| Reduced Vol:                    |        |        |        | 0    | 0      | 0      | 0    |          |            |                                    |       | 0    |  |
| PCE Adj:                        |        |        | 1.00   |      |        | 1.00   |      | 1.00     |            |                                    | 1.00  |      |  |
| MLF Adj:                        |        |        | 1.00   | 1.00 |        | 1.00   |      | 1.00     |            |                                    | 1.00  | 1.00 |  |
| FinalVolume:                    |        |        |        | 0    |        | 0      |      |          |            |                                    |       | 0    |  |
|                                 | ,      |        |        |      |        |        |      |          |            |                                    |       |      |  |
| Saturation Fi                   |        |        |        |      |        |        |      |          |            |                                    |       |      |  |
| Adjustment:                     |        |        |        |      |        |        |      |          |            |                                    |       |      |  |
| Lanes:                          |        |        |        |      |        |        |      |          | 0.34       |                                    |       |      |  |
| Final Sat.:                     |        |        |        |      |        | 0      |      |          |            |                                    |       | 0    |  |
|                                 | '      |        |        |      |        |        |      |          |            |                                    |       |      |  |
| Capacity Anal                   |        |        |        |      |        |        |      | 1 10     | 1 12       | 0 1 5                              | 0 77  |      |  |
| <pre>Vol/Sat: Crit Moves:</pre> |        | XXXX   | 0.13   | XXXX | XXXX   | XXXX   | XXXX | ****     | 1.43       | 0.13                               | 0.77  | XXXX |  |
| Delay/Veh:                      |        | 0 0    | 11.5   | 0.0  | 0 0    | 0.0    | 0 0  |          | 225.1      | 12 0                               | 33.7  | 0.0  |  |
| Delay Adj:                      |        |        | 1.00   | 1.00 |        | 1.00   |      |          | 1.00       |                                    | 1.00  | 1.00 |  |
| AdjDel/Veh:                     |        |        | 11.5   | 0.0  |        | 0.0    |      |          | 225.1      |                                    | 33.7  | 0.0  |  |
| LOS by Move:                    |        |        |        |      |        | *      |      | 230<br>F | 223.1<br>F |                                    | D D   | *    |  |
| ApproachDel:                    | D      |        | ъ      |      | XXXXX  |        |      | 235.7    | _          | ъ                                  | 31.9  |      |  |
| Delay Adj:                      |        | 30.3   |        |      | XXXXX  |        |      | 1.00     |            |                                    | 1.00  |      |  |
| ApprAdjDel:                     |        |        |        |      | XXXXX  |        |      | 235.7    |            |                                    | 31.9  |      |  |
| LOS by Appr:                    |        |        |        |      | *      |        |      | 7.<br>F  |            |                                    | D D   |      |  |
| AllWayAvgQ:                     |        |        | 0.1    | 0.0  | 0.0    | 0.0    |      | _        | 30.4       | 0.2                                | _     | 0.0  |  |
| Note: Queue                     |        |        |        |      |        |        |      |          |            |                                    | - • · |      |  |
|                                 | _      |        |        |      |        | Warran |      |          | Urbanl     |                                    |       |      |  |
| *****                           |        |        |        |      |        |        |      |          |            | ****                               | ***** | **** |  |
| Intersection *******            |        |        |        |      |        |        |      | ****     | *****      | ****                               | ***** | **** |  |
| Base Volume A                   | Altern | native | : Peak | Hour | Warra  | nt Met |      |          |            |                                    |       |      |  |
|                                 |        |        |        |      |        |        |      |          |            |                                    |       |      |  |
| Approach:                       | Noi    | rth Bo | und    |      |        | und    |      |          | ound       |                                    |       | und  |  |

-----||-----||------| 

 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 2 0 0

 Initial Vol:
 300 0 60 0 0 0 0 1170 240 60 650 0

 -----||-----||-----| Major Street Volume: 2120 Minor Approach Volume: 360 Minor Approach Volume Threshold: 51 [less than minimum of 150]

\_\_\_\_\_\_

## SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

|                          | <b>→</b>   | •    | •     | ←        | 4       | <b>/</b>  |      |   |  |
|--------------------------|------------|------|-------|----------|---------|-----------|------|---|--|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL     | NBR       |      |   |  |
| Lane Configurations      | <b>↑</b> Ъ |      | ኻ     | <b>^</b> | ሻ       | 7         |      |   |  |
| Sign Control             | Free       |      | ·     | Free     | Stop    |           |      |   |  |
| Grade                    | 0%         |      |       | 0%       | 0%      |           |      |   |  |
| Volume (veh/h)           | 1250       | 10   | 110   | 770      | 10      | 230       |      |   |  |
| Peak Hour Factor         | 0.97       | 0.97 | 0.97  | 0.97     | 0.97    | 0.97      |      |   |  |
| Hourly flow rate (vph)   | 1289       | 10   | 113   | 794      | 10      | 237       |      |   |  |
| Pedestrians              |            |      |       |          |         |           |      |   |  |
| Lane Width (ft)          |            |      |       |          |         |           |      |   |  |
| Walking Speed (ft/s)     |            |      |       |          |         |           |      |   |  |
| Percent Blockage         |            |      |       |          |         |           |      |   |  |
| Right turn flare (veh)   |            |      |       |          |         |           |      |   |  |
| Median type              |            |      |       |          | None    |           |      |   |  |
| Median storage veh)      |            |      |       |          |         |           |      |   |  |
| Upstream signal (ft)     |            |      |       |          |         |           |      |   |  |
| pX, platoon unblocked    |            |      |       |          |         |           |      |   |  |
| vC, conflicting volume   |            |      | 1299  |          | 1918    | 649       |      |   |  |
| vC1, stage 1 conf vol    |            |      |       |          |         |           |      |   |  |
| vC2, stage 2 conf vol    |            |      |       |          |         |           |      |   |  |
| vCu, unblocked vol       |            |      | 1299  |          | 1918    | 649       |      |   |  |
| tC, single (s)           |            |      | 4.1   |          | 6.8     | 6.9       |      |   |  |
| tC, 2 stage (s)          |            |      |       |          |         |           |      |   |  |
| tF (s)                   |            |      | 2.2   |          | 3.5     | 3.3       |      |   |  |
| p0 queue free %          |            |      | 79    |          | 78      | 42        |      |   |  |
| cM capacity (veh/h)      |            |      | 529   |          | 47      | 412       |      |   |  |
| Direction, Lane #        | EB 1       | EB 2 | WB 1  | WB2      | WB3     | NB 1      | NB 2 |   |  |
| Volume Total             | 859        | 440  | 113   | 397      | 397     | 10        | 237  |   |  |
| Volume Left              | 0          | 0    | 113   | 0        | 0       | 10        | 0    |   |  |
| Volume Right             | 0          | 10   | 0     | 0        | 0       | 0         | 237  |   |  |
| cSH                      | 1700       | 1700 | 529   | 1700     | 1700    | 47        | 412  |   |  |
| Volume to Capacity       | 0.51       | 0.26 | 0.21  | 0.23     | 0.23    | 0.22      | 0.58 |   |  |
| Queue Length 95th (ft)   | 0          | 0    | 20    | 0        | 0       | 18        | 88   |   |  |
| Control Delay (s)        | 0.0        | 0.0  | 13.6  | 0.0      | 0.0     | 103.1     | 24.9 |   |  |
| Lane LOS                 |            |      | В     |          |         | F         | С    |   |  |
| Approach Delay (s)       | 0.0        |      | 1.7   |          |         | 28.2      |      |   |  |
| Approach LOS             |            |      |       |          |         | D         |      |   |  |
| Intersection Summary     |            |      |       |          |         |           |      |   |  |
| Average Delay            |            |      | 3.5   |          |         |           |      |   |  |
| Intersection Capacity Ut | ilization  |      | 55.8% | ŀ        | CU Leve | el of Ser | vice | В |  |
| Analysis Period (min)    |            |      | 15    |          |         |           |      |   |  |
|                          |            |      |       |          |         |           |      |   |  |

|                           | ۶        | <b>→</b> | •          | •    | <b>&gt;</b> | 4         |      |   |  |  |
|---------------------------|----------|----------|------------|------|-------------|-----------|------|---|--|--|
| Movement                  | EBL      | EBT      | WBT        | WBR  | SBL         | SBR       |      |   |  |  |
| Lane Configurations       | ሻ        | <b>^</b> | <b>↑</b> ↑ |      | ሻ           | 7         |      |   |  |  |
| Sign Control              |          | Free     | Free       |      | Stop        |           |      |   |  |  |
| Grade                     |          | 0%       | 0%         |      | 0%          |           |      |   |  |  |
| Volume (veh/h)            | 440      | 1040     | 770        | 10   | 10          | 120       |      |   |  |  |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97       | 0.97 | 0.97        | 0.97      |      |   |  |  |
| Hourly flow rate (vph)    | 454      | 1072     | 794        | 10   | 10          | 124       |      |   |  |  |
| Pedestrians               |          |          |            |      |             |           |      |   |  |  |
| Lane Width (ft)           |          |          |            |      |             |           |      |   |  |  |
| Walking Speed (ft/s)      |          |          |            |      |             |           |      |   |  |  |
| Percent Blockage          |          |          |            |      |             |           |      |   |  |  |
| Right turn flare (veh)    |          |          |            |      |             |           |      |   |  |  |
| Median type               |          |          |            |      | None        |           |      |   |  |  |
| Median storage veh)       |          |          |            |      |             |           |      |   |  |  |
| Upstream signal (ft)      |          |          |            |      |             |           |      |   |  |  |
| pX, platoon unblocked     |          |          |            |      |             |           |      |   |  |  |
| vC, conflicting volume    | 804      |          |            |      | 2242        | 402       |      |   |  |  |
| vC1, stage 1 conf vol     |          |          |            |      |             |           |      |   |  |  |
| vC2, stage 2 conf vol     |          |          |            |      |             |           |      |   |  |  |
| vCu, unblocked vol        | 804      |          |            |      | 2242        | 402       |      |   |  |  |
| tC, single (s)            | 4.1      |          |            |      | 6.8         | 6.9       |      |   |  |  |
| tC, 2 stage (s)           |          |          |            |      |             |           |      |   |  |  |
| tF (s)                    | 2.2      |          |            |      | 3.5         | 3.3       |      |   |  |  |
| p0 queue free %           | 44       |          |            |      | 35          | 79        |      |   |  |  |
| cM capacity (veh/h)       | 816      |          |            |      | 16          | 598       |      |   |  |  |
| Direction, Lane #         | EB 1     | EB 2     | EB 3       | WB 1 | WB 2        | SB 1      | SB 2 |   |  |  |
| Volume Total              | 454      | 536      | 536        | 529  | 275         | 10        | 124  |   |  |  |
| Volume Left               | 454      | 0        | 0          | 0    | 0           | 10        | 0    |   |  |  |
| Volume Right              | 0        | 0        | 0          | 0    | 10          | 0         | 124  |   |  |  |
| cSH                       | 816      | 1700     | 1700       | 1700 | 1700        | 16        | 598  |   |  |  |
| Volume to Capacity        | 0.56     | 0.32     | 0.32       | 0.31 | 0.16        | 0.65      | 0.21 |   |  |  |
| Queue Length 95th (ft)    | 87       | 0        | 0          | 0    | 0           | 41        | 19   |   |  |  |
| Control Delay (s)         | 14.8     | 0.0      | 0.0        | 0.0  | 0.0         | 424.1     | 12.6 |   |  |  |
| Lane LOS                  | В        |          |            |      |             | F         | В    |   |  |  |
| Approach Delay (s)        | 4.4      |          |            | 0.0  |             | 44.2      |      |   |  |  |
| Approach LOS              |          |          |            |      |             | Е         |      |   |  |  |
| Intersection Summary      |          |          |            |      |             |           |      |   |  |  |
| Average Delay             |          |          | 5.1        |      |             |           |      |   |  |  |
| Intersection Capacity Uti | lization |          | 59.3%      | ŀ    | CU Leve     | el of Ser | vice | В |  |  |
| Analysis Period (min)     |          |          | 15         |      |             |           |      |   |  |  |
|                           |          |          |            |      |             |           |      |   |  |  |

|                          | ٠         | <b>→</b> | •     | •     | •       | •          | 4    | <b>†</b> | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 4    |
|--------------------------|-----------|----------|-------|-------|---------|------------|------|----------|----------|-------------|----------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL   | WBT     | WBR        | NBL  | NBT      | NBR      | SBL         | SBT      | SBR  |
| Lane Configurations      |           | 4        |       |       | 4       |            |      | 4        |          |             | 4        |      |
| Sign Control             |           | Stop     |       |       | Stop    |            |      | Stop     |          |             | Stop     |      |
| Volume (vph)             | 10        | 40       | 50    | 200   | 50      | 10         | 110  | 10       | 210      | 10          | 10       | 10   |
| Peak Hour Factor         | 0.97      | 0.97     | 0.97  | 0.97  | 0.97    | 0.97       | 0.97 | 0.97     | 0.97     | 0.97        | 0.97     | 0.97 |
| Hourly flow rate (vph)   | 10        | 41       | 52    | 206   | 52      | 10         | 113  | 10       | 216      | 10          | 10       | 10   |
| Direction, Lane #        | EB 1      | WB 1     | NB 1  | SB 1  |         |            |      |          |          |             |          |      |
| Volume Total (vph)       | 103       | 268      | 340   | 31    |         |            |      |          |          |             |          |      |
| Volume Left (vph)        | 10        | 206      | 113   | 10    |         |            |      |          |          |             |          |      |
| Volume Right (vph)       | 52        | 10       | 216   | 10    |         |            |      |          |          |             |          |      |
| Hadj (s)                 | -0.25     | 0.16     | -0.28 | -0.10 |         |            |      |          |          |             |          |      |
| Departure Headway (s)    | 5.0       | 5.1      | 4.6   | 5.2   |         |            |      |          |          |             |          |      |
| Degree Utilization, x    | 0.14      | 0.38     | 0.44  | 0.05  |         |            |      |          |          |             |          |      |
| Capacity (veh/h)         | 654       | 660      | 737   | 607   |         |            |      |          |          |             |          |      |
| Control Delay (s)        | 8.8       | 11.2     | 11.2  | 8.5   |         |            |      |          |          |             |          |      |
| Approach Delay (s)       | 8.8       | 11.2     | 11.2  | 8.5   |         |            |      |          |          |             |          |      |
| Approach LOS             | Α         | В        | В     | Α     |         |            |      |          |          |             |          |      |
| Intersection Summary     |           |          |       |       |         |            |      |          |          |             |          |      |
| Delay                    |           |          | 10.8  |       |         |            |      |          |          |             |          |      |
| HCM Level of Service     |           |          | В     |       |         |            |      |          |          |             |          |      |
| Intersection Capacity Ut | ilization |          | 53.3% | [0    | CU Leve | el of Serv | vice |          | Α        |             |          |      |
| Analysis Period (min)    |           |          | 15    |       |         |            |      |          |          |             |          |      |

|                           | ۶         | <b>→</b> | •     | •    | •       | •         | •    | <b>†</b> | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 4    |
|---------------------------|-----------|----------|-------|------|---------|-----------|------|----------|----------|-------------|----------|------|
| Movement                  | EBL       | EBT      | EBR   | WBL  | WBT     | WBR       | NBL  | NBT      | NBR      | SBL         | SBT      | SBR  |
| Lane Configurations       |           | 4        |       |      | 4       |           |      | 4        |          |             | 4        |      |
| Sign Control              |           | Stop     |       |      | Stop    |           |      | Stop     |          |             | Stop     |      |
| Volume (vph)              | 30        | 110      | 50    | 80   | 120     | 20        | 70   | 280      | 210      | 10          | 240      | 10   |
| Peak Hour Factor          | 0.97      | 0.97     | 0.97  | 0.97 | 0.97    | 0.97      | 0.97 | 0.97     | 0.97     | 0.97        | 0.97     | 0.97 |
| Hourly flow rate (vph)    | 31        | 113      | 52    | 82   | 124     | 21        | 72   | 289      | 216      | 10          | 247      | 10   |
| Direction, Lane #         | EB 1      | WB 1     | NB 1  | SB 1 |         |           |      |          |          |             |          |      |
| Volume Total (vph)        | 196       | 227      | 577   | 268  |         |           |      |          |          |             |          |      |
| Volume Left (vph)         | 31        | 82       | 72    | 10   |         |           |      |          |          |             |          |      |
| Volume Right (vph)        | 52        | 21       | 216   | 10   |         |           |      |          |          |             |          |      |
| Hadj (s)                  | -0.09     | 0.05     | -0.17 | 0.02 |         |           |      |          |          |             |          |      |
| Departure Headway (s)     | 7.1       | 7.1      | 5.9   | 6.7  |         |           |      |          |          |             |          |      |
| Degree Utilization, x     | 0.39      | 0.45     | 0.94  | 0.50 |         |           |      |          |          |             |          |      |
| Capacity (veh/h)          | 473       | 477      | 603   | 507  |         |           |      |          |          |             |          |      |
| Control Delay (s)         | 14.5      | 15.9     | 48.0  | 16.1 |         |           |      |          |          |             |          |      |
| Approach Delay (s)        | 14.5      | 15.9     | 48.0  | 16.1 |         |           |      |          |          |             |          |      |
| Approach LOS              | В         | С        | E     | С    |         |           |      |          |          |             |          |      |
| Intersection Summary      |           |          |       |      |         |           |      |          |          |             |          |      |
| Delay                     |           |          | 30.4  |      |         |           |      |          |          |             |          |      |
| HCM Level of Service      |           |          | D     |      |         |           |      |          |          |             |          |      |
| Intersection Capacity Uti | ilization |          | 78.9% | 10   | CU Leve | el of Ser | vice |          | D        |             |          |      |
| Analysis Period (min)     |           |          | 15    |      |         |           |      |          |          |             |          |      |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •         | 4      | <b>†</b> | <i>&gt;</i> | <b>/</b> | ţ          | 4    |
|---------------------------|----------|----------|-------|-------|----------|-----------|--------|----------|-------------|----------|------------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR         | SBL      | SBT        | SBR  |
| Lane Configurations       | 1,1      | ተተተ      | 7     | 44    | ተተተ      | 7         | , Y    | <b>†</b> | 7           | ¥        | <b>†</b> † | 7    |
| Ideal Flow (vphpl)        | 1900     | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900        | 1900     | 1900       | 1900 |
| Total Lost time (s)       | 4.0      | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0         | 4.0      | 4.0        | 4.0  |
| Lane Util. Factor         | 0.97     | 0.91     | 1.00  | 0.97  | 0.91     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00     | 0.95       | 1.00 |
| Frt                       | 1.00     | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85        | 1.00     | 1.00       | 0.85 |
| Flt Protected             | 0.95     | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00       | 1.00 |
| Satd. Flow (prot)         | 3433     | 5085     | 1583  | 3433  | 5085     | 1583      | 1770   | 1863     | 1583        | 1770     | 3539       | 1583 |
| Flt Permitted             | 0.95     | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00       | 1.00 |
| Satd. Flow (perm)         | 3433     | 5085     | 1583  | 3433  | 5085     | 1583      | 1770   | 1863     | 1583        | 1770     | 3539       | 1583 |
| Volume (vph)              | 70       | 1250     | 190   | 230   | 750      | 170       | 150    | 470      | 110         | 110      | 390        | 20   |
| Peak-hour factor, PHF     | 0.97     | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97   | 0.97     | 0.97        | 0.97     | 0.97       | 0.97 |
| Adj. Flow (vph)           | 72       | 1289     | 196   | 237   | 773      | 175       | 155    | 485      | 113         | 113      | 402        | 21   |
| RTOR Reduction (vph)      | 0        | 0        | 130   | 0     | 0        | 113       | 0      | 0        | 79          | 0        | 0          | 14   |
| Lane Group Flow (vph)     | 72       | 1289     | 66    | 237   | 773      | 62        | 155    | 485      | 34          | 113      | 402        | 7    |
| Turn Type                 | Prot     |          | Perm  | Prot  |          | Perm      | Prot   |          | Perm        | Prot     |            | Perm |
| Protected Phases          | 1        | 6        |       | 5     | 2        |           | 3      | 8        |             | 7        | 4          |      |
| Permitted Phases          |          |          | 6     |       |          | 2         |        |          | 8           |          |            | 4    |
| Actuated Green, G (s)     | 2.3      | 24.3     | 24.3  | 3.1   | 25.4     | 25.4      | 3.1    | 21.4     | 21.4        | 5.4      | 23.5       | 23.5 |
| Effective Green, g (s)    | 3.1      | 25.4     | 25.4  | 4.6   | 26.9     | 26.9      | 4.6    | 22.5     | 22.5        | 6.9      | 24.8       | 24.8 |
| Actuated g/C Ratio        | 0.04     | 0.34     | 0.34  | 0.06  | 0.36     | 0.36      | 0.06   | 0.30     | 0.30        | 0.09     | 0.33       | 0.33 |
| Clearance Time (s)        | 4.8      | 5.1      | 5.1   | 5.5   | 5.5      | 5.5       | 5.5    | 5.1      | 5.1         | 5.5      | 5.3        | 5.3  |
| Vehicle Extension (s)     | 1.0      | 1.0      | 1.0   | 1.0   | 1.0      | 1.0       | 1.0    | 1.0      | 1.0         | 1.0      | 1.0        | 1.0  |
| Lane Grp Cap (vph)        | 141      | 1713     | 533   | 209   | 1814     | 565       | 108    | 556      | 472         | 162      | 1164       | 521  |
| v/s Ratio Prot            | 0.02     | c0.25    |       | c0.07 | 0.15     |           | c0.09  | c0.26    |             | 0.06     | 0.11       |      |
| v/s Ratio Perm            |          |          | 0.04  |       |          | 0.04      |        |          | 0.02        |          |            | 0.00 |
| v/c Ratio                 | 0.51     | 0.75     | 0.12  | 1.13  | 0.43     | 0.11      | 1.44   | 0.87     | 0.07        | 0.70     | 0.35       | 0.01 |
| Uniform Delay, d1         | 35.4     | 22.2     | 17.3  | 35.4  | 18.4     | 16.2      | 35.4   | 25.1     | 19.0        | 33.2     | 19.2       | 17.1 |
| Progression Factor        | 1.00     | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00     | 1.00       | 1.00 |
| Incremental Delay, d2     | 1.3      | 1.7      | 0.0   | 103.0 | 0.1      | 0.0       | 240.6  | 13.7     | 0.0         | 10.1     | 0.1        | 0.0  |
| Delay (s)                 | 36.7     | 23.9     | 17.3  | 138.4 | 18.5     | 16.3      | 276.0  | 38.8     | 19.0        | 43.3     | 19.2       | 17.1 |
| Level of Service          | D        | С        | В     | F     | В        | В         | F      | D        | В           | D        | В          | В    |
| Approach Delay (s)        |          | 23.7     |       |       | 42.1     |           |        | 84.6     |             |          | 24.2       |      |
| Approach LOS              |          | С        |       |       | D        |           |        | F        |             |          | С          |      |
| Intersection Summary      |          |          |       |       |          |           |        |          |             |          |            |      |
| HCM Average Control D     |          |          | 40.6  | F     | ICM Le   | vel of S  | ervice |          | D           |          |            |      |
| HCM Volume to Capacit     |          |          | 0.85  |       |          |           |        |          |             |          |            |      |
| Actuated Cycle Length (   | ,        |          | 75.4  |       |          | ost time  |        |          | 16.0        |          |            |      |
| Intersection Capacity Uti | lization |          | 74.9% | [0    | CU Leve  | el of Sei | rvice  |          | D           |          |            |      |
| Analysis Period (min)     |          |          | 15    |       |          |           |        |          |             |          |            |      |
| c Critical Lane Group     |          |          |       |       |          |           |        |          |             |          |            |      |

|                          | ۶         | <b>→</b>   | •     | •    | <b>←</b>   | 4         | 1    | <b>†</b> | ~    | <b>&gt;</b> | ļ    | 1    |
|--------------------------|-----------|------------|-------|------|------------|-----------|------|----------|------|-------------|------|------|
| Movement                 | EBL       | EBT        | EBR   | WBL  | WBT        | WBR       | NBL  | NBT      | NBR  | SBL         | SBT  | SBR  |
| Lane Configurations      | ř         | <b>↑</b> ↑ |       | ሻ    | <b>↑</b> ↑ |           | ř    | ĵ»       |      | ř           | ĵ»   |      |
| Sign Control             |           | Free       |       |      | Free       |           |      | Stop     |      |             | Stop |      |
| Grade                    |           | 0%         |       |      | 0%         |           |      | 0%       |      |             | 0%   |      |
| Volume (veh/h)           | 90        | 920        | 30    | 90   | 670        | 350       | 30   | 380      | 140  | 280         | 220  | 80   |
| Peak Hour Factor         | 0.97      | 0.97       | 0.97  | 0.97 | 0.97       | 0.97      | 0.97 | 0.97     | 0.97 | 0.97        | 0.97 | 0.97 |
| Hourly flow rate (vph)   | 93        | 948        | 31    | 93   | 691        | 361       | 31   | 392      | 144  | 289         | 227  | 82   |
| Pedestrians              |           |            |       |      |            |           |      |          |      |             |      |      |
| Lane Width (ft)          |           |            |       |      |            |           |      |          |      |             |      |      |
| Walking Speed (ft/s)     |           |            |       |      |            |           |      |          |      |             |      |      |
| Percent Blockage         |           |            |       |      |            |           |      |          |      |             |      |      |
| Right turn flare (veh)   |           |            |       |      |            |           |      |          |      |             |      |      |
| Median type              |           |            |       |      |            |           |      | None     |      |             | None |      |
| Median storage veh)      |           |            |       |      |            |           |      |          |      |             |      |      |
| Upstream signal (ft)     |           |            |       |      |            |           |      |          |      |             |      |      |
| pX, platoon unblocked    |           |            |       |      |            |           |      |          |      |             |      |      |
| vC, conflicting volume   | 1052      |            |       | 979  |            |           | 1876 | 2387     | 490  | 2057        | 2222 | 526  |
| vC1, stage 1 conf vol    |           |            |       |      |            |           |      |          |      |             |      |      |
| vC2, stage 2 conf vol    |           |            |       |      |            |           |      |          |      |             |      |      |
| vCu, unblocked vol       | 1052      |            |       | 979  |            |           | 1876 | 2387     | 490  | 2057        | 2222 | 526  |
| tC, single (s)           | 4.1       |            |       | 4.1  |            |           | 7.5  | 6.5      | 6.9  | 7.5         | 6.5  | 6.9  |
| tC, 2 stage (s)          |           |            |       |      |            |           |      |          |      |             |      |      |
| tF (s)                   | 2.2       |            |       | 2.2  |            |           | 3.5  | 4.0      | 3.3  | 3.5         | 4.0  | 3.3  |
| p0 queue free %          | 86        |            |       | 87   |            |           | 0    | 0        | 72   | 0           | 0    | 83   |
| cM capacity (veh/h)      | 658       |            |       | 700  |            |           | 0    | 25       | 524  | 0           | 32   | 497  |
| Direction, Lane #        | EB 1      | EB 2       | EB 3  | WB 1 | WB 2       | WB3       | NB 1 | NB 2     | SB 1 | SB 2        |      |      |
| Volume Total             | 93        | 632        | 347   | 93   | 460        | 591       | 31   | 536      | 289  | 309         |      |      |
| Volume Left              | 93        | 032        | 0     | 93   | 0          | 0         | 31   | 0        | 289  | 0           |      |      |
| Volume Right             | 0         | 0          | 31    | 0    | 0          | 361       | 0    | 144      | 0    | 82          |      |      |
| cSH                      | 658       | 1700       | 1700  | 700  | 1700       | 1700      | 0    | 34       | 0    | 43          |      |      |
| Volume to Capacity       | 0.14      | 0.37       | 0.20  | 0.13 | 0.27       | 0.35      | Err  | 15.93    | Err  | 7.27        |      |      |
| Queue Length 95th (ft)   | 12        | 0.57       | 0.20  | 11   | 0.27       | 0.55      | Err  | Err      | Err  | Err         |      |      |
| Control Delay (s)        | 11.4      | 0.0        | 0.0   | 10.9 | 0.0        | 0.0       | Err  | Err      | Err  | Err         |      |      |
| Lane LOS                 | В         | 0.0        | 0.0   | 10.3 | 0.0        | 0.0       | F    | F        | F    | F           |      |      |
| Approach Delay (s)       | 1.0       |            |       | 0.9  |            |           | Err  | 1        | Err  | '           |      |      |
| Approach LOS             | 1.0       |            |       | 0.9  |            |           | F    |          | F    |             |      |      |
| Intersection Summary     |           |            |       |      |            |           |      |          |      |             |      |      |
| Average Delay            |           |            | Err   |      |            |           |      |          |      |             |      |      |
| Intersection Capacity Ut | ilization |            | 92.1% | I    | CU Leve    | el of Ser | vice |          | F    |             |      |      |
| Analysis Period (min)    |           |            | 15    |      |            |           |      |          |      |             |      |      |
|                          |           |            |       |      |            |           |      |          |      |             |      |      |

|                          | ۶         | <b>→</b> | •     | •     | <b>←</b> | •          | 4    | <b>†</b> | <b>/</b> | <b>\</b> | <b>↓</b> | ✓    |
|--------------------------|-----------|----------|-------|-------|----------|------------|------|----------|----------|----------|----------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL   | WBT      | WBR        | NBL  | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations      |           | 4        |       |       | 44       |            |      | 4        |          |          | 4        |      |
| Sign Control             |           | Stop     |       |       | Stop     |            |      | Stop     |          |          | Stop     |      |
| Volume (vph)             | 290       | 10       | 10    | 10    | 10       | 10         | 30   | 270      | 30       | 10       | 110      | 240  |
| Peak Hour Factor         | 0.97      | 0.97     | 0.97  | 0.97  | 0.97     | 0.97       | 0.97 | 0.97     | 0.97     | 0.97     | 0.97     | 0.97 |
| Hourly flow rate (vph)   | 299       | 10       | 10    | 10    | 10       | 10         | 31   | 278      | 31       | 10       | 113      | 247  |
| Direction, Lane #        | EB 1      | WB 1     | NB 1  | SB 1  |          |            |      |          |          |          |          |      |
| Volume Total (vph)       | 320       | 31       | 340   | 371   |          |            |      |          |          |          |          |      |
| Volume Left (vph)        | 299       | 10       | 31    | 10    |          |            |      |          |          |          |          |      |
| Volume Right (vph)       | 10        | 10       | 31    | 247   |          |            |      |          |          |          |          |      |
| Hadj (s)                 | 0.20      | -0.10    | 0.00  | -0.36 |          |            |      |          |          |          |          |      |
| Departure Headway (s)    | 6.1       | 6.5      | 5.6   | 5.2   |          |            |      |          |          |          |          |      |
| Degree Utilization, x    | 0.54      | 0.06     | 0.53  | 0.54  |          |            |      |          |          |          |          |      |
| Capacity (veh/h)         | 545       | 432      | 602   | 650   |          |            |      |          |          |          |          |      |
| Control Delay (s)        | 15.9      | 9.9      | 14.8  | 14.2  |          |            |      |          |          |          |          |      |
| Approach Delay (s)       | 15.9      | 9.9      | 14.8  | 14.2  |          |            |      |          |          |          |          |      |
| Approach LOS             | С         | Α        | В     | В     |          |            |      |          |          |          |          |      |
| Intersection Summary     |           |          |       |       |          |            |      |          |          |          |          |      |
| Delay                    |           |          | 14.8  |       |          |            |      |          |          |          |          |      |
| HCM Level of Service     |           |          | В     |       |          |            |      |          |          |          |          |      |
| Intersection Capacity Ut | ilization |          | 60.9% | ŀ     | CU Leve  | el of Serv | vice |          | В        |          |          |      |
| Analysis Period (min)    |           |          | 15    |       |          |            |      |          |          |          |          |      |
|                          |           |          |       |       |          |            |      |          |          |          |          |      |

|                          | •         | <b>→</b> | <b>←</b>   | 4    | <b>\</b> | 4             |   |
|--------------------------|-----------|----------|------------|------|----------|---------------|---|
| Movement                 | EBL       | EBT      | WBT        | WBR  | SBL      | SBR           |   |
| Lane Configurations      |           | 4        | <b>f</b> ə |      | W        |               |   |
| Sign Control             |           | Free     | Free       |      | Stop     |               |   |
| Grade                    |           | 0%       | 0%         |      | 0%       |               |   |
| Volume (veh/h)           | 230       | 130      | 160        | 100  | 60       | 70            |   |
| Peak Hour Factor         | 0.97      | 0.97     | 0.97       | 0.97 | 0.97     | 0.97          |   |
| Hourly flow rate (vph)   | 237       | 134      | 165        | 103  | 62       | 72            |   |
| Pedestrians              |           |          |            |      |          |               |   |
| Lane Width (ft)          |           |          |            |      |          |               |   |
| Walking Speed (ft/s)     |           |          |            |      |          |               |   |
| Percent Blockage         |           |          |            |      |          |               |   |
| Right turn flare (veh)   |           |          |            |      |          |               |   |
| Median type              |           |          |            |      | None     |               |   |
| Median storage veh)      |           |          |            |      |          |               |   |
| Upstream signal (ft)     |           |          |            |      |          |               |   |
| pX, platoon unblocked    |           |          |            |      |          |               |   |
| vC, conflicting volume   | 268       |          |            |      | 825      | 216           |   |
| vC1, stage 1 conf vol    |           |          |            |      |          |               |   |
| vC2, stage 2 conf vol    |           |          |            |      |          |               |   |
| vCu, unblocked vol       | 268       |          |            |      | 825      | 216           |   |
| tC, single (s)           | 4.1       |          |            |      | 6.4      | 6.2           |   |
| tC, 2 stage (s)          |           |          |            |      |          |               |   |
| tF (s)                   | 2.2       |          |            |      | 3.5      | 3.3           |   |
| p0 queue free %          | 82        |          |            |      | 78       | 91            |   |
| cM capacity (veh/h)      | 1296      |          |            |      | 280      | 823           |   |
| Direction, Lane #        | EB 1      | WB 1     | SB 1       |      |          |               |   |
|                          |           |          |            |      |          |               |   |
| Volume Total             | 371       | 268      | 134        |      |          |               |   |
| Volume Left              | 237       | 0        | 62         |      |          |               |   |
| Volume Right             | 0         | 103      | 72         |      |          |               |   |
| cSH                      | 1296      | 1700     | 434        |      |          |               |   |
| Volume to Capacity       | 0.18      | 0.16     | 0.31       |      |          |               |   |
| Queue Length 95th (ft)   | 17        | 0        | 32         |      |          |               |   |
| Control Delay (s)        | 6.0       | 0.0      | 17.0       |      |          |               |   |
| Lane LOS                 | Α         |          | C          |      |          |               |   |
| Approach Delay (s)       | 6.0       | 0.0      | 17.0       |      |          |               |   |
| Approach LOS             |           |          | С          |      |          |               |   |
| Intersection Summary     |           |          |            |      |          |               |   |
| Average Delay            |           |          | 5.8        |      |          |               |   |
| Intersection Capacity Ut | ilization |          | 51.7%      | 10   | CU Leve  | el of Service | е |
| Analysis Period (min)    |           |          | 15         |      |          |               |   |
|                          |           |          |            |      |          |               |   |

|                              | <b></b>   | <b>→</b> | •     | •     | •        | 4         | <b>/</b> |      |  |
|------------------------------|-----------|----------|-------|-------|----------|-----------|----------|------|--|
| Movement                     | EBU       | EBT      | EBR   | WBL   | WBT      | NBL       | NBR      |      |  |
| Lane Configurations          | Ð         | <b>^</b> | 7     | ች     | ተተተ      | ች         | 7        |      |  |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900     |      |  |
| Total Lost time (s)          | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0      |      |  |
| Lane Util. Factor            | 1.00      | 0.91     | 1.00  | 1.00  | 0.91     | 1.00      | 1.00     |      |  |
| Frt                          | 1.00      | 1.00     | 0.85  | 1.00  | 1.00     | 1.00      | 0.85     |      |  |
| Flt Protected                | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 0.95      | 1.00     |      |  |
| Satd. Flow (prot)            | 1770      | 5085     | 1583  | 1770  | 5085     | 1770      | 1583     |      |  |
| Flt Permitted                | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 0.95      | 1.00     |      |  |
| Satd. Flow (perm)            | 1770      | 5085     | 1583  | 1770  | 5085     | 1770      | 1583     |      |  |
| Volume (vph)                 | 10        | 1390     | 40    | 420   | 960      | 180       | 590      |      |  |
| Peak-hour factor, PHF        | 0.97      | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97     |      |  |
| Adj. Flow (vph)              | 10        | 1433     | 41    | 433   | 990      | 186       | 608      |      |  |
| RTOR Reduction (vph)         | 0         | 0        | 21    | 0     | 0        | 0         | 498      |      |  |
| Lane Group Flow (vph)        | 10        | 1433     | 20    | 433   | 990      | 186       | 110      |      |  |
| Turn Type                    | Prot      |          | Perm  | Prot  |          |           | Perm     |      |  |
| Protected Phases             | 1         | 6        |       | 4 5   | 2        | 3         |          |      |  |
| Permitted Phases             |           |          | 6     |       |          |           | 3        |      |  |
| Actuated Green, G (s)        | 0.4       | 30.3     | 30.3  | 9.9   | 32.4     | 10.0      | 10.0     |      |  |
| Effective Green, g (s)       | 1.1       | 31.4     | 31.4  | 9.9   | 33.5     | 11.4      | 11.4     |      |  |
| Actuated g/C Ratio           | 0.02      | 0.49     | 0.49  | 0.15  | 0.52     | 0.18      | 0.18     |      |  |
| Clearance Time (s)           | 4.7       | 5.1      | 5.1   |       | 5.1      | 5.4       | 5.4      |      |  |
| Vehicle Extension (s)        | 1.0       | 4.9      | 4.9   |       | 4.9      | 1.0       | 1.0      |      |  |
| Lane Grp Cap (vph)           | 30        | 2468     | 768   | 271   | 2633     | 312       | 279      |      |  |
| v/s Ratio Prot               | 0.01      | c0.28    |       | c0.24 | 0.19     | c0.11     |          |      |  |
| v/s Ratio Perm               |           |          | 0.01  |       |          |           | 0.07     |      |  |
| v/c Ratio                    | 0.33      | 0.58     | 0.03  | 1.60  | 0.38     | 0.60      | 0.39     |      |  |
| Uniform Delay, d1            | 31.4      | 11.9     | 8.7   | 27.4  | 9.3      | 24.5      | 23.6     |      |  |
| Progression Factor           | 1.00      | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00     |      |  |
| Incremental Delay, d2        | 2.4       | 0.5      | 0.0   | 285.7 | 0.2      | 2.0       | 0.3      |      |  |
| Delay (s)                    | 33.8      | 12.5     | 8.7   | 313.1 | 9.5      | 26.6      | 23.9     |      |  |
| Level of Service             | С         | В        | Α     | F     | Α        | С         | С        |      |  |
| Approach Delay (s)           |           | 12.5     |       |       | 101.9    | 24.5      |          |      |  |
| Approach LOS                 |           | В        |       |       | F        | С         |          |      |  |
| Intersection Summary         |           |          |       |       |          |           |          |      |  |
| HCM Average Control D        | elay      |          | 49.5  | F     | ICM Le   | vel of Se | ervice   | D    |  |
| <b>HCM Volume to Capacit</b> | y ratio   |          | 0.76  |       |          |           |          |      |  |
| Actuated Cycle Length (      |           |          | 64.7  | S     | Sum of l | ost time  | (s)      | 12.0 |  |
| Intersection Capacity Ut     | ilization |          | 70.1% | [0    | CU Leve  | el of Ser | vice     | С    |  |
| Analysis Period (min)        |           |          | 15    |       |          |           |          |      |  |
| c Critical Lane Group        |           |          |       |       |          |           |          |      |  |

|                          | -          | •    | •     | ←        | 1       | <i>&gt;</i>   |    |
|--------------------------|------------|------|-------|----------|---------|---------------|----|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL     | NBR           |    |
| Lane Configurations      | <b>↑</b> ⊅ |      | ች     | <b>^</b> | *       | 7             |    |
| Ideal Flow (vphpl)       | 1900       | 1900 | 1900  | 1900     | 1900    | 1900          |    |
| Total Lost time (s)      | 4.0        |      | 4.0   | 4.0      | 4.0     | 4.0           |    |
| Lane Util. Factor        | 0.95       |      | 1.00  | 0.95     | 1.00    | 1.00          |    |
| Frt                      | 0.99       |      | 1.00  | 1.00     | 1.00    | 0.85          |    |
| Flt Protected            | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00          |    |
| Satd. Flow (prot)        | 3514       |      | 1770  | 3539     | 1770    | 1583          |    |
| Flt Permitted            | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00          |    |
| Satd. Flow (perm)        | 3514       |      | 1770  | 3539     | 1770    | 1583          |    |
| Volume (vph)             | 1430       | 70   | 320   | 1190     | 280     | 350           |    |
| Peak-hour factor, PHF    | 0.97       | 0.97 | 0.97  | 0.97     | 0.97    | 0.97          |    |
| Adj. Flow (vph)          | 1474       | 72   | 330   | 1227     | 289     | 361           |    |
| RTOR Reduction (vph)     | 2          | 0    | 0     | 0        | 0       | 307           |    |
| Lane Group Flow (vph)    | 1544       | 0    | 330   | 1227     | 289     | 54            |    |
| Turn Type                |            |      | Split |          |         | Perm          |    |
| Protected Phases         | 2          |      | 1     | 1        | 3       |               |    |
| Permitted Phases         |            |      |       |          |         | 3             |    |
| Actuated Green, G (s)    | 55.6       |      | 43.3  | 43.3     | 21.5    | 21.5          |    |
| Effective Green, g (s)   | 56.6       |      | 44.1  | 44.1     | 21.0    | 21.0          |    |
| Actuated g/C Ratio       | 0.41       |      | 0.32  | 0.32     | 0.15    | 0.15          |    |
| Clearance Time (s)       | 5.0        |      | 4.8   | 4.8      | 3.5     | 3.5           |    |
| Vehicle Extension (s)    | 6.8        |      | 6.3   | 6.3      | 2.0     | 2.0           |    |
| Lane Grp Cap (vph)       | 1425       |      | 559   | 1118     | 266     | 238           |    |
| v/s Ratio Prot           | c0.44      |      | 0.19  | c0.35    | c0.16   |               |    |
| v/s Ratio Perm           |            |      |       |          |         | 0.03          |    |
| v/c Ratio                | 1.08       |      | 0.59  | 1.10     | 1.09    | 0.23          |    |
| Uniform Delay, d1        | 41.5       |      | 40.2  | 47.8     | 59.3    | 52.2          |    |
| Progression Factor       | 1.00       |      | 1.00  | 1.00     | 1.00    | 1.00          |    |
| Incremental Delay, d2    | 49.8       |      | 3.2   | 57.7     | 80.2    | 0.2           |    |
| Delay (s)                | 91.3       |      | 43.4  | 105.4    | 139.5   | 52.3          |    |
| Level of Service         | F          |      | D     | F        | F       | D             |    |
| Approach Delay (s)       | 91.3       |      |       | 92.3     | 91.1    |               |    |
| Approach LOS             | F          |      |       | F        | F       |               |    |
| Intersection Summary     |            |      |       |          |         |               |    |
| HCM Average Control D    |            |      | 91.7  | H        | ICM Lev | el of Servi   | ce |
| HCM Volume to Capaci     | •          |      | 1.09  |          |         |               |    |
| Actuated Cycle Length (  |            |      | 139.6 |          |         | ost time (s)  |    |
| Intersection Capacity Ut | ilization  |      | 85.0% | 10       | CU Leve | el of Service | е  |
| Analysis Period (min)    |            |      | 15    |          |         |               |    |
| c Critical Lane Group    |            |      |       |          |         |               |    |

|                          | ۶                                       | <b>→</b>     | •    | •    | <b>←</b> | •         | 4      | †        | <b>/</b> | <b>&gt;</b> | ţ        | 4    |
|--------------------------|-----------------------------------------|--------------|------|------|----------|-----------|--------|----------|----------|-------------|----------|------|
| Movement                 | EBL                                     | EBT          | EBR  | WBL  | WBT      | WBR       | NBL    | NBT      | NBR      | SBL         | SBT      | SBR  |
| Lane Configurations      | 1,1                                     | ተተተ          | 7    | 1,4  | ተተተ      | 7         | ሻ      | <b>^</b> | 7        | ሻ           | <b>^</b> | 7    |
| Ideal Flow (vphpl)       | 1900                                    | 1900         | 1900 | 1900 | 1900     | 1900      | 1900   | 1900     | 1900     | 1900        | 1900     | 1900 |
| Total Lost time (s)      | 4.0                                     | 4.0          | 4.0  | 4.0  | 4.0      | 4.0       | 4.0    | 4.0      | 4.0      | 4.0         | 4.0      | 4.0  |
| Lane Util. Factor        | 0.97                                    | 0.91         | 1.00 | 0.97 | 0.91     | 1.00      | 1.00   | 0.95     | 1.00     | 1.00        | 0.95     | 1.00 |
| Frt                      | 1.00                                    | 1.00         | 0.85 | 1.00 | 1.00     | 0.85      | 1.00   | 1.00     | 0.85     | 1.00        | 1.00     | 0.85 |
| Flt Protected            | 0.95                                    | 1.00         | 1.00 | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00     | 0.95        | 1.00     | 1.00 |
| Satd. Flow (prot)        | 3433                                    | 5085         | 1583 | 3433 | 5085     | 1583      | 1770   | 3539     | 1583     | 1770        | 3539     | 1583 |
| Flt Permitted            | 0.95                                    | 1.00         | 1.00 | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00     | 0.95        | 1.00     | 1.00 |
| Satd. Flow (perm)        | 3433                                    | 5085         | 1583 | 3433 | 5085     | 1583      | 1770   | 3539     | 1583     | 1770        | 3539     | 1583 |
| Volume (vph)             | 500                                     | 1770         | 50   | 210  | 1180     | 10        | 50     | 580      | 350      | 10          | 530      | 410  |
| Peak-hour factor, PHF    | 0.97                                    | 0.97         | 0.97 | 0.97 | 0.97     | 0.97      | 0.97   | 0.97     | 0.97     | 0.97        | 0.97     | 0.97 |
| Adj. Flow (vph)          | 515                                     | 1825         | 52   | 216  | 1216     | 10        | 52     | 598      | 361      | 10          | 546      | 423  |
| RTOR Reduction (vph)     | 0                                       | 0            | 31   | 0    | 0        | 7         | 0      | 0        | 93       | 0           | 0        | 338  |
| Lane Group Flow (vph)    | 515                                     | 1825         | 21   | 216  | 1216     | 3         | 52     | 598      | 268      | 10          | 546      | 85   |
| Turn Type                | Prot                                    |              | Perm | Prot |          | Perm      | Prot   |          | om+ov    | Prot        |          | Perm |
| Protected Phases         | 5                                       | 2            |      | 1    | 6        |           | 4      | 8        | 1        | 7           | 3        |      |
| Permitted Phases         |                                         |              | 2    |      |          | 6         |        |          | 8        |             |          | 3    |
| Actuated Green, G (s)    | 12.1                                    | 23.5         | 23.5 | 6.0  | 17.0     | 17.0      | 4.6    | 17.0     | 23.0     | 0.7         | 11.5     | 11.5 |
| Effective Green, g (s)   | 12.1                                    | 25.5         | 25.5 | 5.6  | 19.0     | 19.0      | 4.9    | 16.0     | 21.6     | 0.7         | 11.8     | 11.8 |
| Actuated g/C Ratio       | 0.19                                    | 0.40         | 0.40 | 0.09 | 0.30     | 0.30      | 0.08   | 0.25     | 0.34     | 0.01        | 0.18     | 0.18 |
| Clearance Time (s)       | 4.0                                     | 6.0          | 6.0  | 3.6  | 6.0      | 6.0       | 4.3    | 3.0      | 3.6      | 4.0         | 4.3      | 4.3  |
| Vehicle Extension (s)    | 3.0                                     | 2.0          | 2.0  | 1.0  | 2.0      | 2.0       | 1.0    | 0.2      | 1.0      | 3.0         | 1.0      | 1.0  |
| Lane Grp Cap (vph)       | 651                                     | 2032         | 633  | 301  | 1514     | 471       | 136    | 888      | 635      | 19          | 655      | 293  |
| v/s Ratio Prot           | c0.15                                   | c0.36        |      | 0.06 | 0.24     |           | 0.03   | c0.17    | 0.04     | 0.01        | c0.15    |      |
| v/s Ratio Perm           |                                         |              | 0.01 |      |          | 0.00      |        |          | 0.13     |             |          | 0.05 |
| v/c Ratio                | 0.79                                    | 0.90         | 0.03 | 0.72 | 0.80     | 0.01      | 0.38   | 0.67     | 0.42     | 0.53        | 0.83     | 0.29 |
| Uniform Delay, d1        | 24.6                                    | 17.9         | 11.6 | 28.3 | 20.7     | 15.8      | 28.0   | 21.5     | 16.3     | 31.4        | 25.1     | 22.4 |
| Progression Factor       | 1.00                                    | 1.00         | 1.00 | 1.00 | 1.00     | 1.00      | 1.00   | 1.00     | 1.00     | 1.00        | 1.00     | 1.00 |
| Incremental Delay, d2    | 6.5                                     | 5.6          | 0.0  | 6.6  | 3.0      | 0.0       | 0.7    | 1.6      | 0.2      | 23.9        | 8.6      | 0.2  |
| Delay (s)                | 31.2                                    | 23.5         | 11.7 | 35.0 | 23.7     | 15.8      | 28.7   | 23.1     | 16.4     | 55.2        | 33.6     | 22.6 |
| Level of Service         | С                                       | С            | В    | С    | С        | В         | С      | С        | В        | Е           | С        | С    |
| Approach Delay (s)       |                                         | 24.9         |      |      | 25.3     |           |        | 21.0     |          |             | 29.1     |      |
| Approach LOS             |                                         | С            |      |      | С        |           |        | С        |          |             | С        |      |
| Intersection Summary     |                                         |              |      |      |          |           |        |          |          |             |          |      |
| HCM Average Control D    |                                         |              | 25.0 | H    | ICM Le   | vel of Se | ervice |          | С        |             |          |      |
| HCM Volume to Capacit    |                                         |              | 0.78 |      |          |           |        |          |          |             |          |      |
| Actuated Cycle Length (  | • • • • • • • • • • • • • • • • • • • • |              |      | · /  |          |           |        |          | 8.0      |             |          |      |
| Intersection Capacity Ut | ilization                               | zation 72.9% |      |      | CU Leve  | el of Ser | vice   |          | С        |             |          |      |
| Analysis Period (min)    |                                         |              | 15   |      |          |           |        |          |          |             |          |      |
| c Critical Lane Group    |                                         |              |      |      |          |           |        |          |          |             |          |      |

|                          | ۶         | <b>→</b> | •     | •     | <b>←</b> | •         | 4      | †    | <i>&gt;</i> | <b>&gt;</b> | ţ     | 4    |
|--------------------------|-----------|----------|-------|-------|----------|-----------|--------|------|-------------|-------------|-------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT  | NBR         | SBL         | SBT   | SBR  |
| Lane Configurations      | 14.54     | ተተተ      | 7     | 1,1   | ተተተ      | 7         | 14.54  | ተተተ  | 7           | 1,1         | ተተተ   | 7    |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900 | 1900        | 1900        | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0  | 4.0         | 4.0         | 4.0   | 4.0  |
| Lane Util. Factor        | 0.97      | 0.91     | 1.00  | 0.97  | 0.91     | 1.00      | 0.97   | 0.91 | 1.00        | 0.97        | 0.91  | 1.00 |
| Frt                      | 1.00      | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00 | 0.85        | 1.00        | 1.00  | 0.85 |
| Flt Protected            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00 | 1.00        | 0.95        | 1.00  | 1.00 |
| Satd. Flow (prot)        | 3433      | 5085     | 1583  | 3433  | 5085     | 1583      | 3433   | 5085 | 1583        | 3433        | 5085  | 1583 |
| Flt Permitted            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00 | 1.00        | 0.95        | 1.00  | 1.00 |
| Satd. Flow (perm)        | 3433      | 5085     | 1583  | 3433  | 5085     | 1583      | 3433   | 5085 | 1583        | 3433        | 5085  | 1583 |
| Volume (vph)             | 550       | 490      | 930   | 270   | 290      | 90        | 910    | 1410 | 280         | 140         | 1260  | 440  |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97   | 0.97 | 0.97        | 0.97        | 0.97  | 0.97 |
| Adj. Flow (vph)          | 567       | 505      | 959   | 278   | 299      | 93        | 938    | 1454 | 289         | 144         | 1299  | 454  |
| RTOR Reduction (vph)     | 0         | 0        | 277   | 0     | 0        | 70        | 0      | 0    | 141         | 0           | 0     | 243  |
| Lane Group Flow (vph)    | 567       | 505      | 682   | 278   | 299      | 23        | 938    | 1454 | 148         | 144         | 1299  | 211  |
| Turn Type                | Prot      |          | Perm  | Prot  |          | Perm      | Prot   |      | Perm        | Prot        |       | Perm |
| Protected Phases         | 7         | 4        |       | 3     | 8        |           | 5      | 2    |             | 1           | 6     |      |
| Permitted Phases         |           |          | 4     |       |          | 8         |        |      | 2           |             |       | 6    |
| Actuated Green, G (s)    | 21.8      | 48.4     | 48.4  | 9.5   | 36.0     | 36.0      | 33.5   | 61.2 | 61.2        | 8.8         | 36.1  | 36.1 |
| Effective Green, g (s)   | 23.3      | 50.0     | 50.0  | 11.0  | 37.7     | 37.7      | 35.0   | 62.7 | 62.7        | 10.3        | 38.0  | 38.0 |
| Actuated g/C Ratio       | 0.16      | 0.33     | 0.33  | 0.07  | 0.25     | 0.25      | 0.23   | 0.42 | 0.42        | 0.07        | 0.25  | 0.25 |
| Clearance Time (s)       | 5.5       | 5.6      | 5.6   | 5.5   | 5.7      | 5.7       | 5.5    | 5.5  | 5.5         | 5.5         | 5.9   | 5.9  |
| Vehicle Extension (s)    | 1.0       | 5.0      | 5.0   | 1.0   | 5.9      | 5.9       | 1.0    | 5.4  | 5.4         | 1.0         | 5.4   | 5.4  |
| Lane Grp Cap (vph)       | 533       | 1695     | 528   | 252   | 1278     | 398       | 801    | 2126 | 662         | 236         | 1288  | 401  |
| v/s Ratio Prot           | c0.17     | 0.10     |       | 0.08  | 0.06     |           | c0.27  | 0.29 |             | 0.04        | c0.26 |      |
| v/s Ratio Perm           |           |          | c0.43 |       |          | 0.01      |        |      | 0.09        |             |       | 0.13 |
| v/c Ratio                | 1.06      | 0.30     | 1.29  | 1.10  | 0.23     | 0.06      | 1.17   | 0.68 | 0.22        | 0.61        | 1.01  | 0.53 |
| Uniform Delay, d1        | 63.4      | 37.0     | 50.0  | 69.5  | 44.7     | 42.7      | 57.5   | 35.6 | 28.0        | 67.9        | 56.0  | 48.2 |
| Progression Factor       | 1.00      | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00 | 1.00        | 1.00        | 1.00  | 1.00 |
| Incremental Delay, d2    | 57.0      | 0.2      | 144.7 | 87.1  | 0.3      | 0.2       | 90.1   | 1.3  | 0.4         | 3.3         | 27.2  | 2.7  |
| Delay (s)                | 120.4     | 37.2     | 194.7 | 156.6 | 44.9     | 42.8      | 147.6  | 36.9 | 28.4        | 71.2        | 83.2  | 50.9 |
| Level of Service         | F         | D        | F     | F     | D        | D         | F      | D    | С           | E           | F     | D    |
| Approach Delay (s)       |           | 134.8    |       |       | 91.0     |           |        | 74.7 |             |             | 74.5  |      |
| Approach LOS             |           | F        |       |       | F        |           |        | Е    |             |             | Е     |      |
| Intersection Summary     |           |          |       |       |          |           |        |      |             |             |       |      |
| HCM Average Control D    |           |          |       |       | ICM Le   | vel of Se | ervice |      | F           |             |       |      |
| HCM Volume to Capacit    |           |          | 1.17  |       |          |           |        |      |             |             |       |      |
| Actuated Cycle Length (  |           |          | 150.0 |       |          | ost time  |        |      | 16.0        |             |       |      |
| Intersection Capacity Ut | ilization |          | 99.6% | 10    | CU Leve  | el of Sei | vice   |      | F           |             |       |      |
| Analysis Period (min)    |           |          | 15    |       |          |           |        |      |             |             |       |      |
| c Critical Lane Group    |           |          |       |       |          |           |        |      |             |             |       |      |

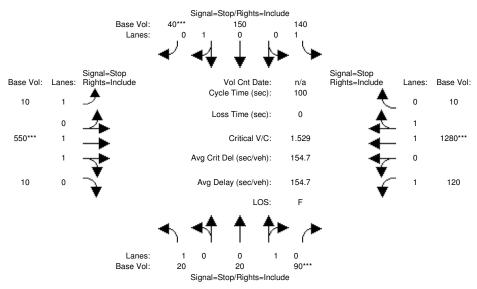
|                          | ۶         | <b>→</b> | •     | •    | <b>←</b> | •         | 1      | <b>†</b> | /    | <b>/</b> | ţ    | 4    |
|--------------------------|-----------|----------|-------|------|----------|-----------|--------|----------|------|----------|------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL    | NBT      | NBR  | SBL      | SBT  | SBR  |
| Lane Configurations      | ሻሻ        | ተተተ      | 7     | 1,1  | ተተተ      | 7         | ሻሻ     | ተተተ      | 7    | 77       | ተተተ  | 7    |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900 | 1900     | 1900      | 1900   | 1900     | 1900 | 1900     | 1900 | 1900 |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   | 4.0  | 4.0      | 4.0       | 4.0    | 4.0      | 4.0  | 4.0      | 4.0  | 4.0  |
| Lane Util. Factor        | 0.97      | 0.91     | 1.00  | 0.97 | 0.91     | 1.00      | 0.97   | 0.91     | 1.00 | 0.97     | 0.91 | 1.00 |
| Frt                      | 1.00      | 1.00     | 0.85  | 1.00 | 1.00     | 0.85      | 1.00   | 1.00     | 0.85 | 1.00     | 1.00 | 0.85 |
| Flt Protected            | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00 | 0.95     | 1.00 | 1.00 |
| Satd. Flow (prot)        | 3433      | 5085     | 1583  | 3433 | 5085     | 1583      | 3433   | 5085     | 1583 | 3433     | 5085 | 1583 |
| Flt Permitted            | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00 | 0.95     | 1.00 | 1.00 |
| Satd. Flow (perm)        | 3433      | 5085     | 1583  | 3433 | 5085     | 1583      | 3433   | 5085     | 1583 | 3433     | 5085 | 1583 |
| Volume (vph)             | 570       | 950      | 420   | 240  | 860      | 380       | 320    | 1800     | 170  | 390      | 1350 | 340  |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.97  | 0.97 | 0.97     | 0.97      | 0.97   | 0.97     | 0.97 | 0.97     | 0.97 | 0.97 |
| Adj. Flow (vph)          | 588       | 979      | 433   | 247  | 887      | 392       | 330    | 1856     | 175  | 402      | 1392 | 351  |
| RTOR Reduction (vph)     | 0         | 0        | 156   | 0    | 0        | 159       | 0      | 0        | 59   | 0        | 0    | 158  |
| Lane Group Flow (vph)    | 588       | 979      | 277   | 247  | 887      | 233       | 330    | 1856     | 116  | 402      | 1392 | 193  |
| Turn Type                | Prot      |          | Perm  | Prot |          | Perm      | Prot   |          | Perm | Prot     |      | Perm |
| Protected Phases         | 7         | 4        |       | 3    | 8        |           | 5      | 2        |      | 1        | 6    |      |
| Permitted Phases         |           |          | 4     |      |          | 8         |        |          | 2    |          |      | 6    |
| Actuated Green, G (s)    | 22.5      | 41.1     | 41.1  | 11.2 | 30.0     | 30.0      | 14.6   | 49.9     | 49.9 | 15.5     | 50.8 | 50.8 |
| Effective Green, g (s)   | 24.0      | 42.8     | 42.8  | 12.7 | 31.5     | 31.5      | 16.1   | 51.5     | 51.5 | 17.0     | 52.4 | 52.4 |
| Actuated g/C Ratio       | 0.17      | 0.31     | 0.31  | 0.09 | 0.22     | 0.22      | 0.12   | 0.37     | 0.37 | 0.12     | 0.37 | 0.37 |
| Clearance Time (s)       | 5.5       | 5.7      | 5.7   | 5.5  | 5.5      | 5.5       | 5.5    | 5.6      | 5.6  | 5.5      | 5.6  | 5.6  |
| Vehicle Extension (s)    | 1.0       | 4.9      | 4.9   | 1.0  | 4.9      | 4.9       | 1.0    | 4.9      | 4.9  | 1.0      | 4.9  | 4.9  |
| Lane Grp Cap (vph)       | 589       | 1555     | 484   | 311  | 1144     | 356       | 395    | 1871     | 582  | 417      | 1903 | 592  |
| v/s Ratio Prot           | c0.17     | 0.19     |       | 0.07 | c0.17    |           | 0.10   | c0.36    |      | c0.12    | 0.27 |      |
| v/s Ratio Perm           |           |          | 0.17  |      |          | 0.15      |        |          | 0.07 |          |      | 0.12 |
| v/c Ratio                | 1.00      | 0.63     | 0.57  | 0.79 | 0.78     | 0.65      | 0.84   | 0.99     | 0.20 | 0.96     | 0.73 | 0.33 |
| Uniform Delay, d1        | 58.0      | 41.8     | 40.9  | 62.4 | 50.9     | 49.3      | 60.7   | 44.0     | 30.2 | 61.2     | 37.7 | 31.2 |
| Progression Factor       | 1.00      | 1.00     | 1.00  | 1.00 | 1.00     | 1.00      | 1.00   | 1.00     | 1.00 | 1.00     | 1.00 | 1.00 |
| Incremental Delay, d2    | 36.3      | 1.1      | 2.5   | 12.2 | 3.9      | 5.6       | 13.6   | 18.9     | 0.3  | 34.4     | 1.8  | 0.7  |
| Delay (s)                | 94.3      | 42.9     | 43.4  | 74.6 | 54.8     | 54.9      | 74.2   | 62.9     | 30.5 | 95.6     | 39.5 | 31.9 |
| Level of Service         | F         | D        | D     | Е    | D        | D         | Е      | E        | С    | F        | D    | С    |
| Approach Delay (s)       |           | 58.1     |       |      | 58.1     |           |        | 62.1     |      |          | 48.8 |      |
| Approach LOS             |           | E        |       |      | Ε        |           |        | E        |      |          | D    |      |
| Intersection Summary     |           |          |       |      |          |           |        |          |      |          |      |      |
| HCM Average Control D    |           |          | 56.8  | H    | ICM Le   | vel of Se | ervice |          | Е    |          |      |      |
| HCM Volume to Capacit    |           |          | 0.93  |      |          |           |        |          |      |          |      |      |
| Actuated Cycle Length (  | ,         | 140.0    |       |      |          | ost time  |        |          | 16.0 |          |      |      |
| Intersection Capacity Ut | ilization |          | 92.1% | 10   | CU Lev   | el of Ser | vice   |          | F    |          |      |      |
| Analysis Period (min)    |           |          | 15    |      |          |           |        |          |      |          |      |      |
| c Critical Lane Group    |           |          |       |      |          |           |        |          |      |          |      |      |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •         | 4      | <b>†</b> | <b>/</b> | <b>&gt;</b> | ţ    | 4    |
|---------------------------|----------|----------|-------|-------|----------|-----------|--------|----------|----------|-------------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR      | SBL         | SBT  | SBR  |
| Lane Configurations       | 44       | <b>^</b> | 7     | J.    | ተተተ      | 7         | 1,1    | ተተተ      | 7        | ř           | 1111 | 7    |
| Ideal Flow (vphpl)        | 1900     | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900     | 1900        | 1900 | 1900 |
| Total Lost time (s)       | 4.0      | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0      | 4.0         | 4.0  | 4.0  |
| Lane Util. Factor         | 0.97     | 0.95     | 1.00  | 1.00  | 0.91     | 1.00      | 0.97   | 0.91     | 1.00     | 1.00        | 0.86 | 1.00 |
| Frt                       | 1.00     | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85     | 1.00        | 1.00 | 0.85 |
| Flt Protected             | 0.95     | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00     | 0.95        | 1.00 | 1.00 |
| Satd. Flow (prot)         | 3433     | 3539     | 1583  | 1770  | 5085     | 1583      | 3433   | 5085     | 1583     | 1770        | 6408 | 1583 |
| Flt Permitted             | 0.95     | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00     | 0.95        | 1.00 | 1.00 |
| Satd. Flow (perm)         | 3433     | 3539     | 1583  | 1770  | 5085     | 1583      | 3433   | 5085     | 1583     | 1770        | 6408 | 1583 |
| Volume (vph)              | 190      | 470      | 480   | 110   | 590      | 230       | 700    | 1650     | 90       | 220         | 1660 | 140  |
| Peak-hour factor, PHF     | 0.97     | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97   | 0.97     | 0.97     | 0.97        | 0.97 | 0.97 |
| Adj. Flow (vph)           | 196      | 485      | 495   | 113   | 608      | 237       | 722    | 1701     | 93       | 227         | 1711 | 144  |
| RTOR Reduction (vph)      | 0        | 0        | 259   | 0     | 0        | 181       | 0      | 0        | 46       | 0           | 0    | 91   |
| Lane Group Flow (vph)     | 196      | 485      | 236   | 113   | 608      | 56        | 722    | 1701     | 47       | 227         | 1711 | 53   |
| Turn Type                 | Prot     |          | Perm  | Prot  |          | Perm      | Prot   |          | Perm     | Prot        |      | Perm |
| Protected Phases          | 7        | 4        |       | 3     | 8        |           | 5      | 2        |          | 1           | 6    |      |
| Permitted Phases          |          |          | 4     |       |          | 8         |        |          | 2        |             |      | 6    |
| Actuated Green, G (s)     | 8.6      | 26.0     | 26.0  | 6.0   | 24.4     | 24.4      | 22.1   | 40.2     | 40.2     | 15.1        | 33.2 | 33.2 |
| Effective Green, g (s)    | 8.6      | 28.0     | 28.0  | 6.0   | 25.4     | 25.4      | 22.1   | 42.2     | 42.2     | 15.1        | 35.2 | 35.2 |
| Actuated g/C Ratio        | 0.08     | 0.26     | 0.26  | 0.06  | 0.24     | 0.24      | 0.21   | 0.39     | 0.39     | 0.14        | 0.33 | 0.33 |
| Clearance Time (s)        | 4.0      | 6.0      | 6.0   | 4.0   | 5.0      | 5.0       | 4.0    | 6.0      | 6.0      | 4.0         | 6.0  | 6.0  |
| Vehicle Extension (s)     | 2.0      | 4.5      | 4.5   | 2.0   | 5.0      | 5.0       | 2.0    | 3.4      | 3.4      | 2.0         | 4.1  | 4.1  |
| Lane Grp Cap (vph)        | 275      | 924      | 413   | 99    | 1204     | 375       | 707    | 2000     | 623      | 249         | 2102 | 519  |
| v/s Ratio Prot            | 0.06     | 0.14     |       | c0.06 | 0.12     |           | c0.21  | c0.33    |          | 0.13        | 0.27 |      |
| v/s Ratio Perm            |          |          | c0.15 |       |          | 0.04      |        |          | 0.03     |             |      | 0.03 |
| v/c Ratio                 | 0.71     | 0.52     | 0.57  | 1.14  | 0.50     | 0.15      | 1.02   | 0.85     | 0.08     | 0.91        | 0.81 | 0.10 |
| Uniform Delay, d1         | 48.1     | 34.0     | 34.4  | 50.6  | 35.5     | 32.4      | 42.6   | 29.7     | 20.4     | 45.4        | 33.0 | 25.1 |
| Progression Factor        | 1.00     | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00     | 1.00        | 1.00 | 1.00 |
| Incremental Delay, d2     | 7.1      | 0.9      | 2.7   | 133.6 | 0.7      | 0.4       | 39.3   | 4.8      | 0.2      | 33.8        | 3.6  | 0.4  |
| Delay (s)                 | 55.2     | 34.8     | 37.1  | 184.2 | 36.2     | 32.8      | 81.9   | 34.5     | 20.6     | 79.2        | 36.6 | 25.5 |
| Level of Service          | E        | С        | D     | F     | D        | С         | F      | С        | С        | Е           | D    | С    |
| Approach Delay (s)        |          | 39.2     |       |       | 52.8     |           |        | 47.6     |          |             | 40.5 |      |
| Approach LOS              |          | D        |       |       | D        |           |        | D        |          |             | D    |      |
| Intersection Summary      |          |          |       |       |          |           |        |          |          |             |      |      |
| HCM Average Control D     |          |          | 44.7  | F     | ICM Le   | vel of Se | ervice |          | D        |             |      |      |
| HCM Volume to Capacit     |          |          | 0.81  |       |          |           |        |          |          |             |      |      |
| Actuated Cycle Length (   | ,        |          | 107.3 |       |          | ost time  |        |          | 12.0     |             |      |      |
| Intersection Capacity Uti | lization |          | 76.5% | 10    | CU Leve  | el of Ser | vice   |          | D        |             |      |      |
| Analysis Period (min)     |          |          | 15    |       |          |           |        |          |          |             |      |      |
| c Critical Lane Group     |          |          |       |       |          |           |        |          |          |             |      |      |

|                               | ۶       | -          | •     | •    | <b>←</b>    | •         | 4      | †    | ~    | <b>/</b> | ļ    | 4     |
|-------------------------------|---------|------------|-------|------|-------------|-----------|--------|------|------|----------|------|-------|
| Movement                      | EBL     | EBT        | EBR   | WBL  | WBT         | WBR       | NBL    | NBT  | NBR  | SBL      | SBT  | SBR   |
| Lane Configurations           |         | <b>∱</b> ∱ |       |      | <b>∱</b> î≽ |           |        |      |      | 7        |      | 7     |
| Ideal Flow (vphpl)            | 1900    | 1900       | 1900  | 1900 | 1900        | 1900      | 1900   | 1900 | 1900 | 1900     | 1900 | 1900  |
| Total Lost time (s)           |         | 4.0        |       |      | 4.0         |           |        |      |      | 4.0      |      | 4.0   |
| Lane Util. Factor             |         | 0.95       |       |      | 0.95        |           |        |      |      | 1.00     |      | 1.00  |
| Frt                           |         | 0.98       |       |      | 0.89        |           |        |      |      | 1.00     |      | 0.85  |
| Flt Protected                 |         | 1.00       |       |      | 1.00        |           |        |      |      | 0.95     |      | 1.00  |
| Satd. Flow (prot)             |         | 3481       |       |      | 3151        |           |        |      |      | 1770     |      | 1583  |
| Flt Permitted                 |         | 1.00       |       |      | 1.00        |           |        |      |      | 0.95     |      | 1.00  |
| Satd. Flow (perm)             |         | 3481       |       |      | 3151        |           |        |      |      | 1770     |      | 1583  |
| Volume (vph)                  | 0       | 1230       | 150   | 0    | 170         | 460       | 0      | 0    | 0    | 120      | 0    | 170   |
| Peak-hour factor, PHF         | 0.97    | 0.97       | 0.97  | 0.97 | 0.97        | 0.97      | 0.97   | 0.97 | 0.97 | 0.97     | 0.97 | 0.97  |
| Adj. Flow (vph)               | 0       | 1268       | 155   | 0    | 175         | 474       | 0      | 0    | 0    | 124      | 0    | 175   |
| RTOR Reduction (vph)          | 0       | 14         | 0     | 0    | 191         | 0         | 0      | 0    | 0    | 0        | 0    | 142   |
| Lane Group Flow (vph)         | 0       | 1409       | 0     | 0    | 458         | 0         | 0      | 0    | 0    | 124      | 0    | 33    |
| Turn Type                     |         |            |       |      |             |           |        |      |      | Prot     | С    | ustom |
| Protected Phases              |         | 4          |       |      | 8           |           |        |      |      | 2        |      |       |
| Permitted Phases              |         |            |       |      |             |           |        |      |      |          |      | 2     |
| Actuated Green, G (s)         |         | 22.5       |       |      | 22.5        |           |        |      |      | 7.2      |      | 7.2   |
| Effective Green, g (s)        |         | 22.5       |       |      | 22.5        |           |        |      |      | 7.2      |      | 7.2   |
| Actuated g/C Ratio            |         | 0.60       |       |      | 0.60        |           |        |      |      | 0.19     |      | 0.19  |
| Clearance Time (s)            |         | 4.0        |       |      | 4.0         |           |        |      |      | 4.0      |      | 4.0   |
| Vehicle Extension (s)         |         | 3.0        |       |      | 3.0         |           |        |      |      | 3.0      |      | 3.0   |
| Lane Grp Cap (vph)            |         | 2078       |       |      | 1881        |           |        |      |      | 338      |      | 302   |
| v/s Ratio Prot                |         | c0.40      |       |      | 0.15        |           |        |      |      | c0.07    |      |       |
| v/s Ratio Perm                |         |            |       |      |             |           |        |      |      |          |      | 0.02  |
| v/c Ratio                     |         | 0.68       |       |      | 0.24        |           |        |      |      | 0.37     |      | 0.11  |
| Uniform Delay, d1             |         | 5.1        |       |      | 3.6         |           |        |      |      | 13.3     |      | 12.6  |
| Progression Factor            |         | 1.00       |       |      | 1.00        |           |        |      |      | 1.00     |      | 1.00  |
| Incremental Delay, d2         |         | 0.9        |       |      | 0.1         |           |        |      |      | 0.7      |      | 0.2   |
| Delay (s)                     |         | 6.0        |       |      | 3.7         |           |        |      |      | 13.9     |      | 12.8  |
| Level of Service              |         | Α          |       |      | Α           |           |        |      |      | В        |      | В     |
| Approach Delay (s)            |         | 6.0        |       |      | 3.7         |           |        | 0.0  |      |          | 13.3 |       |
| Approach LOS                  |         | Α          |       |      | Α           |           |        | Α    |      |          | В    |       |
| Intersection Summary          |         |            |       |      |             |           |        |      |      |          |      |       |
| HCM Average Control De        | elay    |            | 6.3   | F    | ICM Lev     | vel of Se | ervice |      | Α    |          |      |       |
| <b>HCM Volume to Capacity</b> | / ratio |            | 0.60  |      |             |           |        |      |      |          |      |       |
| Actuated Cycle Length (s      | s)      |            | 37.7  |      |             | ost time  |        |      | 8.0  |          |      |       |
| Intersection Capacity Util    | ization |            | 52.1% | [0   | CU Leve     | el of Ser | vice   |      | Α    |          |      |       |
| Analysis Period (min)         |         |            | 15    |      |             |           |        |      |      |          |      |       |
| c Critical Lane Group         |         |            |       |      |             |           |        |      |      |          |      |       |

|                                 | ۶     | <b>→</b>   | •     | •    | <b>—</b>   | •         | •     | <b>†</b> | ~     | <b>\</b> | <b>↓</b> | ✓    |
|---------------------------------|-------|------------|-------|------|------------|-----------|-------|----------|-------|----------|----------|------|
| Movement E                      | EBL   | EBT        | EBR   | WBL  | WBT        | WBR       | NBL   | NBT      | NBR   | SBL      | SBT      | SBR  |
| Lane Configurations             |       | <b>↑</b> ↑ |       |      | <b>↑</b> ↑ |           | ሻ     |          | 7     |          |          |      |
| Ideal Flow (vphpl) 19           | 900   | 1900       | 1900  | 1900 | 1900       | 1900      | 1900  | 1900     | 1900  | 1900     | 1900     | 1900 |
| Total Lost time (s)             |       | 4.0        |       |      | 4.0        |           | 4.0   |          | 4.0   |          |          |      |
| Lane Util. Factor               |       | 0.95       |       |      | 0.95       |           | 1.00  |          | 1.00  |          |          |      |
| Frt                             |       | 0.94       |       |      | 0.99       |           | 1.00  |          | 0.85  |          |          |      |
| Flt Protected                   |       | 1.00       |       |      | 1.00       |           | 0.95  |          | 1.00  |          |          |      |
| Satd. Flow (prot)               |       | 3319       |       |      | 3499       |           | 1770  |          | 1583  |          |          |      |
| Flt Permitted                   |       | 1.00       |       |      | 1.00       |           | 0.95  |          | 1.00  |          |          |      |
| Satd. Flow (perm)               |       | 3319       |       |      | 3499       |           | 1770  |          | 1583  |          |          |      |
| Volume (vph)                    | 0     | 790        | 560   | 0    | 610        | 50        | 20    | 0        | 450   | 0        | 0        | 0    |
| Peak-hour factor, PHF 0         | ).97  | 0.97       | 0.97  | 0.97 | 0.97       | 0.97      | 0.97  | 0.97     | 0.97  | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)                 | 0     | 814        | 577   | 0    | 629        | 52        | 21    | 0        | 464   | 0        | 0        | 0    |
| RTOR Reduction (vph)            | 0     | 250        | 0     | 0    | 12         | 0         | 0     | 0        | 61    | 0        | 0        | 0    |
| Lane Group Flow (vph)           | 0     | 1141       | 0     | 0    | 669        | 0         | 21    | 0        | 403   | 0        | 0        | 0    |
| Turn Type                       |       |            |       |      |            |           | Prot  | С        | ustom |          |          |      |
| Protected Phases                |       | 4          |       |      | 8          |           | 2     |          |       |          |          |      |
| Permitted Phases                |       |            |       |      |            |           |       |          | 2     |          |          |      |
| Actuated Green, G (s)           |       | 18.8       |       |      | 18.8       |           | 14.6  |          | 14.6  |          |          |      |
| Effective Green, g (s)          |       | 18.8       |       |      | 18.8       |           | 14.6  |          | 14.6  |          |          |      |
| Actuated g/C Ratio              |       | 0.45       |       |      | 0.45       |           | 0.35  |          | 0.35  |          |          |      |
| Clearance Time (s)              |       | 4.0        |       |      | 4.0        |           | 4.0   |          | 4.0   |          |          |      |
| Vehicle Extension (s)           |       | 3.0        |       |      | 3.0        |           | 3.0   |          | 3.0   |          |          |      |
| Lane Grp Cap (vph)              |       | 1507       |       |      | 1589       |           | 624   |          | 558   |          |          |      |
| v/s Ratio Prot                  |       | c0.34      |       |      | 0.19       |           | 0.01  |          |       |          |          |      |
| v/s Ratio Perm                  |       |            |       |      |            |           |       |          | c0.25 |          |          |      |
| v/c Ratio                       |       | 0.76       |       |      | 0.42       |           | 0.03  |          | 0.72  |          |          |      |
| Uniform Delay, d1               |       | 9.4        |       |      | 7.6        |           | 8.8   |          | 11.6  |          |          |      |
| Progression Factor              |       | 1.00       |       |      | 1.00       |           | 1.00  |          | 1.00  |          |          |      |
| Incremental Delay, d2           |       | 2.2        |       |      | 0.2        |           | 0.0   |          | 4.6   |          |          |      |
| Delay (s)                       |       | 11.6       |       |      | 7.8        |           | 8.8   |          | 16.2  |          |          |      |
| Level of Service                |       | В          |       |      | Α          |           | Α     |          | В     |          |          |      |
| Approach Delay (s)              |       | 11.6       |       |      | 7.8        |           |       | 15.9     |       |          | 0.0      |      |
| Approach LOS                    |       | В          |       |      | Α          |           |       | В        |       |          | Α        |      |
| Intersection Summary            |       |            |       |      |            |           |       |          |       |          |          |      |
| <b>HCM Average Control Dela</b> | ay    |            | 11.4  | H    | ICM Lev    | vel of Se | rvice |          | В     |          |          |      |
| HCM Volume to Capacity ra       | atio  |            | 0.74  |      |            |           |       |          |       |          |          |      |
| Actuated Cycle Length (s)       |       |            | 41.4  | 5    | Sum of l   | ost time  | (s)   |          | 8.0   |          |          |      |
| Intersection Capacity Utiliza   | ation |            | 74.3% | 10   | CU Leve    | el of Ser | vice  |          | D     |          |          |      |
| Analysis Period (min)           |       |            | 15    |      |            |           |       |          |       |          |          |      |
| c Critical Lane Group           |       |            |       |      |            |           |       |          |       |          |          |      |

|                              | ۶        | <b>→</b>        | •     | €    | +           | •         | •      | <b>†</b> | ~    | <b>/</b> | <b>↓</b> | -√    |
|------------------------------|----------|-----------------|-------|------|-------------|-----------|--------|----------|------|----------|----------|-------|
| Movement                     | EBL      | EBT             | EBR   | WBL  | WBT         | WBR       | NBL    | NBT      | NBR  | SBL      | SBT      | SBR   |
| Lane Configurations          |          | ተተ <sub>ጉ</sub> |       |      | <b>↑</b> ↑↑ |           |        |          |      | ¥        |          | 7     |
| Ideal Flow (vphpl)           | 1900     | 1900            | 1900  | 1900 | 1900        | 1900      | 1900   | 1900     | 1900 | 1900     | 1900     | 1900  |
| Total Lost time (s)          |          | 4.0             |       |      | 4.0         |           |        |          |      | 4.0      |          | 4.0   |
| Lane Util. Factor            |          | 0.91            |       |      | 0.91        |           |        |          |      | 1.00     |          | 1.00  |
| Frt                          |          | 0.96            |       |      | 0.88        |           |        |          |      | 1.00     |          | 0.85  |
| Flt Protected                |          | 1.00            |       |      | 1.00        |           |        |          |      | 0.95     |          | 1.00  |
| Satd. Flow (prot)            |          | 4871            |       |      | 4495        |           |        |          |      | 1770     |          | 1583  |
| Flt Permitted                |          | 1.00            |       |      | 1.00        |           |        |          |      | 0.95     |          | 1.00  |
| Satd. Flow (perm)            |          | 4871            |       |      | 4495        |           |        |          |      | 1770     |          | 1583  |
| Volume (vph)                 | 0        | 410             | 160   | 0    | 190         | 650       | 0      | 0        | 0    | 80       | 0        | 30    |
| Peak-hour factor, PHF        | 0.97     | 0.97            | 0.97  | 0.97 | 0.97        | 0.97      | 0.97   | 0.97     | 0.97 | 0.97     | 0.97     | 0.97  |
| Adj. Flow (vph)              | 0        | 423             | 165   | 0    | 196         | 670       | 0      | 0        | 0    | 82       | 0        | 31    |
| RTOR Reduction (vph)         | 0        | 85              | 0     | 0    | 344         | 0         | 0      | 0        | 0    | 0        | 0        | 26    |
| Lane Group Flow (vph)        | 0        | 503             | 0     | 0    | 522         | 0         | 0      | 0        | 0    | 82       | 0        | 5     |
| Turn Type                    |          |                 |       |      |             |           |        |          |      | Prot     | С        | ustom |
| Protected Phases             |          | 4               |       |      | 8           |           |        |          |      | 1        |          |       |
| Permitted Phases             |          |                 |       |      |             |           |        |          |      |          |          | 1     |
| Actuated Green, G (s)        |          | 10.9            |       |      | 10.9        |           |        |          |      | 3.5      |          | 3.5   |
| Effective Green, g (s)       |          | 10.9            |       |      | 10.9        |           |        |          |      | 3.5      |          | 3.5   |
| Actuated g/C Ratio           |          | 0.49            |       |      | 0.49        |           |        |          |      | 0.16     |          | 0.16  |
| Clearance Time (s)           |          | 4.0             |       |      | 4.0         |           |        |          |      | 4.0      |          | 4.0   |
| Vehicle Extension (s)        |          | 3.0             |       |      | 3.0         |           |        |          |      | 3.0      |          | 3.0   |
| Lane Grp Cap (vph)           |          | 2370            |       |      | 2187        |           |        |          |      | 277      |          | 247   |
| v/s Ratio Prot               |          | 0.10            |       |      | c0.12       |           |        |          |      | c0.05    |          |       |
| v/s Ratio Perm               |          |                 |       |      |             |           |        |          |      |          |          | 0.00  |
| v/c Ratio                    |          | 0.21            |       |      | 0.24        |           |        |          |      | 0.30     |          | 0.02  |
| Uniform Delay, d1            |          | 3.3             |       |      | 3.3         |           |        |          |      | 8.4      |          | 8.0   |
| Progression Factor           |          | 1.00            |       |      | 1.00        |           |        |          |      | 1.00     |          | 1.00  |
| Incremental Delay, d2        |          | 0.0             |       |      | 0.1         |           |        |          |      | 0.6      |          | 0.0   |
| Delay (s)                    |          | 3.3             |       |      | 3.4         |           |        |          |      | 9.0      |          | 8.0   |
| Level of Service             |          | Α               |       |      | Α           |           |        |          |      | Α        |          | Α     |
| Approach Delay (s)           |          | 3.3             |       |      | 3.4         |           |        | 0.0      |      |          | 8.7      |       |
| Approach LOS                 |          | Α               |       |      | Α           |           |        | Α        |      |          | Α        |       |
| Intersection Summary         |          |                 |       |      |             |           |        |          |      |          |          |       |
| HCM Average Control D        |          |                 | 3.8   | H    | ICM Lev     | vel of Se | ervice |          | Α    |          |          |       |
| <b>HCM Volume to Capacit</b> |          |                 | 0.25  |      |             |           |        |          |      |          |          |       |
| Actuated Cycle Length (      |          |                 | 22.4  |      |             | ost time  |        |          | 8.0  |          |          |       |
| Intersection Capacity Uti    | lization |                 | 29.5% | 10   | CU Leve     | el of Ser | vice   |          | Α    |          |          |       |
| Analysis Period (min)        |          |                 | 15    |      |             |           |        |          |      |          |          |       |
| c Critical Lane Group        |          |                 |       |      |             |           |        |          |      |          |          |       |


|                               | ᄼ       | -          | $\rightarrow$ | •    | <b>←</b>    | •         | •     | <b>†</b> | /     | <b>&gt;</b> | ļ    | 4    |
|-------------------------------|---------|------------|---------------|------|-------------|-----------|-------|----------|-------|-------------|------|------|
| Movement                      | EBL     | EBT        | EBR           | WBL  | WBT         | WBR       | NBL   | NBT      | NBR   | SBL         | SBT  | SBR  |
| Lane Configurations           |         | <b>↑</b> ↑ |               |      | <b>↑</b> ↑↑ |           | ň     |          | 7     |             |      |      |
| Ideal Flow (vphpl)            | 1900    | 1900       | 1900          | 1900 | 1900        | 1900      | 1900  | 1900     | 1900  | 1900        | 1900 | 1900 |
| Total Lost time (s)           |         | 4.0        |               |      | 4.0         |           | 4.0   |          | 4.0   |             |      |      |
| Lane Util. Factor             |         | 0.91       |               |      | 0.91        |           | 1.00  |          | 1.00  |             |      |      |
| Frt                           |         | 0.98       |               |      | 0.96        |           | 1.00  |          | 0.85  |             |      |      |
| Flt Protected                 |         | 1.00       |               |      | 1.00        |           | 0.95  |          | 1.00  |             |      |      |
| Satd. Flow (prot)             |         | 4992       |               |      | 4864        |           | 1770  |          | 1583  |             |      |      |
| Flt Permitted                 |         | 1.00       |               |      | 1.00        |           | 0.95  |          | 1.00  |             |      |      |
| Satd. Flow (perm)             |         | 4992       |               |      | 4864        |           | 1770  |          | 1583  |             |      |      |
| Volume (vph)                  | 0       | 430        | 60            | 0    | 760         | 310       | 80    | 0        | 1030  | 0           | 0    | 0    |
| Peak-hour factor, PHF         | 0.97    | 0.97       | 0.97          | 0.97 | 0.97        | 0.97      | 0.97  | 0.97     | 0.97  | 0.97        | 0.97 | 0.97 |
| Adj. Flow (vph)               | 0       | 443        | 62            | 0    | 784         | 320       | 82    | 0        | 1062  | 0           | 0    | 0    |
| RTOR Reduction (vph)          | 0       | 28         | 0             | 0    | 114         | 0         | 0     | 0        | 37    | 0           | 0    | 0    |
| Lane Group Flow (vph)         | 0       | 477        | 0             | 0    | 990         | 0         | 82    | 0        | 1025  | 0           | 0    | 0    |
| Turn Type                     |         |            |               |      |             |           | Prot  | С        | ustom |             |      |      |
| Protected Phases              |         | 4          |               |      | 8           |           | 2     |          |       |             |      |      |
| Permitted Phases              |         |            |               |      |             |           |       |          | 2     |             |      |      |
| Actuated Green, G (s)         |         | 15.8       |               |      | 15.8        |           | 41.0  |          | 41.0  |             |      |      |
| Effective Green, g (s)        |         | 15.8       |               |      | 15.8        |           | 41.0  |          | 41.0  |             |      |      |
| Actuated g/C Ratio            |         | 0.24       |               |      | 0.24        |           | 0.63  |          | 0.63  |             |      |      |
| Clearance Time (s)            |         | 4.0        |               |      | 4.0         |           | 4.0   |          | 4.0   |             |      |      |
| Vehicle Extension (s)         |         | 3.0        |               |      | 3.0         |           | 3.0   |          | 3.0   |             |      |      |
| Lane Grp Cap (vph)            |         | 1217       |               |      | 1186        |           | 1120  |          | 1002  |             |      |      |
| v/s Ratio Prot                |         | 0.10       |               |      | c0.20       |           | 0.05  |          |       |             |      |      |
| v/s Ratio Perm                |         |            |               |      |             |           |       |          | c0.65 |             |      |      |
| v/c Ratio                     |         | 0.39       |               |      | 0.83        |           | 0.07  |          | 1.02  |             |      |      |
| Uniform Delay, d1             |         | 20.5       |               |      | 23.3        |           | 4.6   |          | 11.9  |             |      |      |
| Progression Factor            |         | 1.00       |               |      | 1.00        |           | 1.00  |          | 1.00  |             |      |      |
| Incremental Delay, d2         |         | 0.2        |               |      | 5.2         |           | 0.0   |          | 34.5  |             |      |      |
| Delay (s)                     |         | 20.7       |               |      | 28.5        |           | 4.6   |          | 46.4  |             |      |      |
| Level of Service              |         | С          |               |      | С           |           | Α     |          | D     |             |      |      |
| Approach Delay (s)            |         | 20.7       |               |      | 28.5        |           |       | 43.4     |       |             | 0.0  |      |
| Approach LOS                  |         | С          |               |      | С           |           |       | D        |       |             | Α    |      |
| Intersection Summary          |         |            |               |      |             |           |       |          |       |             |      |      |
| HCM Average Control De        |         |            | 33.2          | F    | ICM Le      | vel of Se | rvice |          | С     |             |      |      |
| <b>HCM Volume to Capacity</b> |         |            | 0.97          |      |             |           |       |          |       |             |      |      |
| Actuated Cycle Length (s      |         |            | 64.8          |      |             | ost time  | ` '   |          | 8.0   |             |      |      |
| Intersection Capacity Util    | ization |            | 80.1%         | 10   | CU Leve     | el of Ser | vice  |          | D     |             |      |      |
| Analysis Period (min)         |         |            | 15            |      |             |           |       |          |       |             |      |      |
| c Critical Lane Group         |         |            |               |      |             |           |       |          |       |             |      |      |

|                             | ۶      | -        | ←          | •        | -         | 4             |   |     |  |
|-----------------------------|--------|----------|------------|----------|-----------|---------------|---|-----|--|
| Movement                    | EBL    | EBT      | WBT        | WBR      | SBL       | SBR           |   |     |  |
| Lane Configurations         |        | <b>^</b> | <b>441</b> |          | ኝ         | 1             |   |     |  |
|                             | 1900   | 1900     | 1900       | 1900     | 1900      | 1900          |   |     |  |
| Total Lost time (s)         |        | 4.0      | 4.0        |          | 4.0       | 4.0           |   |     |  |
| Lane Util. Factor           |        | 0.95     | 0.91       |          | 1.00      | 1.00          |   |     |  |
| Frt                         |        | 1.00     | 0.93       |          | 1.00      | 0.85          |   |     |  |
| Flt Protected               |        | 1.00     | 1.00       |          | 0.95      | 1.00          |   |     |  |
| Satd. Flow (prot)           |        | 3539     | 4723       |          | 1770      | 1583          |   |     |  |
| Flt Permitted               |        | 1.00     | 1.00       |          | 0.95      | 1.00          |   |     |  |
| Satd. Flow (perm)           |        | 3539     | 4723       |          | 1770      | 1583          |   |     |  |
| Volume (vph)                | 0      | 500      | 1280       | 1160     | 410       | 140           |   |     |  |
| Peak-hour factor, PHF       | 0.97   | 0.97     | 0.97       | 0.97     | 0.97      | 0.97          |   |     |  |
| Adj. Flow (vph)             | 0      | 515      | 1320       | 1196     | 423       | 144           |   |     |  |
| RTOR Reduction (vph)        | 0      | 0        | 198        | 0        | 0         | 27            |   |     |  |
| Lane Group Flow (vph)       | 0      | 515      | 2318       | 0        | 423       | 117           |   |     |  |
| Turn Type                   |        |          |            |          |           | Perm          |   |     |  |
| Protected Phases            |        | 4        | 8          |          | 6         | TOTTI         |   |     |  |
| Permitted Phases            |        | •        | U          |          | •         | 6             |   |     |  |
| Actuated Green, G (s)       |        | 37.7     | 37.7       |          | 19.9      | 19.9          |   |     |  |
| Effective Green, g (s)      |        | 37.7     | 37.7       |          | 19.9      | 19.9          |   |     |  |
| Actuated g/C Ratio          |        | 0.57     | 0.57       |          | 0.30      | 0.30          |   |     |  |
| Clearance Time (s)          |        | 4.0      | 4.0        |          | 4.0       | 4.0           |   |     |  |
| Vehicle Extension (s)       |        | 3.0      | 3.0        |          | 3.0       | 3.0           |   |     |  |
| Lane Grp Cap (vph)          |        | 2034     | 2714       |          | 537       | 480           |   |     |  |
| v/s Ratio Prot              |        | 0.15     | c0.49      |          | c0.24     | 400           |   |     |  |
| v/s Ratio Perm              |        | 0.10     | 00.40      |          | 00.24     | 0.07          |   |     |  |
| v/c Ratio                   |        | 0.25     | 1.07dr     |          | 0.79      | 0.24          |   |     |  |
| Uniform Delay, d1           |        | 6.9      | 11.7       |          | 20.9      | 17.2          |   |     |  |
| Progression Factor          |        | 1.00     | 1.00       |          | 1.00      | 1.00          |   |     |  |
| Incremental Delay, d2       |        | 0.1      | 2.8        |          | 7.5       | 0.3           |   |     |  |
| Delay (s)                   |        | 7.0      | 14.5       |          | 28.4      | 17.5          |   |     |  |
| Level of Service            |        | Α.       | В          |          | C         | В             |   |     |  |
| Approach Delay (s)          |        | 7.0      | 14.5       |          | 25.6      | <u>.</u>      |   |     |  |
| Approach LOS                |        | Α.       | В          |          | C         |               |   |     |  |
|                             |        | , ,      |            |          |           |               |   |     |  |
| Intersection Summary        | la     |          | 15.0       |          | IOM       |               |   |     |  |
| HCM Average Control De      | -      |          | 15.2       | F        | 1CIVI Le  | vel of Servic | е | В   |  |
| HCM Volume to Capacity      |        |          | 0.83       |          | )         | 1 1! · /-\    |   | 0.0 |  |
| Actuated Cycle Length (s    |        |          | 65.6       |          |           | ost time (s)  |   | 8.0 |  |
| Intersection Capacity Utili | zation |          | 80.1%      | 10       | CU Leve   | el of Service |   | D   |  |
| Analysis Period (min)       | D      |          | 15         |          |           | Llaura .      |   |     |  |
| dr Defacto Right Lane.      | Reco   | ie with  | tnough     | i iane a | s a right | iane.         |   |     |  |

|                              | -               | •    | •     | ←        | 1        | <b>/</b>      |     |   |
|------------------------------|-----------------|------|-------|----------|----------|---------------|-----|---|
| Movement                     | EBT             | EBR  | WBL   | WBT      | NBL      | NBR           |     |   |
| Lane Configurations          | <del>ተ</del> ተጉ |      |       | <b>^</b> | *        | 7             |     |   |
| Ideal Flow (vphpl)           | 1900            | 1900 | 1900  | 1900     | 1900     | 1900          |     |   |
| Total Lost time (s)          | 4.0             |      |       | 4.0      | 4.0      | 4.0           |     |   |
| Lane Util. Factor            | 0.91            |      |       | 0.91     | 1.00     | 1.00          |     |   |
| Frt                          | 0.98            |      |       | 1.00     | 1.00     | 0.85          |     |   |
| Flt Protected                | 1.00            |      |       | 1.00     | 0.95     | 1.00          |     |   |
| Satd. Flow (prot)            | 4976            |      |       | 5085     | 1770     | 1583          |     |   |
| Flt Permitted                | 1.00            |      |       | 1.00     | 0.95     | 1.00          |     |   |
| Satd. Flow (perm)            | 4976            |      |       | 5085     | 1770     | 1583          |     |   |
| Volume (vph)                 | 780             | 130  | 0     | 2050     | 390      | 520           |     |   |
| Peak-hour factor, PHF        | 0.97            | 0.97 | 0.97  | 0.97     | 0.97     | 0.97          |     |   |
| Adj. Flow (vph)              | 804             | 134  | 0     | 2113     | 402      | 536           |     |   |
| RTOR Reduction (vph)         | 33              | 0    | 0     | 0        | 0        | 70            |     |   |
| Lane Group Flow (vph)        | 905             | 0    | 0     | 2113     | 402      | 466           |     |   |
| Turn Type                    |                 |      |       |          |          | Perm          |     |   |
| Protected Phases             | 4               |      |       | 8        | 2        |               |     |   |
| Permitted Phases             |                 |      |       |          |          | 2             |     |   |
| Actuated Green, G (s)        | 28.3            |      |       | 28.3     | 20.6     | 20.6          |     |   |
| Effective Green, g (s)       | 28.3            |      |       | 28.3     | 20.6     | 20.6          |     |   |
| Actuated g/C Ratio           | 0.50            |      |       | 0.50     | 0.36     | 0.36          |     |   |
| Clearance Time (s)           | 4.0             |      |       | 4.0      | 4.0      | 4.0           |     |   |
| Vehicle Extension (s)        | 3.0             |      |       | 3.0      | 3.0      | 3.0           |     |   |
| Lane Grp Cap (vph)           | 2475            |      |       | 2529     | 641      | 573           |     |   |
| v/s Ratio Prot               | 0.18            |      |       | c0.42    | 0.23     |               |     |   |
| v/s Ratio Perm               |                 |      |       |          |          | c0.29         |     |   |
| v/c Ratio                    | 0.37            |      |       | 0.84     | 0.63     | 0.81          |     |   |
| Uniform Delay, d1            | 8.8             |      |       | 12.3     | 15.0     | 16.4          |     |   |
| Progression Factor           | 1.00            |      |       | 1.00     | 1.00     | 1.00          |     |   |
| Incremental Delay, d2        | 0.1             |      |       | 2.5      | 1.9      | 8.7           |     |   |
| Delay (s)                    | 8.9             |      |       | 14.8     | 16.9     | 25.1          |     |   |
| Level of Service             | Α               |      |       | В        | В        | С             |     |   |
| Approach Delay (s)           | 8.9             |      |       | 14.8     | 21.6     |               |     |   |
| Approach LOS                 | Α               |      |       | В        | С        |               |     |   |
| Intersection Summary         |                 |      |       |          |          |               |     |   |
| HCM Average Control D        | elay            |      | 15.0  | Н        | ICM Lev  | vel of Servic | e l | 3 |
| <b>HCM Volume to Capacit</b> |                 |      | 0.83  |          |          |               |     |   |
| Actuated Cycle Length (      | s)              |      | 56.9  | S        | um of lo | ost time (s)  | 8.  | 0 |
| Intersection Capacity Ut     |                 |      | 67.9% | IC       | CU Leve  | el of Service | (   | ) |
| Analysis Period (min)        |                 |      | 15    |          |          |               |     |   |
| c Critical Lane Group        |                 |      |       |          |          |               |     |   |

### Level Of Service Computation Report 2000 HCM 4-Way Stop (Base Volume Alternative) C. + Preferred Alt. AM

# Intersection #5: Elverta Road / East Levee Road

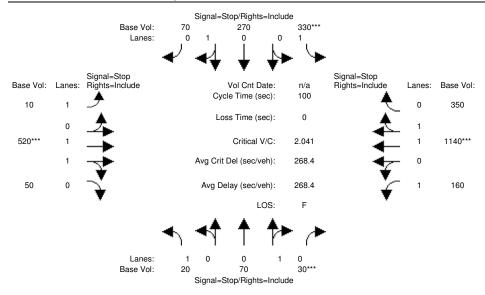


|                            | Noi  | rth Bo |      | Sou  | ıth Bo | und    |      | ast Bo |       | We   | est Bo |       |
|----------------------------|------|--------|------|------|--------|--------|------|--------|-------|------|--------|-------|
| Movement:                  |      |        |      |      |        |        |      |        |       |      |        |       |
| Min. Green:                | 0    | 0      | 0    | 0    | 0      | 0      | 0    | 0      | 0     | 0    | 0      | 0     |
| Volume Module              |      |        |      |      |        |        |      |        |       | 1    |        |       |
| Base Vol:                  | 20   | 20     | 90   | 140  | 150    | 40     | 10   | 550    | 10    | 120  | 1280   | 10    |
| Growth Adj:                | 1.00 | 1.00   | 1.00 | 1.00 | 1.00   | 1.00   | 1.00 | 1.00   | 1.00  | 1.00 | 1.00   | 1.00  |
| Initial Bse:               |      | 20     | 90   | 140  | 150    | 40     | 10   | 550    | 10    | 120  | 1280   | 10    |
| User Adj:                  |      |        | 1.00 | 1.00 | 1.00   | 1.00   | 1.00 | 1.00   | 1.00  | 1.00 | 1.00   | 1.00  |
| PHF Adj:                   | 0.97 |        | 0.97 | 0.97 | 0.97   | 0.97   | 0.97 | 0.97   | 0.97  | 0.97 | 0.97   | 0.97  |
| PHF Volume:                |      | 21     | 93   | 144  | 155    | 41     | 10   | 567    | 10    |      | 1320   | 10    |
| Reduct Vol:                |      | 0      | 0    | 0    |        | 0      | 0    |        |       | 0    |        | 0     |
| Reduced Vol:               |      |        |      | 144  |        | 41     | 10   |        |       | 124  |        | 10    |
| PCE Adj:                   |      |        | 1.00 |      | 1.00   | 1.00   |      | 1.00   | 1.00  |      | 1.00   |       |
| MLF Adj:                   |      |        | 1.00 | 1.00 |        | 1.00   |      | 1.00   | 1.00  |      | 1.00   | 1.00  |
| FinalVolume:               |      |        | 93   | 144  |        |        | 10   |        |       | 124  |        | 10    |
|                            |      |        |      |      |        |        |      |        |       |      |        |       |
| Saturation F               |      |        |      |      |        |        |      |        |       |      |        |       |
| Adjustment:                |      |        |      |      |        |        |      |        |       |      |        |       |
| Lanes:                     |      |        |      |      |        | 0.21   |      |        | 0.04  |      |        |       |
| Final Sat.:                |      |        |      |      |        | 86     |      |        | 14    |      |        | 7     |
| Capacity Anal              |      |        |      |      |        |        |      |        |       |      |        |       |
| Vol/Sat:                   | -    |        |      | 0 30 | 0 40   | 0.48   | 0 03 | 0.73   | 0.73  | 0 21 | 1 52   | 1.53  |
| Crit Moves:                |      | 0.29   | **** | 0.50 | 0.40   | ****   |      | ****   | 0.75  | 0.51 | ****   | 1.00  |
| Delay/Veh:                 |      | 14 8   | 14.8 | 17.4 | 18 8   | 18.8   |      | 32.0   | 31.9  | 15 2 |        | 270.5 |
| Delay Adj:                 |      |        | 1.00 | 1.00 |        | 1.00   | 1.00 |        | 1.00  |      |        | 1.00  |
| AdjDel/Veh:                |      |        |      | 17.4 |        | 18.8   | 12.5 |        | 31.9  |      |        | 270.5 |
| LOS by Move:               | В    | В      | В    |      |        |        | В    |        |       | C    |        | F     |
|                            |      | 14.6   | _    |      | 18.2   | Ü      |      | 31.7   |       |      | 249.2  | -     |
| ApproachDel:<br>Delay Adj: |      | 1.00   | ے    |      | 1.00   |        |      | 1.00   |       |      | 1.00   |       |
| ApprAdjDel:                |      | 14.6   |      |      |        |        |      | 31.7   |       |      | 249.2  |       |
| LOS by Appr:               |      | В      |      |      | С      |        |      | D      |       |      | F      |       |
| AllWayAvgQ:                |      |        | 0.4  | 0.6  | 0.8    | 0.8    | 0.0  | 2.2    | 2.2   | 0.4  | 31.4   | 31.4  |
| Note: Queue                |      |        |      |      |        |        |      |        |       |      |        |       |
| ~                          |      |        |      |      |        | Warran |      |        | rban] |      |        |       |
| *****                      |      |        |      |      |        |        |      |        |       | **** | ****   | ***** |
| Intersection               |      |        |      |      |        |        |      | *****  | ***** | **** | ****   | ***** |
| Base Volume A              |      |        |      |      |        |        |      |        |       |      |        |       |
|                            |      |        |      |      |        |        |      |        |       |      |        |       |
| Approach:                  | Noi  | rtn Bo |      |      |        | und    |      |        |       |      |        | ound  |

| Movement: | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L -

### SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).


The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

|                          | ۶         | <b>→</b> | •               | •    | <b>&gt;</b> | 4         |       |        |      |  |
|--------------------------|-----------|----------|-----------------|------|-------------|-----------|-------|--------|------|--|
| Movement                 | EBL       | EBT      | WBT             | WBR  | SBL         | SBR       |       |        |      |  |
| Lane Configurations      | ሻ         | ተተተ      | ተተ <sub>ጉ</sub> |      | ሻ           | 7         |       |        |      |  |
| Sign Control             |           | Free     | Free            |      | Stop        |           |       |        |      |  |
| Grade                    |           | 0%       | 0%              |      | 0%          |           |       |        |      |  |
| Volume (veh/h)           | 90        | 600      | 1850            | 30   | 70          | 260       |       |        |      |  |
| Peak Hour Factor         | 0.97      | 0.97     | 0.97            | 0.97 | 0.97        | 0.97      |       |        |      |  |
| Hourly flow rate (vph)   | 93        | 619      | 1907            | 31   | 72          | 268       |       |        |      |  |
| Pedestrians              |           |          |                 |      |             |           |       |        |      |  |
| Lane Width (ft)          |           |          |                 |      |             |           |       |        |      |  |
| Walking Speed (ft/s)     |           |          |                 |      |             |           |       |        |      |  |
| Percent Blockage         |           |          |                 |      |             |           |       |        |      |  |
| Right turn flare (veh)   |           |          |                 |      |             |           |       |        |      |  |
| Median type              |           |          |                 |      | None        |           |       |        |      |  |
| Median storage veh)      |           |          |                 |      |             |           |       |        |      |  |
| Upstream signal (ft)     |           |          |                 |      |             |           |       |        |      |  |
| pX, platoon unblocked    |           |          |                 |      |             |           |       |        |      |  |
| vC, conflicting volume   | 1938      |          |                 |      | 2314        | 651       |       |        |      |  |
| vC1, stage 1 conf vol    |           |          |                 |      |             |           |       |        |      |  |
| vC2, stage 2 conf vol    |           |          |                 |      |             |           |       |        |      |  |
| vCu, unblocked vol       | 1938      |          |                 |      | 2314        | 651       |       |        |      |  |
| tC, single (s)           | 4.1       |          |                 |      | 6.8         | 6.9       |       |        |      |  |
| tC, 2 stage (s)          |           |          |                 |      |             |           |       |        |      |  |
| tF (s)                   | 2.2       |          |                 |      | 3.5         | 3.3       |       |        |      |  |
| p0 queue free %          | 69        |          |                 |      | 0           | 35        |       |        |      |  |
| cM capacity (veh/h)      | 299       |          |                 |      | 22          | 411       |       |        |      |  |
| Direction, Lane #        | EB 1      | EB 2     | EB 3            | EB 4 | WB 1        | WB2       | WB3   | SB 1   | SB 2 |  |
| Volume Total             | 93        | 206      | 206             | 206  | 763         | 763       | 412   | 72     | 268  |  |
| Volume Left              | 93        | 0        | 0               | 0    | 0           | 0         | 0     | 72     | 0    |  |
| Volume Right             | 0         | 0        | 0               | 0    | 0           | 0         | 31    | 0      | 268  |  |
| cSH                      | 299       | 1700     | 1700            | 1700 | 1700        | 1700      | 1700  | 22     | 411  |  |
| Volume to Capacity       | 0.31      | 0.12     | 0.12            | 0.12 | 0.45        | 0.45      | 0.24  | 3.29   | 0.65 |  |
| Queue Length 95th (ft)   | 32        | 0        | 0               | 0    | 0           | 0         | 0     | Err    | 112  |  |
| Control Delay (s)        | 22.4      | 0.0      | 0.0             | 0.0  | 0.0         | 0.0       | 0.0   | Err    | 28.7 |  |
| Lane LOS                 | С         |          |                 |      |             |           |       | F      | D    |  |
| Approach Delay (s)       | 2.9       |          |                 |      | 0.0         |           | 2     | 2143.6 |      |  |
| Approach LOS             |           |          |                 |      |             |           |       | F      |      |  |
| Intersection Summary     |           |          |                 |      |             |           |       |        |      |  |
| Average Delay            |           |          | 244.6           |      |             |           |       |        |      |  |
| Intersection Capacity Ut | ilization |          | 59.2%           | ŀ    | CU Lev      | el of Sei | rvice |        | В    |  |
| Analysis Period (min)    |           |          | 15              |      |             |           |       |        |      |  |
|                          |           |          |                 |      |             |           |       |        |      |  |

|                          | ۶         | <b>→</b>   | •     | •    | +          | 4        | 1     | †    | ~     | <b>/</b> | ţ    | 4    |
|--------------------------|-----------|------------|-------|------|------------|----------|-------|------|-------|----------|------|------|
| Movement                 | EBL       | EBT        | EBR   | WBL  | WBT        | WBR      | NBL   | NBT  | NBR   | SBL      | SBT  | SBR  |
| Lane Configurations      | 7         | <b>∱</b> ∱ |       | ሻ    | <b>∱</b> } |          | 7     | f)   |       | ሻ        | f)   |      |
| Sign Control             |           | Free       |       |      | Free       |          |       | Stop |       |          | Stop |      |
| Grade                    |           | 0%         |       |      | 0%         |          |       | 0%   |       |          | 0%   |      |
| Volume (veh/h)           | 170       | 600        | 10    | 10   | 1100       | 10       | 10    | 10   | 10    | 20       | 10   | 300  |
| Peak Hour Factor         | 0.97      | 0.97       | 0.97  | 0.97 | 0.97       | 0.97     | 0.97  | 0.97 | 0.97  | 0.97     | 0.97 | 0.97 |
| Hourly flow rate (vph)   | 175       | 619        | 10    | 10   | 1134       | 10       | 10    | 10   | 10    | 21       | 10   | 309  |
| Pedestrians              |           |            |       |      |            |          |       |      |       |          |      |      |
| Lane Width (ft)          |           |            |       |      |            |          |       |      |       |          |      |      |
| Walking Speed (ft/s)     |           |            |       |      |            |          |       |      |       |          |      |      |
| Percent Blockage         |           |            |       |      |            |          |       |      |       |          |      |      |
| Right turn flare (veh)   |           |            |       |      |            |          |       |      |       |          |      |      |
| Median type              |           |            |       |      |            |          |       | None |       |          | None |      |
| Median storage veh)      |           |            |       |      |            |          |       |      |       |          |      |      |
| Upstream signal (ft)     |           |            |       |      |            |          |       |      |       |          |      |      |
| pX, platoon unblocked    |           |            |       |      |            |          |       |      |       |          |      |      |
| vC, conflicting volume   | 1144      |            |       | 629  |            |          | 1876  | 2139 | 314   | 1835     | 2139 | 572  |
| vC1, stage 1 conf vol    |           |            |       |      |            |          |       |      |       |          |      |      |
| vC2, stage 2 conf vol    |           |            |       |      |            |          |       |      |       |          |      |      |
| vCu, unblocked vol       | 1144      |            |       | 629  |            |          | 1876  | 2139 | 314   | 1835     | 2139 | 572  |
| tC, single (s)           | 4.1       |            |       | 4.1  |            |          | 7.5   | 6.5  | 6.9   | 7.5      | 6.5  | 6.9  |
| tC, 2 stage (s)          |           |            |       |      |            |          |       |      |       |          |      |      |
| tF (s)                   | 2.2       |            |       | 2.2  |            |          | 3.5   | 4.0  | 3.3   | 3.5      | 4.0  | 3.3  |
| p0 queue free %          | 71        |            |       | 99   |            |          | 0     | 70   | 98    | 26       | 70   | 33   |
| cM capacity (veh/h)      | 606       |            |       | 949  |            |          | 9     | 34   | 681   | 28       | 34   | 463  |
| Direction, Lane #        | EB 1      | EB 2       | EB 3  | WB1  | WB 2       | WB3      | NB 1  | NB 2 | SB 1  | SB 2     |      |      |
| Volume Total             | 175       | 412        | 216   | 10   | 756        | 388      | 10    | 21   | 21    | 320      |      |      |
| Volume Left              | 175       | 0          | 0     | 10   | 0          | 0        | 10    | 0    | 21    | 0        |      |      |
| Volume Right             | 0         | 0          | 10    | 0    | 0          | 10       | 0     | 10   | 0     | 309      |      |      |
| cSH                      | 606       | 1700       | 1700  | 949  | 1700       | 1700     | 9     | 65   | 28    | 329      |      |      |
| Volume to Capacity       | 0.29      | 0.24       | 0.13  | 0.01 | 0.44       | 0.23     | 1.18  | 0.32 | 0.74  | 0.97     |      |      |
| Queue Length 95th (ft)   | 30        | 0          | 0     | 1    | 0          | 0        | 52    | 29   | 59    | 259      |      |      |
| Control Delay (s)        | 13.3      | 0.0        | 0.0   | 8.8  | 0.0        | 0.0      | 929.9 | 84.7 | 292.7 | 78.9     |      |      |
| Lane LOS                 | В         |            |       | Α    |            |          | F     | F    | F     | F        |      |      |
| Approach Delay (s)       | 2.9       |            |       | 0.1  |            |          | 366.4 |      | 91.8  |          |      |      |
| Approach LOS             |           |            |       |      |            |          | F     |      | F     |          |      |      |
| Intersection Summary     |           |            |       |      |            |          |       |      |       |          |      |      |
| Average Delay            |           |            | 19.3  |      |            |          |       |      |       |          |      |      |
| Intersection Capacity Ut | ilization |            | 69.2% | I    | CU Lev     | el of Se | rvice |      | С     |          |      |      |
| Analysis Period (min)    |           |            | 15    |      |            |          |       |      |       |          |      |      |
|                          |           |            |       |      |            |          |       |      |       |          |      |      |

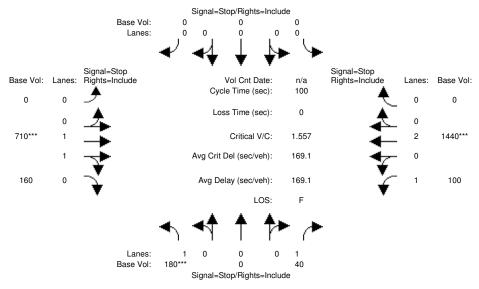
### Level Of Service Computation Report 2000 HCM 4-Way Stop (Base Volume Alternative) C. + Preferred Alt. AM

# Intersection #8: Elverta Road / Elwyn Road



| Street Name: Approach: |       |        | Elwyn  |      | uth Bo       | und             | Εá         | ast Bo      |       | a Road<br>Wes | t Bo   | ound       |
|------------------------|-------|--------|--------|------|--------------|-----------------|------------|-------------|-------|---------------|--------|------------|
| Movement:              | L -   | - T    | - R    | L -  | - T          | - R             | L -        | - T         | - R   | L -           |        |            |
| Min. Green:            | 0     | 0      | 0      | 0    | 0            | 0               | 0          | 0           | 0     | 0             | 0      | 0          |
| Volume Module          |       |        |        |      |              |                 | 1          |             |       | 1             |        |            |
| Base Vol:              | 20    | 70     | 30     | 330  | 270          | 70              | 10         | 520         | 50    | 160 1         | 140    | 350        |
| Growth Adj:            |       | 1.00   | 1.00   |      | 1.00         | 1.00            |            | 1.00        | 1.00  | 1.00 1        |        | 1.00       |
| Initial Bse:           | 20    | 70     | 30     | 330  | 270          | 70              | 10         | 520         | 50    | 160 1         |        | 350        |
| User Adj:              | 1.00  | 1.00   | 1.00   | 1.00 | 1.00         | 1.00            | 1.00       | 1.00        | 1.00  | 1.00 1        | .00    | 1.00       |
| PHF Adj:               | 0.97  | 0.97   | 0.97   | 0.97 | 0.97         | 0.97            | 0.97       | 0.97        | 0.97  | 0.97 0        | .97    | 0.97       |
| PHF Volume:            | 21    | 72     | 31     | 340  | 278          | 72              | 10         | 536         | 52    | 165 1         | 175    | 361        |
| Reduct Vol:            | 0     | 0      | 0      | 0    | 0            | 0               | 0          | 0           | 0     | 0             | 0      | 0          |
| Reduced Vol:           | 21    | 72     | 31     | 340  | 278          | 72              | 10         | 536         | 52    | 165 1         | 175    | 361        |
| PCE Adj:               | 1.00  | 1.00   | 1.00   | 1.00 | 1.00         | 1.00            | 1.00       | 1.00        | 1.00  | 1.00 1        | .00    | 1.00       |
| MLF Adj:               | 1.00  | 1.00   | 1.00   | 1.00 | 1.00         | 1.00            | 1.00       | 1.00        | 1.00  | 1.00 1        | .00    | 1.00       |
| FinalVolume:           |       |        | 31     | 340  | 278          | 72              | 10         |             | 52    | 165 1         |        | 361        |
| Saturation Fi          | ,     |        | ,      |      |              |                 |            |             |       |               |        |            |
| Adjustment:            | 1.00  | 1.00   | 1.00   | 1.00 | 1.00         | 1.00            | 1.00       | 1.00        | 1.00  | 1.00 1        | .00    | 1.00       |
| Lanes:                 | 1.00  | 0.70   | 0.30   | 1.00 | 0.79         | 0.21            | 1.00       | 1.82        | 0.18  | 1.00 1        | .53    | 0.47       |
| Final Sat.:            | 311   | 233    | 100    | 371  | 315          | 82              | 310        | 610         | 59    | 344           | 576    | 181        |
|                        |       |        |        |      |              |                 |            |             |       |               |        |            |
| Capacity Anal          | lysis | Modul  | e:     |      |              |                 |            |             |       |               |        |            |
| Vol/Sat:               | 0.07  | 0.31   | 0.31   |      | 0.88         | 0.88            | 0.03       | 0.88        | 0.87  | 0.48 2        |        | 2.00       |
| Crit Moves:            |       |        | ****   | **** |              |                 |            | ****        |       |               | ***    |            |
| Delay/Veh:             | 14.7  | 17.6   | 17.6   | 59.3 | 50.4         | 50.4            | 14.4       | 56.2        | 55.0  | 21.5          | 499    | 478.2      |
| Delay Adj:             | 1.00  | 1.00   | 1.00   | 1.00 | 1.00         | 1.00            |            | 1.00        | 1.00  | 1.00 1        |        | 1.00       |
| AdjDel/Veh:            |       |        | 17.6   |      | 50.4         | 50.4            |            | 56.2        | 55.0  |               |        | 478.2      |
| LOS by Move:           | В     | С      | С      | F    | F            | F               | В          | F           | F     | С             |        | F          |
| ApproachDel:           |       | 17.1   |        |      | 54.8         |                 |            | 55.4        |       |               | 8.3    |            |
| Delay Adj:             |       | 1.00   |        |      | 1.00         |                 |            | 1.00        |       |               | .00    |            |
| ApprAdjDel:            |       | 17.1   |        |      | 54.8         |                 |            | 55.4        |       | 44            | 8.3    |            |
| LOS by Appr:           |       | С      |        |      | F            |                 |            | F           |       |               | F      |            |
| 4 5                    |       |        | 0.4    |      |              |                 | 0.0        |             | 3.9   | 0.8 5         | 1.4    | 49.8       |
| Note: Queue            | _     |        |        |      |              | _               |            |             |       |               |        |            |
| *****                  |       |        |        |      |              | Warran<br>***** |            |             |       | *****         | ***    | *****      |
| Intersection ******    |       |        |        |      |              |                 | ****       | * * * * * * | ***** | *****         | ***    | *****      |
| Base Volume A          | Alter | native | : Peak | Hour | Warra        | nt Met          |            |             |       |               |        |            |
|                        |       |        |        |      |              |                 |            |             |       |               |        |            |
| Approach:              | Noi   | cth Bo | und    | Soi  | uth Bo       | und             | Εá         | ast Bo      | und   | Wes           | t Bo   | ound       |
| Traffix 7.9.0415       |       |        |        | Cor  | vright (c) 2 | 007 Dowling     | Associates | s. Inc.     |       | Licensed t    | o FEHF | R & PEERS. |

-----||-----||------| -----||-----||-----| Major Street Volume: 2230 Minor Approach Volume: 670 Minor Approach Volume Threshold: 29 [less than minimum of 150] \_\_\_\_\_\_


### SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

### Level Of Service Computation Report 2000 HCM 4-Way Stop (Base Volume Alternative) C. + Preferred Alt. AM

# Intersection #9: Elverta Road / Rio Linda Boulevard



| Street Name: Approach: |       | Rio<br>rth Bo |      |      |       | und    | E:   |       |      | a Road<br>West Bo | uind  |
|------------------------|-------|---------------|------|------|-------|--------|------|-------|------|-------------------|-------|
| Movement:              | L ·   | - T           | - R  | L -  | - T   | - R    | L ·  | – T   | - R  | L - T             | - R   |
| Min. Green:            | 0     | 0             | 0    | 0    | 0     | 0      | 0    | 0     | 0    | 0 0               | 0     |
| Volume Module          |       |               |      |      |       |        | 1    |       |      |                   |       |
| Base Vol:              | 180   | 0             | 40   | 0    | 0     | 0      | 0    | 710   | 160  | 100 1440          | 0     |
| Growth Adj:            | 1.00  | 1.00          | 1.00 | 1.00 | 1.00  | 1.00   | 1.00 | 1.00  | 1.00 | 1.00 1.00         | 1.00  |
| Initial Bse:           |       | 0             | 40   | 0    | 0     | 0      | 0    | 710   | 160  | 100 1440          | 0     |
| User Adj:              | 1.00  | 1.00          | 1.00 | 1.00 | 1.00  | 1.00   | 1.00 | 1.00  | 1.00 | 1.00 1.00         | 1.00  |
| PHF Adj:               | 0.97  | 0.97          | 0.97 | 0.97 | 0.97  | 0.97   | 0.97 | 0.97  | 0.97 | 0.97 0.97         | 0.97  |
| PHF Volume:            | 186   | 0             | 41   | 0    | 0     | 0      | 0    | 732   | 165  | 103 1485          | 0     |
| Reduct Vol:            | 0     | 0             | 0    | 0    | 0     | 0      | 0    | 0     | 0    | 0 0               | 0     |
| Reduced Vol:           | 186   | 0             | 41   | 0    | 0     | 0      | 0    | 732   | 165  | 103 1485          | 0     |
| PCE Adj:               | 1.00  | 1.00          | 1.00 | 1.00 | 1.00  | 1.00   | 1.00 | 1.00  | 1.00 | 1.00 1.00         | 1.00  |
| MLF Adj:               | 1.00  | 1.00          | 1.00 | 1.00 | 1.00  | 1.00   | 1.00 | 1.00  | 1.00 | 1.00 1.00         | 1.00  |
| FinalVolume:           |       |               |      | 0    | -     | 0      | 0    |       | 165  | 103 1485          | 0     |
|                        |       |               |      |      |       |        |      |       |      |                   |       |
| Saturation F           | low M | odule:        |      |      |       |        |      |       |      |                   |       |
| Adjustment:            | 1.00  | 1.00          | 1.00 | 1.00 | 1.00  | 1.00   | 1.00 | 1.00  | 1.00 | 1.00 1.00         | 1.00  |
| Lanes:                 | 1.00  | 0.00          | 1.00 | 0.00 | 0.00  | 0.00   | 0.00 | 1.63  | 0.37 | 1.00 2.00         | 0.00  |
| Final Sat.:            |       |               | 446  | 0    | 0     | 0      | 0    |       |      | 441 954           | 0     |
|                        |       |               |      |      |       |        |      |       |      |                   |       |
| Capacity Ana           | lysis | Modul         | e:   |      |       |        |      |       |      |                   |       |
| Vol/Sat:               |       | XXXX          | 0.09 | XXXX | XXXX  | XXXX   | XXXX |       | 0.86 | 0.23 1.56         | XXXX  |
| Crit Moves:            |       |               |      |      |       |        |      | ****  |      | ***               |       |
| Delay/Veh:             | 19.3  |               |      | 0.0  |       | 0.0    |      | 41.7  | 38.2 | 13.1 280          | 0.0   |
| Delay Adj:             |       |               | 1.00 | 1.00 |       | 1.00   |      | 1.00  | 1.00 | 1.00 1.00         | 1.00  |
| AdjDel/Veh:            |       |               | 11.3 |      | 0.0   | 0.0    |      | 41.7  | 38.2 | 13.1 280          | 0.0   |
| LOS by Move:           |       |               | В    | *    | *     | *      | *    | _     | E    | B F               | *     |
| ApproachDel:           |       | 17.8          |      | X    | XXXXX |        |      | 41.1  |      | 263.0             |       |
| Delay Adj:             |       | 1.00          |      | 2    | XXXXX |        |      | 1.00  |      | 1.00              |       |
| ApprAdjDel:            |       | 17.8          |      | X    | XXXXX |        |      | 41.1  |      | 263.0             |       |
| LOS by Appr:           |       | С             |      |      | *     |        |      | Ε     |      | F                 |       |
| AllWayAvgQ:            |       |               |      |      |       |        |      |       | 4.1  | 0.3 35.8          | 0.0   |
| Note: Queue            |       |               |      |      |       |        |      |       |      |                   |       |
|                        |       |               |      |      |       | Warran |      |       |      |                   |       |
| *****                  |       |               |      |      |       |        |      | ***** | **** | ******            | ***** |
| Intersection           |       |               |      |      |       |        |      | ***** | **** | *****             | ****  |
| Base Volume A          |       |               |      |      |       |        |      |       | 1    | 1                 | 1     |
| Approach:              |       |               |      |      |       |        |      |       |      | West Bo           |       |

Movement: L - T - R L - T - R L - T - R L - T - R Control: Stop Sign Stop Si

\_\_\_\_\_\_

### SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

|                          | -          | •    | •     | <b>←</b> | 4       | /         |      |   |
|--------------------------|------------|------|-------|----------|---------|-----------|------|---|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL     | NBR       |      |   |
| Lane Configurations      | <b>↑</b> Ъ |      | ሻ     | <b>^</b> | ሻ       | 7         |      |   |
| Sign Control             | Free       |      | ·     | Free     | Stop    | •         |      |   |
| Grade                    | 0%         |      |       | 0%       | 0%      |           |      |   |
| Volume (veh/h)           | 680        | 60   | 330   | 1160     | 10      | 90        |      |   |
| Peak Hour Factor         | 0.97       | 0.97 | 0.97  | 0.97     | 0.97    | 0.97      |      |   |
| Hourly flow rate (vph)   | 701        | 62   | 340   | 1196     | 10      | 93        |      |   |
| Pedestrians              |            |      |       |          |         |           |      |   |
| Lane Width (ft)          |            |      |       |          |         |           |      |   |
| Walking Speed (ft/s)     |            |      |       |          |         |           |      |   |
| Percent Blockage         |            |      |       |          |         |           |      |   |
| Right turn flare (veh)   |            |      |       |          |         |           |      |   |
| Median type              |            |      |       |          | None    |           |      |   |
| Median storage veh)      |            |      |       |          |         |           |      |   |
| Upstream signal (ft)     |            |      |       | 714      |         |           |      |   |
| pX, platoon unblocked    |            |      |       |          | 0.82    |           |      |   |
| vC, conflicting volume   |            |      | 763   |          | 2010    | 381       |      |   |
| vC1, stage 1 conf vol    |            |      |       |          |         |           |      |   |
| vC2, stage 2 conf vol    |            |      |       |          |         |           |      |   |
| vCu, unblocked vol       |            |      | 763   |          | 2013    | 381       |      |   |
| tC, single (s)           |            |      | 4.1   |          | 6.8     | 6.9       |      |   |
| tC, 2 stage (s)          |            |      |       |          |         |           |      |   |
| tF (s)                   |            |      | 2.2   |          | 3.5     | 3.3       |      |   |
| p0 queue free %          |            |      | 60    |          | 59      | 85        |      |   |
| cM capacity (veh/h)      |            |      | 845   |          | 25      | 617       |      |   |
| Direction, Lane #        | EB 1       | EB 2 | WB 1  | WB2      | WB3     | NB 1      | NB 2 |   |
| Volume Total             | 467        | 296  | 340   | 598      | 598     | 10        | 93   |   |
| Volume Left              | 0          | 0    | 340   | 0        | 0       | 10        | 0    |   |
| Volume Right             | 0          | 62   | 0     | 0        | 0       | 0         | 93   |   |
| cSH                      | 1700       | 1700 | 845   | 1700     | 1700    | 25        | 617  |   |
| Volume to Capacity       | 0.27       | 0.17 | 0.40  | 0.35     | 0.35    | 0.41      | 0.15 |   |
| Queue Length 95th (ft)   | 0          | 0    | 49    | 0        | 0       | 31        | 13   |   |
| Control Delay (s)        | 0.0        | 0.0  | 12.1  | 0.0      | 0.0     | 224.8     | 11.9 |   |
| Lane LOS                 |            |      | В     |          |         | F         | В    |   |
| Approach Delay (s)       | 0.0        |      | 2.7   |          |         | 33.2      |      |   |
| Approach LOS             |            |      |       |          |         | D         |      |   |
| Intersection Summary     |            |      |       |          |         |           |      |   |
| Average Delay            |            |      | 3.1   |          |         |           |      |   |
| Intersection Capacity Ut | ilization  |      | 52.3% | l l      | CU Leve | el of Ser | vice | Α |
| Analysis Period (min)    |            |      | 15    |          |         |           |      |   |
|                          |            |      |       |          |         |           |      |   |

| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | •         | -    | <b>←</b>   | •    | -         | ✓           |     |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|------|------------|------|-----------|-------------|-----|--|
| Ideal Flow (vphpl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Movement                 | EBL       | EBT  | WBT        | WBR  | SBL       | SBR         |     |  |
| Ideal Flow (vphpl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | *         | 44   | <b>∱</b> Ъ |      |           | 1           |     |  |
| Total Lost time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |           |      |            | 1900 |           |             |     |  |
| Lane Util. Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |           |      |            |      |           | 4.0         |     |  |
| Fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | 1.00      | 0.95 | 0.95       |      | 1.00      | 1.00        |     |  |
| Satd. Flow (prot)         1770         3539         3530         1770         1583           Flt Permitted         0.95         1.00         1.00         0.95         1.00           Satd. Flow (perm)         1770         3539         3530         1770         1583           Volume (vph)         60         710         1130         20         60         360           Peak-hour factor, PHF         0.97         0.97         0.97         0.97         0.97         0.97           Adj. Flow (vph)         62         732         1165         21         62         371           RTOR Reduction (vph)         0         0         2         0         0         145           Lane Group Flow (vph)         62         732         1184         0         62         226           Turn Type         Prot         Permitted Phases         6         8         6         Permitted Phases         6         8         6         Permitted Phases         6         8         6         Permitted Phases         6         8         4         12.5         12.5         Effective Green, g (s)         2.8         30.2         23.4         12.5         12.5         Effective Green, g (s)                                                                                                                                                                       | Frt                      | 1.00      | 1.00 | 1.00       |      | 1.00      | 0.85        |     |  |
| Fit Permitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Flt Protected            | 0.95      | 1.00 | 1.00       |      | 0.95      | 1.00        |     |  |
| Fit Permitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Satd. Flow (prot)        | 1770      | 3539 | 3530       |      | 1770      | 1583        |     |  |
| Volume (vph)         60         710         1130         20         60         360           Peak-hour factor, PHF         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97 <td></td> <td>0.95</td> <td>1.00</td> <td>1.00</td> <td></td> <td>0.95</td> <td>1.00</td> <td></td> <td></td>                          |                          | 0.95      | 1.00 | 1.00       |      | 0.95      | 1.00        |     |  |
| Peak-hour factor, PHF         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.98         2         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>Satd. Flow (perm)</td> <td>1770</td> <td>3539</td> <td>3530</td> <td></td> <td>1770</td> <td>1583</td> <td></td> <td></td> | Satd. Flow (perm)        | 1770      | 3539 | 3530       |      | 1770      | 1583        |     |  |
| Peak-hour factor, PHF         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.98         2         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>Volume (vph)</td> <td>60</td> <td>710</td> <td>1130</td> <td>20</td> <td>60</td> <td>360</td> <td></td> <td></td>          | Volume (vph)             | 60        | 710  | 1130       | 20   | 60        | 360         |     |  |
| RTOR Reduction (vph)         0         0         2         0         0         145           Lane Group Flow (vph)         62         732         1184         0         62         226           Turn Type         Prot         Perm           Protected Phases         7         4         8         6           Permitted Phases         6         6           Actuated Green, G (s)         2.8         30.2         23.4         12.5         12.5           Effective Green, g (s)         2.8         30.2         23.4         12.5         12.5           Effective Green, g (s)         2.8         30.2         23.4         12.5         12.5           Actuated g/C Ratio         0.06         0.60         0.46         0.25         0.25           Clearance Time (s)         4.0         4.0         4.0         4.0         4.0         4.0           Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0         3.0           Lane Grp Cap (vph)         98         2108         1629         436         390           v/s Ratio Prot         c0.04         0.21         c0.34         0.04           v/s                                                                                                                                                                                                          |                          |           |      |            |      |           | 0.97        |     |  |
| RTOR Reduction (vph)         0         0         2         0         0         145           Lane Group Flow (vph)         62         732         1184         0         62         226           Turn Type         Prot         Perm           Protected Phases         7         4         8         6           Permitted Phases         6         6         6           Actuated Green, G (s)         2.8         30.2         23.4         12.5         12.5           Effective Green, g (s)         2.8         30.2         23.4         12.5         12.5           Effective Green, g (s)         2.8         30.2         23.4         12.5         12.5           Actuated g/C Ratio         0.06         0.60         0.46         0.25         0.25           Clearance Time (s)         4.0         4.0         4.0         4.0         4.0           Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0           Lane Grp Cap (vph)         98         2108         1629         436         390           v/s Ratio Prot         c0.04         0.21         c0.34         0.04           v/s Ratio Perm         c0.1                                                                                                                                                                                                            | •                        |           |      |            |      |           |             |     |  |
| Lane Group Flow (vph)         62         732         1184         0         62         226           Turn Type         Prot         Perm           Protected Phases         7         4         8         6           Permitted Phases         6         Actuated Green, G (s)         2.8         30.2         23.4         12.5         12.5           Effective Green, g (s)         2.8         30.2         23.4         12.5         12.5           Actuated g/C Ratio         0.06         0.60         0.46         0.25         0.25           Clearance Time (s)         4.0         4.0         4.0         4.0         4.0           Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0           Lane Grp Cap (vph)         98         2108         1629         436         390           v/s Ratio Prot         c0.04         0.21         c0.34         0.04           v/s Ratio Perm         c0.14         c0.34         0.04           v/s Ratio Perm         c0.14         0.58           Uniform Delay, d1         23.4         5.2         11.1         14.9         16.8           Progression Factor         1.00         1.00                                                                                                                                                                                             | • • • •                  | 0         | 0    | 2          |      | 0         | 145         |     |  |
| Turn Type         Prot         Perm           Protected Phases         7         4         8         6           Permitted Phases         6         6         6           Actuated Green, G (s)         2.8         30.2         23.4         12.5         12.5           Effective Green, g (s)         2.8         30.2         23.4         12.5         12.5           Actuated g/C Ratio         0.06         0.60         0.46         0.25         0.25           Clearance Time (s)         4.0         4.0         4.0         4.0         4.0           Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0           Lane Grp Cap (vph)         98         2108         1629         436         390           v/s Ratio Prot         c0.04         0.21         c0.34         0.04           v/s Ratio Perm         c0.14         c0.14         c0.14           v/c Ratio         0.63         0.35         0.73         0.14         0.58           Uniform Delay, d1         23.4         5.2         11.1         14.9         16.8           Progression Factor         1.00         1.00         1.00         1.00         1.00 </td <td></td> <td>62</td> <td>732</td> <td>1184</td> <td>0</td> <td>62</td> <td>226</td> <td></td> <td></td>                                                                                     |                          | 62        | 732  | 1184       | 0    | 62        | 226         |     |  |
| Protected Phases 7 4 8 6 Permitted Phases 6 Actuated Green, G (s) 2.8 30.2 23.4 12.5 12.5 Effective Green, g (s) 2.8 30.2 23.4 12.5 12.5 Actuated g/C Ratio 0.06 0.60 0.46 0.25 0.25 Clearance Time (s) 4.0 4.0 4.0 4.0 4.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 98 2108 1629 436 390 v/s Ratio Prot c0.04 0.21 c0.34 0.04 v/s Ratio Perm c0.14 v/c Ratio 0.63 0.35 0.73 0.14 0.58 Uniform Delay, d1 23.4 5.2 11.1 14.9 16.8 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 12.6 0.1 1.6 0.2 2.1 Delay (s) 36.0 5.3 12.7 15.1 18.9 Level of Service D A B B B Approach Delay (s) 7.7 12.7 18.3 Approach LOS A B B Intersection Summary HCM Average Control Delay 12.1 HCM Level of Service HCM Volume to Capacity ratio Actuated Cycle Length (s) 50.7 Sum of lost time (s) Intersection Capacity Utilization 60.8% ICU Level of Service Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Turn Type                | Prot      |      |            |      |           | Perm        |     |  |
| Permitted Phases         6           Actuated Green, G (s)         2.8         30.2         23.4         12.5         12.5           Effective Green, g (s)         2.8         30.2         23.4         12.5         12.5           Actuated g/C Ratio         0.06         0.60         0.46         0.25         0.25           Clearance Time (s)         4.0         4.0         4.0         4.0         4.0           Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0           Lane Grp Cap (vph)         98         2108         1629         436         390           v/s Ratio Prot         c0.04         0.21         c0.34         0.04           v/s Ratio Perm         c0.14                                                                                                                                                       | 7.1                      |           | 4    | 8          |      | 6         |             |     |  |
| Effective Green, g (s) 2.8 30.2 23.4 12.5 12.5  Actuated g/C Ratio 0.06 0.60 0.46 0.25 0.25  Clearance Time (s) 4.0 4.0 4.0 4.0 4.0  Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0  Lane Grp Cap (vph) 98 2108 1629 436 390  v/s Ratio Prot c0.04 0.21 c0.34 0.04  v/s Ratio Perm c0.14  v/c Ratio 0.63 0.35 0.73 0.14 0.58  Uniform Delay, d1 23.4 5.2 11.1 14.9 16.8  Progression Factor 1.00 1.00 1.00 1.00 1.00  Incremental Delay, d2 12.6 0.1 1.6 0.2 2.1  Delay (s) 36.0 5.3 12.7 15.1 18.9  Level of Service D A B B B  Approach Delay (s) 7.7 12.7 18.3  Approach LOS A B B  Intersection Summary  HCM Average Control Delay 12.1 HCM Level of Service  HCM Volume to Capacity ratio 0.67  Actuated Cycle Length (s) 50.7 Sum of lost time (s)  Intersection Capacity Utilization 60.8%  Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Permitted Phases         |           |      |            |      |           | 6           |     |  |
| Actuated g/C Ratio 0.06 0.60 0.46 0.25 0.25 Clearance Time (s) 4.0 4.0 4.0 4.0 4.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0  Lane Grp Cap (vph) 98 2108 1629 436 390 v/s Ratio Prot c0.04 0.21 c0.34 0.04 v/s Ratio Perm c0.14 v/c Ratio 0.63 0.35 0.73 0.14 0.58 Uniform Delay, d1 23.4 5.2 11.1 14.9 16.8 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 12.6 0.1 1.6 0.2 2.1 Delay (s) 36.0 5.3 12.7 15.1 18.9 Level of Service D A B B B Approach Delay (s) 7.7 12.7 18.3 Approach LOS A B B Intersection Summary HCM Average Control Delay 12.1 HCM Level of Service HCM Volume to Capacity ratio 0.67 Actuated Cycle Length (s) 50.7 Sum of lost time (s) Intersection Capacity Utilization Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Actuated Green, G (s)    | 2.8       | 30.2 | 23.4       |      | 12.5      | 12.5        |     |  |
| Clearance Time (s)         4.0         4.0         4.0         4.0           Vehicle Extension (s)         3.0         3.0         3.0         3.0           Lane Grp Cap (vph)         98         2108         1629         436         390           v/s Ratio Prot         c0.04         0.21         c0.34         0.04           v/s Ratio Perm         c0.14         c0.14         c0.14           v/c Ratio         0.63         0.35         0.73         0.14         0.58           Uniform Delay, d1         23.4         5.2         11.1         14.9         16.8           Progression Factor         1.00         1.00         1.00         1.00         1.00           Incremental Delay, d2         12.6         0.1         1.6         0.2         2.1           Delay (s)         36.0         5.3         12.7         15.1         18.9           Level of Service         D         A         B         B         B           Approach Delay (s)         7.7         12.7         18.3         Approach LOS         A         B         B           Intersection Summary         HCM Volume to Capacity ratio         0.67         Actuated Cycle Length (s)         50.7                                                                                                                                                                                | Effective Green, g (s)   | 2.8       | 30.2 | 23.4       |      | 12.5      | 12.5        |     |  |
| Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0           Lane Grp Cap (vph)         98         2108         1629         436         390           v/s Ratio Prot         c0.04         0.21         c0.34         0.04           v/s Ratio Perm         c0.14         c0.14           v/c Ratio         0.63         0.35         0.73         0.14         0.58           Uniform Delay, d1         23.4         5.2         11.1         14.9         16.8           Progression Factor         1.00         1.00         1.00         1.00         1.00           Incremental Delay, d2         12.6         0.1         1.6         0.2         2.1           Delay (s)         36.0         5.3         12.7         15.1         18.9           Level of Service         D         A         B         B         B           Approach Delay (s)         7.7         12.7         18.3           Approach LOS         A         B         B           Intersection Summary         B         HCM Level of Service           HCM Volume to Capacity ratio         0.67           Actuated Cycle Length (s)         50.7         Sum of lost time (                                                                                                                                                                                       | Actuated g/C Ratio       | 0.06      | 0.60 | 0.46       |      | 0.25      | 0.25        |     |  |
| Lane Grp Cap (vph)       98       2108       1629       436       390         v/s Ratio Prot       c0.04       0.21       c0.34       0.04         v/s Ratio Perm       c0.14         v/c Ratio       0.63       0.35       0.73       0.14       0.58         Uniform Delay, d1       23.4       5.2       11.1       14.9       16.8         Progression Factor       1.00       1.00       1.00       1.00       1.00         Incremental Delay, d2       12.6       0.1       1.6       0.2       2.1         Delay (s)       36.0       5.3       12.7       15.1       18.9         Level of Service       D       A       B       B       B         Approach Delay (s)       7.7       12.7       18.3         Approach LOS       A       B       B         Intersection Summary         HCM Volume to Capacity ratio       0.67         Actuated Cycle Length (s)       50.7       Sum of lost time (s)         Intersection Capacity Utilization       60.8%       ICU Level of Service         Analysis Period (min)       15                                                                                                                                                                                                                                                                                                                                          | Clearance Time (s)       | 4.0       | 4.0  | 4.0        |      | 4.0       | 4.0         |     |  |
| v/s Ratio Prot         c0.04         0.21         c0.34         0.04           v/s Ratio Perm         c0.14         c0.15         c0.14         c0.15         c0.14         c0.15         c0.16         c0.15         c0.16         c0.15         c0.16         c0.15         c0.16         c0.15         c0.16         c0.15         c0.16                                                                                                      | Vehicle Extension (s)    | 3.0       | 3.0  | 3.0        |      | 3.0       | 3.0         |     |  |
| v/s Ratio Prot         c0.04         0.21         c0.34         0.04           v/s Ratio Perm         c0.14           v/c Ratio         0.63         0.35         0.73         0.14         0.58           Uniform Delay, d1         23.4         5.2         11.1         14.9         16.8           Progression Factor         1.00         1.00         1.00         1.00         1.00           Incremental Delay, d2         12.6         0.1         1.6         0.2         2.1           Delay (s)         36.0         5.3         12.7         15.1         18.9           Level of Service         D         A         B         B         B           Approach Delay (s)         7.7         12.7         18.3         Approach LOS         A         B         B           Intersection Summary         B         B         B         B         B           Intersection Summary         12.1         HCM Level of Service         HCM Volume to Capacity ratio         0.67         Actuated Cycle Length (s)         50.7         Sum of lost time (s)           Intersection Capacity Utilization         60.8%         ICU Level of Service                                                                                                                                                                                                                    | Lane Grp Cap (vph)       | 98        | 2108 | 1629       |      | 436       | 390         |     |  |
| v/s Ratio Perm         c0.14           v/c Ratio         0.63         0.35         0.73         0.14         0.58           Uniform Delay, d1         23.4         5.2         11.1         14.9         16.8           Progression Factor         1.00         1.00         1.00         1.00         1.00           Incremental Delay, d2         12.6         0.1         1.6         0.2         2.1           Delay (s)         36.0         5.3         12.7         15.1         18.9           Level of Service         D         A         B         B         B           Approach Delay (s)         7.7         12.7         18.3         Approach LOS         A         B         B           Intersection Summary         B         B         B         B         B           Intersection Summary         12.1         HCM Level of Service         HCM Volume to Capacity ratio         0.67         Actuated Cycle Length (s)         50.7         Sum of lost time (s)           Intersection Capacity Utilization         60.8%         ICU Level of Service           Analysis Period (min)         15                                                                                                                                                                                                                                                        |                          | c0.04     | 0.21 | c0.34      |      | 0.04      |             |     |  |
| Uniform Delay, d1         23.4         5.2         11.1         14.9         16.8           Progression Factor         1.00         1.00         1.00         1.00         1.00           Incremental Delay, d2         12.6         0.1         1.6         0.2         2.1           Delay (s)         36.0         5.3         12.7         15.1         18.9           Level of Service         D         A         B         B         B           Approach Delay (s)         7.7         12.7         18.3         Approach LOS         A         B         B           Intersection Summary         HCM Average Control Delay         12.1         HCM Level of Service           HCM Volume to Capacity ratio         0.67         Actuated Cycle Length (s)         50.7         Sum of lost time (s)           Intersection Capacity Utilization         60.8%         ICU Level of Service           Analysis Period (min)         15                                                                                                                                                                                                                                                                                                                                                                                                                                 | v/s Ratio Perm           |           |      |            |      |           | c0.14       |     |  |
| Progression Factor         1.00         1.00         1.00         1.00           Incremental Delay, d2         12.6         0.1         1.6         0.2         2.1           Delay (s)         36.0         5.3         12.7         15.1         18.9           Level of Service         D         A         B         B         B           Approach Delay (s)         7.7         12.7         18.3         Approach LOS         A         B         B           Intersection Summary         HCM Average Control Delay         12.1         HCM Level of Service           HCM Volume to Capacity ratio         0.67           Actuated Cycle Length (s)         50.7         Sum of lost time (s)           Intersection Capacity Utilization         60.8%         ICU Level of Service           Analysis Period (min)         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | v/c Ratio                | 0.63      | 0.35 | 0.73       |      | 0.14      | 0.58        |     |  |
| Incremental Delay, d2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Uniform Delay, d1        | 23.4      | 5.2  | 11.1       |      | 14.9      | 16.8        |     |  |
| Delay (s) 36.0 5.3 12.7 15.1 18.9 Level of Service D A B B B Approach Delay (s) 7.7 12.7 18.3 Approach LOS A B B  Intersection Summary HCM Average Control Delay 12.1 HCM Level of Service HCM Volume to Capacity ratio 0.67 Actuated Cycle Length (s) 50.7 Sum of lost time (s) Intersection Capacity Utilization 60.8% ICU Level of Service Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Progression Factor       | 1.00      | 1.00 | 1.00       |      | 1.00      | 1.00        |     |  |
| Level of Service D A B B B  Approach Delay (s) 7.7 12.7 18.3  Approach LOS A B B  Intersection Summary  HCM Average Control Delay 12.1 HCM Level of Service  HCM Volume to Capacity ratio 0.67  Actuated Cycle Length (s) 50.7 Sum of lost time (s)  Intersection Capacity Utilization 60.8% ICU Level of Service  Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Incremental Delay, d2    | 12.6      | 0.1  | 1.6        |      | 0.2       | 2.1         |     |  |
| Approach Delay (s) Approach LOS A B  Intersection Summary HCM Average Control Delay HCM Volume to Capacity ratio Actuated Cycle Length (s) Intersection Capacity Utilization Analysis Period (min)  7.7 12.7 18.3 B HCM Level of Service  12.1 HCM Level of Service  13.3 B B Intersection Summary 14.1 B B ICU Level of Service 15.1 B ICU Level of Service  15.1 B ICU Level of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | 36.0      | 5.3  |            |      | 15.1      | 18.9        |     |  |
| Approach LOS A B B  Intersection Summary  HCM Average Control Delay 12.1 HCM Level of Service  HCM Volume to Capacity ratio 0.67  Actuated Cycle Length (s) 50.7 Sum of lost time (s)  Intersection Capacity Utilization 60.8% ICU Level of Service  Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Level of Service         | D         | Α    | В          |      | В         | В           |     |  |
| Intersection Summary  HCM Average Control Delay 12.1 HCM Level of Service  HCM Volume to Capacity ratio 0.67  Actuated Cycle Length (s) 50.7 Sum of lost time (s)  Intersection Capacity Utilization 60.8% ICU Level of Service  Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Approach Delay (s)       |           | 7.7  | 12.7       |      | 18.3      |             |     |  |
| HCM Average Control Delay  HCM Volume to Capacity ratio  Actuated Cycle Length (s)  Intersection Capacity Utilization  Analysis Period (min)  12.1  HCM Level of Service  Sum of lost time (s)  ICU Level of Service  ICU Level of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Approach LOS             |           | Α    | В          |      | В         |             |     |  |
| HCM Volume to Capacity ratio  Actuated Cycle Length (s)  Intersection Capacity Utilization  Analysis Period (min)  0.67  Sum of lost time (s)  ICU Level of Service  15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Intersection Summary     |           |      |            |      |           |             |     |  |
| HCM Volume to Capacity ratio0.67Actuated Cycle Length (s)50.7Sum of lost time (s)Intersection Capacity Utilization60.8%ICU Level of ServiceAnalysis Period (min)15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HCM Average Control D    | elay      |      | 12.1       | F    | ICM Le    | vel of Serv | ice |  |
| Actuated Cycle Length (s) 50.7 Sum of lost time (s) Intersection Capacity Utilization 60.8% ICU Level of Service Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |           |      |            |      |           |             |     |  |
| Intersection Capacity Utilization 60.8% ICU Level of Service Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |           |      | 50.7       | S    | Sum of le | ost time (s | )   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Intersection Capacity Ut | ilization |      | 60.8%      |      |           |             |     |  |
| c Critical Lane Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analysis Period (min)    |           |      | 15         |      |           |             |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c Critical Lane Group    |           |      |            |      |           |             |     |  |

|                           | ۶        | <b>→</b> | •     | •     | •       | •           | •    | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ    | 4    |
|---------------------------|----------|----------|-------|-------|---------|-------------|------|----------|----------|-------------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT     | WBR         | NBL  | NBT      | NBR      | SBL         | SBT  | SBR  |
| Lane Configurations       |          | 4        |       |       | 44      |             |      | 4        |          |             | 4    |      |
| Sign Control              |          | Stop     |       |       | Stop    |             |      | Stop     |          |             | Stop |      |
| Volume (vph)              | 10       | 50       | 110   | 20    | 50      | 10          | 20   | 190      | 100      | 10          | 410  | 60   |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97  | 0.97  | 0.97    | 0.97        | 0.97 | 0.97     | 0.97     | 0.97        | 0.97 | 0.97 |
| Hourly flow rate (vph)    | 10       | 52       | 113   | 21    | 52      | 10          | 21   | 196      | 103      | 10          | 423  | 62   |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |         |             |      |          |          |             |      |      |
| Volume Total (vph)        | 175      | 82       | 320   | 495   |         |             |      |          |          |             |      |      |
| Volume Left (vph)         | 10       | 21       | 21    | 10    |         |             |      |          |          |             |      |      |
| Volume Right (vph)        | 113      | 10       | 103   | 62    |         |             |      |          |          |             |      |      |
| Hadj (s)                  | -0.34    | 0.01     | -0.15 | -0.04 |         |             |      |          |          |             |      |      |
| Departure Headway (s)     | 5.8      | 6.4      | 5.3   | 5.2   |         |             |      |          |          |             |      |      |
| Degree Utilization, x     | 0.28     | 0.15     | 0.47  | 0.71  |         |             |      |          |          |             |      |      |
| Capacity (veh/h)          | 532      | 474      | 634   | 677   |         |             |      |          |          |             |      |      |
| Control Delay (s)         | 11.1     | 10.5     | 12.9  | 19.7  |         |             |      |          |          |             |      |      |
| Approach Delay (s)        | 11.1     | 10.5     | 12.9  | 19.7  |         |             |      |          |          |             |      |      |
| Approach LOS              | В        | В        | В     | С     |         |             |      |          |          |             |      |      |
| Intersection Summary      |          |          |       |       |         |             |      |          |          |             |      |      |
| Delay                     |          |          | 15.6  |       |         |             |      |          |          |             |      |      |
| HCM Level of Service      |          |          | С     |       |         |             |      |          |          |             |      |      |
| Intersection Capacity Uti | lization |          | 45.3% | - 10  | CU Leve | el of Servi | ice  |          | Α        |             |      |      |
| Analysis Period (min)     |          |          | 15    |       |         |             |      |          |          |             |      |      |
|                           |          |          |       |       |         |             |      |          |          |             |      |      |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •          | •      | <b>†</b> | <b>/</b> | <b>\</b> | ļ    | 4    |
|---------------------------|----------|----------|-------|-------|----------|------------|--------|----------|----------|----------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR        | NBL    | NBT      | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations       |          | 4        |       |       | 4        |            |        | 4        |          |          | 4    |      |
| Sign Control              |          | Stop     |       |       | Stop     |            |        | Stop     |          |          | Stop |      |
| Volume (vph)              | 30       | 110      | 60    | 200   | 200      | 10         | 50     | 270      | 60       | 20       | 380  | 120  |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97  | 0.97  | 0.97     | 0.97       | 0.97   | 0.97     | 0.97     | 0.97     | 0.97 | 0.97 |
| Hourly flow rate (vph)    | 31       | 113      | 62    | 206   | 206      | 10         | 52     | 278      | 62       | 21       | 392  | 124  |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |            |        |          |          |          |      |      |
| Volume Total (vph)        | 206      | 423      | 392   | 536   |          |            |        |          |          |          |      |      |
| Volume Left (vph)         | 31       | 206      | 52    | 21    |          |            |        |          |          |          |      |      |
| Volume Right (vph)        | 62       | 10       | 62    | 124   |          |            |        |          |          |          |      |      |
| Hadj (s)                  | -0.12    | 0.12     | -0.03 | -0.10 |          |            |        |          |          |          |      |      |
| Departure Headway (s)     | 9.1      | 8.2      | 8.2   | 8.1   |          |            |        |          |          |          |      |      |
| Degree Utilization, x     | 0.52     | 0.97     | 0.89  | 1.20  |          |            |        |          |          |          |      |      |
| Capacity (veh/h)          | 372      | 429      | 426   | 444   |          |            |        |          |          |          |      |      |
| Control Delay (s)         | 21.5     | 63.9     | 49.7  | 137.8 |          |            |        |          |          |          |      |      |
| Approach Delay (s)        | 21.5     | 63.9     | 49.7  | 137.8 |          |            |        |          |          |          |      |      |
| Approach LOS              | С        | F        | Е     | F     |          |            |        |          |          |          |      |      |
| Intersection Summary      |          |          |       |       |          |            |        |          |          |          |      |      |
| Delay                     |          |          | 80.2  |       |          |            |        |          |          |          |      |      |
| HCM Level of Service      |          |          | F     |       |          |            |        |          |          |          |      |      |
| Intersection Capacity Uti | lization |          | 82.6% | ŀ     | CU Leve  | el of Serv | vice . |          | Е        |          |      |      |
| Analysis Period (min)     |          |          | 15    |       |          |            |        |          |          |          |      |      |
|                           |          |          |       |       |          |            |        |          |          |          |      |      |

|                              | ۶         | <b>→</b> | •     | •     | <b>←</b> | •         | •      | <b>†</b> | /    | <b>/</b> | ţ        | ✓    |
|------------------------------|-----------|----------|-------|-------|----------|-----------|--------|----------|------|----------|----------|------|
| Movement                     | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations          | 44        | ተተተ      | 7     | 44    | ተተተ      | 7         | ,      | <b>†</b> | 7    | , Y      | <b>^</b> | 7    |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900 | 1900     | 1900     | 1900 |
| Total Lost time (s)          | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0  | 4.0      | 4.0      | 4.0  |
| Lane Util. Factor            | 0.97      | 0.91     | 1.00  | 0.97  | 0.91     | 1.00      | 1.00   | 1.00     | 1.00 | 1.00     | 0.95     | 1.00 |
| Frt                          | 1.00      | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85 | 1.00     | 1.00     | 0.85 |
| Flt Protected                | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00 | 0.95     | 1.00     | 1.00 |
| Satd. Flow (prot)            | 3433      | 5085     | 1583  | 3433  | 5085     | 1583      | 1770   | 1863     | 1583 | 1770     | 3539     | 1583 |
| Flt Permitted                | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00 | 0.95     | 1.00     | 1.00 |
| Satd. Flow (perm)            | 3433      | 5085     | 1583  | 3433  | 5085     | 1583      | 1770   | 1863     | 1583 | 1770     | 3539     | 1583 |
| Volume (vph)                 | 120       | 590      | 210   | 140   | 1000     | 90        | 100    | 330      | 180  | 210      | 520      | 50   |
| Peak-hour factor, PHF        | 0.97      | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97   | 0.97     | 0.97 | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)              | 124       | 608      | 216   | 144   | 1031     | 93        | 103    | 340      | 186  | 216      | 536      | 52   |
| RTOR Reduction (vph)         | 0         | 0        | 151   | 0     | 0        | 65        | 0      | 0        | 138  | 0        | 0        | 36   |
| Lane Group Flow (vph)        | 124       | 608      | 65    | 144   | 1031     | 28        | 103    | 340      | 48   | 216      | 536      | 16   |
| Turn Type                    | Prot      |          | Perm  | Prot  |          | Perm      | Prot   |          | Perm | Prot     |          | Perm |
| Protected Phases             | 1         | 6        |       | 5     | 2        |           | 3      | 8        |      | 7        | 4        |      |
| Permitted Phases             |           |          | 6     |       |          | 2         |        |          | 8    |          |          | 4    |
| Actuated Green, G (s)        | 4.3       | 18.9     | 18.9  | 3.2   | 18.1     | 18.1      | 3.7    | 15.5     | 15.5 | 7.2      | 18.8     | 18.8 |
| Effective Green, g (s)       | 5.1       | 20.0     | 20.0  | 4.7   | 19.6     | 19.6      | 5.2    | 16.6     | 16.6 | 8.7      | 20.1     | 20.1 |
| Actuated g/C Ratio           | 0.08      | 0.30     | 0.30  | 0.07  | 0.30     | 0.30      | 0.08   | 0.25     | 0.25 | 0.13     | 0.30     | 0.30 |
| Clearance Time (s)           | 4.8       | 5.1      | 5.1   | 5.5   | 5.5      | 5.5       | 5.5    | 5.1      | 5.1  | 5.5      | 5.3      | 5.3  |
| Vehicle Extension (s)        | 1.0       | 1.0      | 1.0   | 1.0   | 1.0      | 1.0       | 1.0    | 1.0      | 1.0  | 1.0      | 1.0      | 1.0  |
| Lane Grp Cap (vph)           | 265       | 1541     | 480   | 244   | 1510     | 470       | 139    | 469      | 398  | 233      | 1078     | 482  |
| v/s Ratio Prot               | 0.04      | 0.12     |       | c0.04 | c0.20    |           | 0.06   | c0.18    |      | c0.12    | c0.15    |      |
| v/s Ratio Perm               |           |          | 0.04  |       |          | 0.02      |        |          | 0.03 |          |          | 0.01 |
| v/c Ratio                    | 0.47      | 0.39     | 0.14  | 0.59  | 0.68     | 0.06      | 0.74   | 0.72     | 0.12 | 0.93     | 0.50     | 0.03 |
| Uniform Delay, d1            | 29.2      | 18.2     | 16.7  | 29.7  | 20.5     | 16.6      | 29.7   | 22.6     | 19.1 | 28.3     | 18.8     | 16.1 |
| Progression Factor           | 1.00      | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Incremental Delay, d2        | 0.5       | 0.1      | 0.0   | 2.5   | 1.0      | 0.0       | 16.8   | 4.7      | 0.0  | 38.6     | 0.1      | 0.0  |
| Delay (s)                    | 29.6      | 18.3     | 16.8  | 32.3  | 21.5     | 16.6      | 46.6   | 27.3     | 19.1 | 66.9     | 18.9     | 16.1 |
| Level of Service             | С         | В        | В     | С     | С        | В         | D      | С        | В    | E        | В        | В    |
| Approach Delay (s)           |           | 19.4     |       |       | 22.4     |           |        | 28.0     |      |          | 31.7     |      |
| Approach LOS                 |           | В        |       |       | С        |           |        | С        |      |          | С        |      |
| Intersection Summary         |           |          |       |       |          |           |        |          |      |          |          |      |
| HCM Average Control D        | ,         |          | 24.6  | H     | ICM Le   | vel of Se | ervice |          | С    |          |          |      |
| <b>HCM Volume to Capacit</b> |           |          | 0.76  |       |          |           |        |          |      |          |          |      |
| Actuated Cycle Length (      |           |          | 66.0  |       |          | ost time  |        |          | 20.0 |          |          |      |
| Intersection Capacity Uti    | ilization |          | 65.1% | I     | CU Leve  | el of Ser | vice   |          | С    |          |          |      |
| Analysis Period (min)        |           |          | 15    |       |          |           |        |          |      |          |          |      |
| c Critical Lane Group        |           |          |       |       |          |           |        |          |      |          |          |      |

|                              | ۶        | <b>→</b>   | •     | •     | +          | 4         | 4      | †     | ~    | <b>\</b> | <b>↓</b> | 4    |
|------------------------------|----------|------------|-------|-------|------------|-----------|--------|-------|------|----------|----------|------|
| Movement                     | EBL      | EBT        | EBR   | WBL   | WBT        | WBR       | NBL    | NBT   | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations          | 7        | <b>∱</b> } |       | ሻ     | <b>∱</b> } |           | ሻ      | ĵ»    |      | 7        | f.       |      |
| Ideal Flow (vphpl)           | 1900     | 1900       | 1900  | 1900  | 1900       | 1900      | 1900   | 1900  | 1900 | 1900     | 1900     | 1900 |
| Total Lost time (s)          | 4.0      | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0   |      | 4.0      | 4.0      |      |
| Lane Util. Factor            | 1.00     | 0.95       |       | 1.00  | 0.95       |           | 1.00   | 1.00  |      | 1.00     | 1.00     |      |
| Frt                          | 1.00     | 1.00       |       | 1.00  | 0.99       |           | 1.00   | 0.93  |      | 1.00     | 0.96     |      |
| Flt Protected                | 0.95     | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00  |      | 0.95     | 1.00     |      |
| Satd. Flow (prot)            | 1770     | 3533       |       | 1770  | 3501       |           | 1770   | 1726  |      | 1770     | 1794     |      |
| Flt Permitted                | 0.95     | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00  |      | 0.95     | 1.00     |      |
| Satd. Flow (perm)            | 1770     | 3533       |       | 1770  | 3501       |           | 1770   | 1726  |      | 1770     | 1794     |      |
| Volume (vph)                 | 100      | 850        | 10    | 240   | 1020       | 80        | 10     | 230   | 220  | 170      | 370      | 120  |
| Peak-hour factor, PHF        | 0.97     | 0.97       | 0.97  | 0.97  | 0.97       | 0.97      | 0.97   | 0.97  | 0.97 | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)              | 103      | 876        | 10    | 247   | 1052       | 82        | 10     | 237   | 227  | 175      | 381      | 124  |
| RTOR Reduction (vph)         | 0        | 1          | 0     | 0     | 6          | 0         | 0      | 38    | 0    | 0        | 12       | 0    |
| Lane Group Flow (vph)        | 103      | 885        | 0     | 247   | 1128       | 0         | 10     | 426   | 0    | 175      | 493      | 0    |
| Turn Type                    | Prot     |            |       | Prot  |            |           | Prot   |       |      | Prot     |          |      |
| Protected Phases             | 7        | 4          |       | 3     | 8          |           | 5      | 2     |      | 1        | 6        |      |
| Permitted Phases             |          |            |       |       |            |           |        |       |      |          |          |      |
| Actuated Green, G (s)        | 6.0      | 24.6       |       | 13.1  | 31.7       |           | 0.8    | 26.9  |      | 9.1      | 35.2     |      |
| Effective Green, g (s)       | 6.0      | 24.6       |       | 13.1  | 31.7       |           | 0.8    | 26.9  |      | 9.1      | 35.2     |      |
| Actuated g/C Ratio           | 0.07     | 0.27       |       | 0.15  | 0.35       |           | 0.01   | 0.30  |      | 0.10     | 0.39     |      |
| Clearance Time (s)           | 4.0      | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0   |      | 4.0      | 4.0      |      |
| Vehicle Extension (s)        | 3.0      | 3.0        |       | 3.0   | 3.0        |           | 3.0    | 3.0   |      | 3.0      | 3.0      |      |
| Lane Grp Cap (vph)           | 118      | 969        |       | 258   | 1237       |           | 16     | 518   |      | 180      | 704      |      |
| v/s Ratio Prot               | 0.06     | 0.25       |       | c0.14 | c0.32      |           | 0.01   | c0.25 |      | c0.10    | 0.27     |      |
| v/s Ratio Perm               |          |            |       |       |            |           |        |       |      |          |          |      |
| v/c Ratio                    | 0.87     | 0.91       |       | 0.96  | 0.91       |           | 0.62   | 0.82  |      | 0.97     | 0.70     |      |
| Uniform Delay, d1            | 41.5     | 31.5       |       | 38.0  | 27.7       |           | 44.3   | 29.2  |      | 40.2     | 22.8     |      |
| Progression Factor           | 1.00     | 1.00       |       | 1.00  | 1.00       |           | 1.00   | 1.00  |      | 1.00     | 1.00     |      |
| Incremental Delay, d2        | 46.0     | 12.7       |       | 43.9  | 10.2       |           | 57.6   | 10.2  |      | 58.6     | 3.1      |      |
| Delay (s)                    | 87.5     | 44.2       |       | 81.9  | 37.9       |           | 101.9  | 39.4  |      | 98.8     | 26.0     |      |
| Level of Service             | F        | D          |       | F     | D          |           | F      | D     |      | F        | С        |      |
| Approach Delay (s)           |          | 48.7       |       |       | 45.7       |           |        | 40.7  |      |          | 44.7     |      |
| Approach LOS                 |          | D          |       |       | D          |           |        | D     |      |          | D        |      |
| Intersection Summary         |          |            |       |       |            |           |        |       |      |          |          |      |
| HCM Average Control D        | elay     |            | 45.7  | F     | ICM Le     | vel of Se | ervice |       | D    |          |          |      |
| <b>HCM Volume to Capacit</b> |          |            | 0.88  |       |            |           |        |       |      |          |          |      |
| Actuated Cycle Length (      |          |            | 89.7  |       |            | ost time  |        |       | 12.0 |          |          |      |
| Intersection Capacity Uti    | lization |            | 85.4% | Į.    | CU Leve    | el of Ser | vice   |       | E    |          |          |      |
| Analysis Period (min)        |          |            | 15    |       |            |           |        |       |      |          |          |      |
| c Critical Lane Group        |          |            |       |       |            |           |        |       |      |          |          |      |

|                           | ٠        | <b>→</b> | •     | •     | •       | •         | 1    | <b>†</b> | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|-------|---------|-----------|------|----------|----------|-------------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT     | WBR       | NBL  | NBT      | NBR      | SBL         | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |       | 4       |           |      | 4        |          |             | 4        |      |
| Sign Control              |          | Stop     |       |       | Stop    |           |      | Stop     |          |             | Stop     |      |
| Volume (vph)              | 140      | 10       | 30    | 30    | 10      | 20        | 10   | 80       | 10       | 10          | 600      | 100  |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97  | 0.97  | 0.97    | 0.97      | 0.97 | 0.97     | 0.97     | 0.97        | 0.97     | 0.97 |
| Hourly flow rate (vph)    | 144      | 10       | 31    | 31    | 10      | 21        | 10   | 82       | 10       | 10          | 619      | 103  |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |         |           |      |          |          |             |          |      |
| Volume Total (vph)        | 186      | 62       | 103   | 732   |         |           |      |          |          |             |          |      |
| Volume Left (vph)         | 144      | 31       | 10    | 10    |         |           |      |          |          |             |          |      |
| Volume Right (vph)        | 31       | 21       | 10    | 103   |         |           |      |          |          |             |          |      |
| Hadj (s)                  | 0.09     | -0.07    | -0.01 | -0.05 |         |           |      |          |          |             |          |      |
| Departure Headway (s)     | 6.3      | 6.4      | 5.7   | 4.8   |         |           |      |          |          |             |          |      |
| Degree Utilization, x     | 0.32     | 0.11     | 0.16  | 0.98  |         |           |      |          |          |             |          |      |
| Capacity (veh/h)          | 566      | 539      | 606   | 740   |         |           |      |          |          |             |          |      |
| Control Delay (s)         | 12.2     | 10.2     | 9.9   | 50.2  |         |           |      |          |          |             |          |      |
| Approach Delay (s)        | 12.2     | 10.2     | 9.9   | 50.2  |         |           |      |          |          |             |          |      |
| Approach LOS              | В        | В        | Α     | F     |         |           |      |          |          |             |          |      |
| Intersection Summary      |          |          |       |       |         |           |      |          |          |             |          |      |
| Delay                     |          |          | 37.6  |       |         |           |      |          |          |             |          |      |
| HCM Level of Service      |          |          | Е     |       |         |           |      |          |          |             |          |      |
| Intersection Capacity Uti | lization |          | 61.9% | 10    | CU Leve | el of Ser | vice |          | В        |             |          |      |
| Analysis Period (min)     |          |          | 15    |       |         |           |      |          |          |             |          |      |

|                          | ٠         | <b>→</b> | <b>←</b>       | 4    | <b>&gt;</b> | 1             |   |
|--------------------------|-----------|----------|----------------|------|-------------|---------------|---|
| Movement                 | EBL       | EBT      | WBT            | WBR  | SBL         | SBR           |   |
| Lane Configurations      |           | 4        | f <sub>a</sub> |      | W           |               |   |
| Sign Control             |           | Free     | Free           |      | Stop        |               |   |
| Grade                    |           | 0%       | 0%             |      | 0%          |               |   |
| Volume (veh/h)           | 50        | 150      | 70             | 50   | 300         | 360           |   |
| Peak Hour Factor         | 0.97      | 0.97     | 0.97           | 0.97 | 0.97        | 0.97          |   |
| Hourly flow rate (vph)   | 52        | 155      | 72             | 52   | 309         | 371           |   |
| Pedestrians              |           |          |                |      |             |               |   |
| Lane Width (ft)          |           |          |                |      |             |               |   |
| Walking Speed (ft/s)     |           |          |                |      |             |               |   |
| Percent Blockage         |           |          |                |      |             |               |   |
| Right turn flare (veh)   |           |          |                |      |             |               |   |
| Median type              |           |          |                |      | None        |               |   |
| Median storage veh)      |           |          |                |      |             |               |   |
| Upstream signal (ft)     |           |          |                |      |             |               |   |
| pX, platoon unblocked    |           |          |                |      |             |               |   |
| vC, conflicting volume   | 124       |          |                |      | 356         | 98            |   |
| vC1, stage 1 conf vol    |           |          |                |      |             |               |   |
| vC2, stage 2 conf vol    |           |          |                |      |             |               |   |
| vCu, unblocked vol       | 124       |          |                |      | 356         | 98            |   |
| tC, single (s)           | 4.1       |          |                |      | 6.4         | 6.2           |   |
| tC, 2 stage (s)          |           |          |                |      |             |               |   |
| tF (s)                   | 2.2       |          |                |      | 3.5         | 3.3           |   |
| p0 queue free %          | 96        |          |                |      | 50          | 61            |   |
| cM capacity (veh/h)      | 1463      |          |                |      | 620         | 958           |   |
| Direction, Lane #        | EB 1      | WB 1     | SB 1           |      |             |               |   |
| Volume Total             | 206       | 124      | 680            |      |             |               |   |
| Volume Left              | 52        | 0        | 309            |      |             |               |   |
| Volume Right             | 0         | 52       | 371            |      |             |               |   |
| cSH                      | 1463      | 1700     | 768            |      |             |               |   |
| Volume to Capacity       | 0.04      | 0.07     | 0.89           |      |             |               |   |
| Queue Length 95th (ft)   | 3         | 0        | 286            |      |             |               |   |
| Control Delay (s)        | 2.1       | 0.0      | 34.4           |      |             |               |   |
| Lane LOS                 | Α         |          | D              |      |             |               |   |
| Approach Delay (s)       | 2.1       | 0.0      | 34.4           |      |             |               |   |
| Approach LOS             |           |          | D              |      |             |               |   |
| Intersection Summary     |           |          |                |      |             |               |   |
| Average Delay            |           |          | 23.6           |      |             |               |   |
| Intersection Capacity Ut | ilization |          | 62.7%          | 10   | CU Leve     | el of Service | ) |
| Analysis Period (min)    |           |          | 15             |      |             |               |   |
|                          |           |          |                |      |             |               |   |
|                          |           |          |                |      |             |               |   |

|                              | ₾    | <b>→</b> | •     | •     | <b>←</b> | 4         | <i>&gt;</i> |     |
|------------------------------|------|----------|-------|-------|----------|-----------|-------------|-----|
| Movement                     | EBU  | EBT      | EBR   | WBL   | WBT      | NBL       | NBR         |     |
| Lane Configurations          | Ð    | <b>^</b> | 7     | ሻ     | ተተተ      | ች         | 7           |     |
| Ideal Flow (vphpl)           | 1900 | 1900     | 1900  | 1900  | 1900     | 1900      | 1900        |     |
| Total Lost time (s)          | 4.0  | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0         |     |
| Lane Util. Factor            | 1.00 | 0.91     | 1.00  | 1.00  | 0.91     | 1.00      | 1.00        |     |
| Frt                          | 1.00 | 1.00     | 0.85  | 1.00  | 1.00     | 1.00      | 0.85        |     |
| Flt Protected                | 0.95 | 1.00     | 1.00  | 0.95  | 1.00     | 0.95      | 1.00        |     |
| Satd. Flow (prot)            | 1770 | 5085     | 1583  | 1770  | 5085     | 1770      | 1583        |     |
| Flt Permitted                | 0.95 | 1.00     | 1.00  | 0.95  | 1.00     | 0.95      | 1.00        |     |
| Satd. Flow (perm)            | 1770 | 5085     | 1583  | 1770  | 5085     | 1770      | 1583        |     |
| Volume (vph)                 | 10   | 720      | 230   | 620   | 1190     | 60        | 270         |     |
| Peak-hour factor, PHF        | 0.97 | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97        |     |
| Adj. Flow (vph)              | 10   | 742      | 237   | 639   | 1227     | 62        | 278         |     |
| RTOR Reduction (vph)         | 0    | 0        | 142   | 0     | 0        | 0         | 237         |     |
| Lane Group Flow (vph)        | 10   | 742      | 95    | 639   | 1227     | 62        | 41          |     |
| Turn Type                    | Prot |          | Perm  | Prot  |          |           | Perm        |     |
| Protected Phases             | 1    | 6        |       | 4 5   | 2        | 3         |             |     |
| Permitted Phases             |      |          | 6     |       |          |           | 3           |     |
| Actuated Green, G (s)        | 0.3  | 22.3     | 22.3  | 14.3  | 29.2     | 7.3       | 7.3         |     |
| Effective Green, g (s)       | 1.0  | 23.4     | 23.4  | 14.3  | 30.3     | 8.7       | 8.7         |     |
| Actuated g/C Ratio           | 0.02 | 0.40     | 0.40  | 0.24  | 0.52     | 0.15      | 0.15        |     |
| Clearance Time (s)           | 4.7  | 5.1      | 5.1   |       | 5.1      | 5.4       | 5.4         |     |
| Vehicle Extension (s)        | 1.0  | 4.9      | 4.9   |       | 4.9      | 1.0       | 1.0         |     |
| Lane Grp Cap (vph)           | 30   | 2037     | 634   | 433   | 2638     | 264       | 236         |     |
| v/s Ratio Prot               | 0.01 | 0.15     |       | c0.36 | c0.24    | c0.04     |             |     |
| v/s Ratio Perm               |      |          | 0.06  |       |          |           | 0.03        |     |
| v/c Ratio                    | 0.33 | 0.36     | 0.15  | 1.48  | 0.47     | 0.23      | 0.18        |     |
| Uniform Delay, d1            | 28.4 | 12.3     | 11.2  | 22.0  | 8.9      | 21.9      | 21.7        |     |
| Progression Factor           | 1.00 | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00        |     |
| Incremental Delay, d2        | 2.4  | 0.2      | 0.2   | 226.3 | 0.3      | 0.2       | 0.1         |     |
| Delay (s)                    | 30.8 | 12.5     | 11.4  | 248.3 | 9.2      | 22.1      | 21.8        |     |
| Level of Service             | С    | В        | В     | F     | Α        | С         | С           |     |
| Approach Delay (s)           |      | 12.4     |       |       | 91.1     | 21.9      |             |     |
| Approach LOS                 |      | В        |       |       | F        | С         |             |     |
| Intersection Summary         |      |          |       |       |          |           |             |     |
| HCM Average Control D        | elay |          | 59.4  | H     | HCM Le   | vel of Se | ervice      | E   |
| <b>HCM Volume to Capacit</b> |      |          | 0.70  |       |          |           |             |     |
| Actuated Cycle Length (      |      |          | 58.4  | 5     | Sum of I | ost time  | (s)         | 8.0 |
| Intersection Capacity Uti    | ,    |          | 61.6% |       |          | el of Ser |             | В   |
| Analysis Period (min)        |      |          | 15    |       |          |           |             |     |
| c Critical Lane Group        |      |          |       |       |          |           |             |     |
|                              |      |          |       |       |          |           |             |     |

|                             | -          | •    | •     | •        | 4       | <i>&gt;</i>   |    |
|-----------------------------|------------|------|-------|----------|---------|---------------|----|
| Movement                    | EBT        | EBR  | WBL   | WBT      | NBL     | NBR           |    |
| Lane Configurations         | <b>↑</b> ↑ |      | ች     | <b>^</b> |         | 7             |    |
| Ideal Flow (vphpl)          | 1900       | 1900 | 1900  | 1900     | 1900    | 1900          |    |
| Total Lost time (s)         | 4.0        |      | 4.0   | 4.0      | 4.0     | 4.0           |    |
| Lane Util. Factor           | 0.95       |      | 1.00  | 0.95     | 1.00    | 1.00          |    |
| Frt                         | 0.97       |      | 1.00  | 1.00     | 1.00    | 0.85          |    |
| Flt Protected               | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00          |    |
| Satd. Flow (prot)           | 3444       |      | 1770  | 3539     | 1770    | 1583          |    |
| Flt Permitted               | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00          |    |
| Satd. Flow (perm)           | 3444       |      | 1770  | 3539     | 1770    | 1583          |    |
| Volume (vph)                | 1510       | 330  | 300   | 1360     | 80      | 240           |    |
| Peak-hour factor, PHF       | 0.97       | 0.97 | 0.97  | 0.97     | 0.97    | 0.97          |    |
| Adj. Flow (vph)             | 1557       | 340  | 309   | 1402     | 82      | 247           |    |
| RTOR Reduction (vph)        | 12         | 0    | 0     | 0        | 0       | 234           |    |
| Lane Group Flow (vph)       | 1885       | 0    | 309   | 1402     | 82      | 13            |    |
| Turn Type                   |            |      | Split |          |         | Perm          |    |
| Protected Phases            | 2          |      | 1     | 1        | 3       |               |    |
| Permitted Phases            |            |      |       |          |         | 3             |    |
| Actuated Green, G (s)       | 55.3       |      | 57.3  | 57.3     | 7.8     | 7.8           |    |
| Effective Green, g (s)      | 56.3       |      | 58.1  | 58.1     | 7.3     | 7.3           |    |
| Actuated g/C Ratio          | 0.40       |      | 0.42  | 0.42     | 0.05    | 0.05          |    |
| Clearance Time (s)          | 5.0        |      | 4.8   | 4.8      | 3.5     | 3.5           |    |
| Vehicle Extension (s)       | 6.8        |      | 6.3   | 6.3      | 2.0     | 2.0           |    |
| Lane Grp Cap (vph)          | 1389       |      | 737   | 1473     | 93      | 83            |    |
| v/s Ratio Prot              | c0.55      |      | 0.17  | c0.40    | c0.05   |               |    |
| v/s Ratio Perm              |            |      |       |          |         | 0.01          |    |
| v/c Ratio                   | 1.36       |      | 0.42  | 0.95     | 0.88    | 0.16          |    |
| Uniform Delay, d1           | 41.6       |      | 28.8  | 39.4     | 65.7    | 63.2          |    |
| Progression Factor          | 1.00       |      | 1.00  | 1.00     | 1.00    | 1.00          |    |
| Incremental Delay, d2       | 165.5      |      | 1.2   | 14.2     | 55.4    | 0.3           |    |
| Delay (s)                   | 207.1      |      | 30.0  | 53.6     | 121.1   | 63.5          |    |
| Level of Service            | F          |      | С     | D        | F       | Е             |    |
| Approach Delay (s)          | 207.1      |      |       | 49.4     | 77.9    |               |    |
| Approach LOS                | F          |      |       | D        | Е       |               |    |
| Intersection Summary        |            |      |       |          |         |               |    |
| HCM Average Control D       |            |      | 127.8 | F        | ICM Lev | el of Servi   | ce |
| <b>HCM Volume to Capaci</b> |            |      | 1.14  |          |         |               |    |
| Actuated Cycle Length (     | ,          |      | 139.6 |          |         | ost time (s)  |    |
| Intersection Capacity Ut    | ilization  |      | 83.3% | 10       | CU Leve | el of Service | е  |
| Analysis Period (min)       |            |      | 15    |          |         |               |    |
| c Critical Lane Group       |            |      |       |          |         |               |    |

|                          | ۶         | <b>→</b> | •     | •    | <b>←</b> | •         | 4      | <b>†</b> | <b>/</b> | <b>/</b> | ţ        | 4    |
|--------------------------|-----------|----------|-------|------|----------|-----------|--------|----------|----------|----------|----------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL    | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations      | 14.54     | ተተተ      | 7     | 1,1  | ተተተ      | 7         | ሻ      | <b>^</b> | 7        | ሻ        | <b>^</b> | 7    |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900 | 1900     | 1900      | 1900   | 1900     | 1900     | 1900     | 1900     | 1900 |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   | 4.0  | 4.0      | 4.0       | 4.0    | 4.0      | 4.0      | 4.0      | 4.0      | 4.0  |
| Lane Util. Factor        | 0.97      | 0.91     | 1.00  | 0.97 | 0.91     | 1.00      | 1.00   | 0.95     | 1.00     | 1.00     | 0.95     | 1.00 |
| Frt                      | 1.00      | 1.00     | 0.85  | 1.00 | 1.00     | 0.85      | 1.00   | 1.00     | 0.85     | 1.00     | 1.00     | 0.85 |
| Flt Protected            | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00     | 0.95     | 1.00     | 1.00 |
| Satd. Flow (prot)        | 3433      | 5085     | 1583  | 3433 | 5085     | 1583      | 1770   | 3539     | 1583     | 1770     | 3539     | 1583 |
| Flt Permitted            | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00     | 0.95     | 1.00     | 1.00 |
| Satd. Flow (perm)        | 3433      | 5085     | 1583  | 3433 | 5085     | 1583      | 1770   | 3539     | 1583     | 1770     | 3539     | 1583 |
| Volume (vph)             | 410       | 1110     | 40    | 410  | 1540     | 10        | 40     | 480      | 190      | 10       | 590      | 470  |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.97  | 0.97 | 0.97     | 0.97      | 0.97   | 0.97     | 0.97     | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)          | 423       | 1144     | 41    | 423  | 1588     | 10        | 41     | 495      | 196      | 10       | 608      | 485  |
| RTOR Reduction (vph)     | 0         | 0        | 27    | 0    | 0        | 6         | 0      | 0        | 92       | 0        | 0        | 289  |
| Lane Group Flow (vph)    | 423       | 1144     | 14    | 423  | 1588     | 4         | 41     | 495      | 104      | 10       | 608      | 196  |
| Turn Type                | Prot      |          | Perm  | Prot |          | Perm      | Prot   | ı        | om+ov    | Prot     |          | Perm |
| Protected Phases         | 5         | 2        |       | 1    | 6        |           | 4      | 8        | 1        | 7        | 3        |      |
| Permitted Phases         |           |          | 2     |      |          | 6         |        |          | 8        |          |          | 3    |
| Actuated Green, G (s)    | 9.2       | 20.6     | 20.6  | 10.1 | 21.1     | 21.1      | 3.7    | 17.7     | 27.8     | 0.7      | 13.1     | 13.1 |
| Effective Green, g (s)   | 9.2       | 22.6     | 22.6  | 9.7  | 23.1     | 23.1      | 4.0    | 16.7     | 26.4     | 0.7      | 13.4     | 13.4 |
| Actuated g/C Ratio       | 0.14      | 0.34     | 0.34  | 0.15 | 0.35     | 0.35      | 0.06   | 0.25     | 0.40     | 0.01     | 0.20     | 0.20 |
| Clearance Time (s)       | 4.0       | 6.0      | 6.0   | 3.6  | 6.0      | 6.0       | 4.3    | 3.0      | 3.6      | 4.0      | 4.3      | 4.3  |
| Vehicle Extension (s)    | 3.0       | 2.0      | 2.0   | 1.0  | 2.0      | 2.0       | 1.0    | 0.2      | 1.0      | 3.0      | 1.0      | 1.0  |
| Lane Grp Cap (vph)       | 481       | 1749     | 545   | 507  | 1788     | 557       | 108    | 900      | 732      | 19       | 722      | 323  |
| v/s Ratio Prot           | c0.12     | 0.22     |       | 0.12 | c0.31    |           | 0.02   | c0.14    | 0.02     | 0.01     | c0.17    |      |
| v/s Ratio Perm           |           |          | 0.01  |      |          | 0.00      |        |          | 0.04     |          |          | 0.12 |
| v/c Ratio                | 0.88      | 0.65     | 0.03  | 0.83 | 0.89     | 0.01      | 0.38   | 0.55     | 0.14     | 0.53     | 0.84     | 0.61 |
| Uniform Delay, d1        | 27.7      | 18.2     | 14.3  | 27.2 | 20.1     | 13.8      | 29.7   | 21.2     | 12.5     | 32.3     | 25.1     | 23.8 |
| Progression Factor       | 1.00      | 1.00     | 1.00  | 1.00 | 1.00     | 1.00      | 1.00   | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |
| Incremental Delay, d2    | 16.6      | 0.7      | 0.0   | 10.8 | 5.6      | 0.0       | 0.8    | 0.4      | 0.0      | 23.9     | 8.5      | 2.2  |
| Delay (s)                | 44.3      | 18.9     | 14.3  | 38.1 | 25.7     | 13.8      | 30.5   | 21.7     | 12.5     | 56.2     | 33.6     | 26.0 |
| Level of Service         | D         | В        | В     | D    | С        | В         | С      | С        | В        | Е        | С        | С    |
| Approach Delay (s)       |           | 25.5     |       |      | 28.2     |           |        | 19.7     |          |          | 30.4     |      |
| Approach LOS             |           | С        |       |      | С        |           |        | В        |          |          | С        |      |
| Intersection Summary     |           |          |       |      |          |           |        |          |          |          |          |      |
| HCM Average Control D    |           |          | 26.7  | H    | HCM Le   | vel of Se | ervice |          | С        |          |          |      |
| HCM Volume to Capacit    |           |          | 0.75  |      |          |           |        |          |          |          |          |      |
| Actuated Cycle Length (  |           |          | 65.7  |      |          | ost time  |        |          | 8.0      |          |          |      |
| Intersection Capacity Ut | ilization |          | 74.4% | 10   | CU Leve  | el of Ser | vice   |          | D        |          |          |      |
| Analysis Period (min)    |           |          | 15    |      |          |           |        |          |          |          |          |      |
| c Critical Lane Group    |           |          |       |      |          |           |        |          |          |          |          |      |

|                          | ۶         | <b>→</b> | •     | •     | -        | •         | 4      | †     | <i>&gt;</i> | <b>/</b> | ţ     | 4    |
|--------------------------|-----------|----------|-------|-------|----------|-----------|--------|-------|-------------|----------|-------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT   | NBR         | SBL      | SBT   | SBR  |
| Lane Configurations      | ሻሻ        | ተተተ      | 7     | ሻሻ    | ተተተ      | 7         | 77     | ተተተ   | 7           | 77       | ተተተ   | 7    |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900  | 1900        | 1900     | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0   | 4.0         | 4.0      | 4.0   | 4.0  |
| Lane Util. Factor        | 0.97      | 0.91     | 1.00  | 0.97  | 0.91     | 1.00      | 0.97   | 0.91  | 1.00        | 0.97     | 0.91  | 1.00 |
| Frt                      | 1.00      | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00  | 0.85        | 1.00     | 1.00  | 0.85 |
| Flt Protected            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00  | 1.00        | 0.95     | 1.00  | 1.00 |
| Satd. Flow (prot)        | 3433      | 5085     | 1583  | 3433  | 5085     | 1583      | 3433   | 5085  | 1583        | 3433     | 5085  | 1583 |
| Flt Permitted            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00  | 1.00        | 0.95     | 1.00  | 1.00 |
| Satd. Flow (perm)        | 3433      | 5085     | 1583  | 3433  | 5085     | 1583      | 3433   | 5085  | 1583        | 3433     | 5085  | 1583 |
| Volume (vph)             | 580       | 220      | 930   | 430   | 440      | 350       | 910    | 1290  | 90          | 120      | 1890  | 520  |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97   | 0.97  | 0.97        | 0.97     | 0.97  | 0.97 |
| Adj. Flow (vph)          | 598       | 227      | 959   | 443   | 454      | 361       | 938    | 1330  | 93          | 124      | 1948  | 536  |
| RTOR Reduction (vph)     | 0         | 0        | 211   | 0     | 0        | 97        | 0      | 0     | 50          | 0        | 0     | 169  |
| Lane Group Flow (vph)    | 598       | 227      | 748   | 443   | 454      | 264       | 938    | 1330  | 43          | 124      | 1948  | 367  |
| Turn Type                | Prot      |          | Perm  | Prot  |          | Perm      | Prot   |       | Perm        | Prot     |       | Perm |
| Protected Phases         | 7         | 4        |       | 3     | 8        |           | 5      | 2     |             | 1        | 6     |      |
| Permitted Phases         |           |          | 4     |       |          | 8         |        |       | 2           |          |       | 6    |
| Actuated Green, G (s)    | 16.5      | 38.1     | 38.1  | 13.5  | 35.0     | 35.0      | 27.5   | 68.5  | 68.5        | 7.8      | 48.4  | 48.4 |
| Effective Green, g (s)   | 18.0      | 39.7     | 39.7  | 15.0  | 36.7     | 36.7      | 29.0   | 70.0  | 70.0        | 9.3      | 50.3  | 50.3 |
| Actuated g/C Ratio       | 0.12      | 0.26     | 0.26  | 0.10  | 0.24     | 0.24      | 0.19   | 0.47  | 0.47        | 0.06     | 0.34  | 0.34 |
| Clearance Time (s)       | 5.5       | 5.6      | 5.6   | 5.5   | 5.7      | 5.7       | 5.5    | 5.5   | 5.5         | 5.5      | 5.9   | 5.9  |
| Vehicle Extension (s)    | 1.0       | 5.0      | 5.0   | 1.0   | 5.9      | 5.9       | 1.0    | 5.4   | 5.4         | 1.0      | 5.4   | 5.4  |
| Lane Grp Cap (vph)       | 412       | 1346     | 419   | 343   | 1244     | 387       | 664    | 2373  | 739         | 213      | 1705  | 531  |
| v/s Ratio Prot           | c0.17     | 0.04     |       | 0.13  | 0.09     |           | c0.27  | 0.26  |             | 0.04     | c0.38 |      |
| v/s Ratio Perm           |           |          | c0.47 |       |          | 0.17      |        |       | 0.03        |          |       | 0.23 |
| v/c Ratio                | 1.45      | 0.17     | 1.79  | 1.29  | 0.36     | 0.68      | 1.41   | 0.56  | 0.06        | 0.58     | 1.14  | 0.69 |
| Uniform Delay, d1        | 66.0      | 42.4     | 55.1  | 67.5  | 47.0     | 51.4      | 60.5   | 28.9  | 21.9        | 68.5     | 49.9  | 43.1 |
| Progression Factor       | 1.00      | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00  | 1.00        | 1.00     | 1.00  | 1.00 |
| Incremental Delay, d2    | 216.3     | 0.1      | 362.8 | 151.3 | 0.5      | 7.3       | 194.6  | 0.6   | 0.1         | 2.6      | 71.7  | 5.2  |
| Delay (s)                | 282.3     | 42.6     | 418.0 | 218.8 | 47.5     | 58.7      | 255.1  | 29.4  | 22.0        | 71.1     | 121.6 | 48.3 |
| Level of Service         | F         | D        | F     | F     | D        | Е         | F      | С     | С           | Е        | F     | D    |
| Approach Delay (s)       |           | 324.7    |       |       | 111.0    |           |        | 118.8 |             |          | 104.1 |      |
| Approach LOS             |           | F        |       |       | F        |           |        | F     |             |          | F     |      |
| Intersection Summary     |           |          |       |       |          |           |        |       |             |          |       |      |
| HCM Average Control D    | •         |          | 158.7 | F     | HCM Le   | vel of S  | ervice |       | F           |          |       |      |
| HCM Volume to Capacit    |           |          | 1.44  |       |          |           |        |       |             |          |       |      |
| Actuated Cycle Length (  |           |          | 150.0 |       | Sum of I |           |        |       | 16.0        |          |       |      |
| Intersection Capacity Ut | ilization | 1        | 16.4% | 10    | CU Lev   | el of Sei | rvice  |       | Н           |          |       |      |
| Analysis Period (min)    |           |          | 15    |       |          |           |        |       |             |          |       |      |
| c Critical Lane Group    |           |          |       |       |          |           |        |       |             |          |       |      |

|                             | ۶         | <b>→</b> | •     | •    | <b>←</b> | •         | 4      | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>+</b> | 4    |
|-----------------------------|-----------|----------|-------|------|----------|-----------|--------|----------|-------------|----------|----------|------|
| Movement                    | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL    | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations         | 14.54     | ተተተ      | 7     | 1,1  | ተተተ      | 7         | 77     | ተተተ      | 7           | 1,4      | ተተተ      | 7    |
| Ideal Flow (vphpl)          | 1900      | 1900     | 1900  | 1900 | 1900     | 1900      | 1900   | 1900     | 1900        | 1900     | 1900     | 1900 |
| Total Lost time (s)         | 4.0       | 4.0      | 4.0   | 4.0  | 4.0      | 4.0       | 4.0    | 4.0      | 4.0         | 4.0      | 4.0      | 4.0  |
| Lane Util. Factor           | 0.97      | 0.91     | 1.00  | 0.97 | 0.91     | 1.00      | 0.97   | 0.91     | 1.00        | 0.97     | 0.91     | 1.00 |
| Frt                         | 1.00      | 1.00     | 0.85  | 1.00 | 1.00     | 0.85      | 1.00   | 1.00     | 0.85        | 1.00     | 1.00     | 0.85 |
| Flt Protected               | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00     | 1.00 |
| Satd. Flow (prot)           | 3433      | 5085     | 1583  | 3433 | 5085     | 1583      | 3433   | 5085     | 1583        | 3433     | 5085     | 1583 |
| Flt Permitted               | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00     | 1.00 |
| Satd. Flow (perm)           | 3433      | 5085     | 1583  | 3433 | 5085     | 1583      | 3433   | 5085     | 1583        | 3433     | 5085     | 1583 |
| Volume (vph)                | 330       | 700      | 350   | 270  | 960      | 280       | 380    | 960      | 50          | 280      | 1830     | 510  |
| Peak-hour factor, PHF       | 0.97      | 0.97     | 0.97  | 0.97 | 0.97     | 0.97      | 0.97   | 0.97     | 0.97        | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)             | 340       | 722      | 361   | 278  | 990      | 289       | 392    | 990      | 52          | 289      | 1887     | 526  |
| RTOR Reduction (vph)        | 0         | 0        | 167   | 0    | 0        | 183       | 0      | 0        | 30          | 0        | 0        | 170  |
| Lane Group Flow (vph)       | 340       | 722      | 194   | 278  | 990      | 106       | 392    | 990      | 22          | 289      | 1887     | 356  |
| Turn Type                   | Prot      |          | Perm  | Prot |          | Perm      | Prot   |          | Perm        | Prot     |          | Perm |
| Protected Phases            | 7         | 4        |       | 3    | 8        |           | 5      | 2        |             | 1        | 6        |      |
| Permitted Phases            |           |          | 4     |      |          | 8         |        |          | 2           |          |          | 6    |
| Actuated Green, G (s)       | 14.9      | 31.4     | 31.4  | 14.0 | 30.7     | 30.7      | 17.0   | 56.7     | 56.7        | 14.2     | 53.9     | 53.9 |
| Effective Green, g (s)      | 16.4      | 33.1     | 33.1  | 15.5 | 32.2     | 32.2      | 18.5   | 58.3     | 58.3        | 15.7     | 55.5     | 55.5 |
| Actuated g/C Ratio          | 0.12      | 0.24     | 0.24  | 0.11 | 0.23     | 0.23      | 0.13   | 0.42     | 0.42        | 0.11     | 0.40     | 0.40 |
| Clearance Time (s)          | 5.5       | 5.7      | 5.7   | 5.5  | 5.5      | 5.5       | 5.5    | 5.6      | 5.6         | 5.5      | 5.6      | 5.6  |
| Vehicle Extension (s)       | 1.0       | 4.9      | 4.9   | 1.0  | 4.9      | 4.9       | 1.0    | 4.9      | 4.9         | 1.0      | 4.9      | 4.9  |
| Lane Grp Cap (vph)          | 406       | 1214     | 378   | 384  | 1181     | 368       | 458    | 2139     | 666         | 389      | 2036     | 634  |
| v/s Ratio Prot              | c0.10     | 0.14     |       | 0.08 | c0.19    |           | c0.11  | c0.19    |             | 0.08     | c0.37    |      |
| v/s Ratio Perm              |           |          | 0.12  |      |          | 0.07      |        |          | 0.01        |          |          | 0.22 |
| v/c Ratio                   | 0.84      | 0.59     | 0.51  | 0.72 | 0.84     | 0.29      | 0.86   | 0.46     | 0.03        | 0.74     | 0.93     | 0.56 |
| Uniform Delay, d1           | 59.8      | 46.8     | 45.7  | 59.5 | 50.7     | 43.8      | 58.7   | 28.9     | 23.6        | 59.5     | 39.6     | 32.1 |
| Progression Factor          | 1.00      | 1.00     | 1.00  | 1.00 | 1.00     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00     | 1.00     | 1.00 |
| Incremental Delay, d2       | 13.4      | 1.2      | 2.2   | 5.6  | 5.9      | 0.9       | 14.0   | 0.3      | 0.0         | 6.6      | 8.2      | 1.8  |
| Delay (s)                   | 73.2      | 48.0     | 48.0  | 65.1 | 56.6     | 44.6      | 72.8   | 29.2     | 23.6        | 66.1     | 47.8     | 34.0 |
| Level of Service            | Е         | D        | D     | Е    | Е        | D         | Е      | С        | С           | E        | D        | С    |
| Approach Delay (s)          |           | 54.0     |       |      | 55.9     |           |        | 40.9     |             |          | 47.1     |      |
| Approach LOS                |           | D        |       |      | E        |           |        | D        |             |          | D        |      |
| Intersection Summary        |           |          |       |      |          |           |        |          |             |          |          |      |
| HCM Average Control D       |           |          | 49.2  | H    | HCM Le   | vel of Se | ervice |          | D           |          |          |      |
| <b>HCM Volume to Capaci</b> |           |          | 0.90  |      |          |           |        |          |             |          |          |      |
| Actuated Cycle Length (     |           |          | 138.6 |      |          | ost time  |        |          | 20.0        |          |          |      |
| Intersection Capacity Ut    | ilization |          | 87.5% | 10   | CU Leve  | el of Ser | vice   |          | Е           |          |          |      |
| Analysis Period (min)       |           |          | 15    |      |          |           |        |          |             |          |          |      |
| c Critical Lane Group       |           |          |       |      |          |           |        |          |             |          |          |      |

|                          | ۶         | <b>→</b> | •     | •     | <b>←</b> | •         | 4      | †    | <i>&gt;</i> | <b>/</b> | ţ     | 4    |
|--------------------------|-----------|----------|-------|-------|----------|-----------|--------|------|-------------|----------|-------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT  | NBR         | SBL      | SBT   | SBR  |
| Lane Configurations      | 44        | <b>^</b> | 7     | Ţ     | ተተተ      | 7         | 14     | ተተተ  | 7           | 7        | 1111  | 7    |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900 | 1900        | 1900     | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0  | 4.0         | 4.0      | 4.0   | 4.0  |
| Lane Util. Factor        | 0.97      | 0.95     | 1.00  | 1.00  | 0.91     | 1.00      | 0.97   | 0.91 | 1.00        | 1.00     | 0.86  | 1.00 |
| Frt                      | 1.00      | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00 | 0.85        | 1.00     | 1.00  | 0.85 |
| Flt Protected            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00 | 1.00        | 0.95     | 1.00  | 1.00 |
| Satd. Flow (prot)        | 3433      | 3539     | 1583  | 1770  | 5085     | 1583      | 3433   | 5085 | 1583        | 1770     | 6408  | 1583 |
| Flt Permitted            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00 | 1.00        | 0.95     | 1.00  | 1.00 |
| Satd. Flow (perm)        | 3433      | 3539     | 1583  | 1770  | 5085     | 1583      | 3433   | 5085 | 1583        | 1770     | 6408  | 1583 |
| Volume (vph)             | 130       | 550      | 830   | 90    | 350      | 170       | 360    | 1120 | 50          | 140      | 1790  | 110  |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97   | 0.97 | 0.97        | 0.97     | 0.97  | 0.97 |
| Adj. Flow (vph)          | 134       | 567      | 856   | 93    | 361      | 175       | 371    | 1155 | 52          | 144      | 1845  | 113  |
| RTOR Reduction (vph)     | 0         | 0        | 170   | 0     | 0        | 110       | 0      | 0    | 35          | 0        | 0     | 70   |
| Lane Group Flow (vph)    | 134       | 567      | 686   | 93    | 361      | 65        | 371    | 1155 | 17          | 144      | 1845  | 43   |
| Turn Type                | Prot      |          | Perm  | Prot  |          | Perm      | Prot   |      | Perm        | Prot     |       | Perm |
| Protected Phases         | 7         | 4        |       | 3     | 8        |           | 5      | 2    |             | 1        | 6     |      |
| Permitted Phases         |           |          | 4     |       |          | 8         |        |      | 2           |          |       | 6    |
| Actuated Green, G (s)    | 8.2       | 44.0     | 44.0  | 7.0   | 43.8     | 43.8      | 14.0   | 37.0 | 37.0        | 12.0     | 35.0  | 35.0 |
| Effective Green, g (s)   | 8.2       | 46.0     | 46.0  | 7.0   | 44.8     | 44.8      | 14.0   | 39.0 | 39.0        | 12.0     | 37.0  | 37.0 |
| Actuated g/C Ratio       | 0.07      | 0.38     | 0.38  | 0.06  | 0.37     | 0.37      | 0.12   | 0.32 | 0.32        | 0.10     | 0.31  | 0.31 |
| Clearance Time (s)       | 4.0       | 6.0      | 6.0   | 4.0   | 5.0      | 5.0       | 4.0    | 6.0  | 6.0         | 4.0      | 6.0   | 6.0  |
| Vehicle Extension (s)    | 2.0       | 4.5      | 4.5   | 2.0   | 5.0      | 5.0       | 2.0    | 3.4  | 3.4         | 2.0      | 4.1   | 4.1  |
| Lane Grp Cap (vph)       | 235       | 1357     | 607   | 103   | 1898     | 591       | 401    | 1653 | 514         | 177      | 1976  | 488  |
| v/s Ratio Prot           | 0.04      | 0.16     |       | c0.05 | 0.07     |           | c0.11  | 0.23 |             | 0.08     | c0.29 |      |
| v/s Ratio Perm           |           |          | c0.43 |       |          | 0.04      |        |      | 0.01        |          |       | 0.03 |
| v/c Ratio                | 0.57      | 0.42     | 1.13  | 0.90  | 0.19     | 0.11      | 0.93   | 0.70 | 0.03        | 0.81     | 0.93  | 0.09 |
| Uniform Delay, d1        | 54.2      | 27.2     | 37.0  | 56.2  | 25.4     | 24.6      | 52.5   | 35.4 | 27.6        | 52.9     | 40.3  | 29.5 |
| Progression Factor       | 1.00      | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00 | 1.00        | 1.00     | 1.00  | 1.00 |
| Incremental Delay, d2    | 2.1       | 0.4      | 78.2  | 57.5  | 0.1      | 0.2       | 26.6   | 2.5  | 0.1         | 22.9     | 9.7   | 0.4  |
| Delay (s)                | 56.3      | 27.5     | 115.2 | 113.7 | 25.5     | 24.8      | 79.0   | 37.8 | 27.8        | 75.8     | 50.0  | 29.9 |
| Level of Service         | Е         | С        | F     | F     | С        | С         | Е      | D    | С           | Е        | D     | С    |
| Approach Delay (s)       |           | 78.2     |       |       | 38.3     |           |        | 47.2 |             |          | 50.7  |      |
| Approach LOS             |           | E        |       |       | D        |           |        | D    |             |          | D     |      |
| Intersection Summary     |           |          |       |       |          |           |        |      |             |          |       |      |
| HCM Average Control D    | •         |          | 55.7  | H     | ICM Le   | vel of S  | ervice |      | Е           |          |       |      |
| HCM Volume to Capacit    |           |          | 0.98  |       |          |           |        |      |             |          |       |      |
| Actuated Cycle Length (  |           |          | 120.0 |       |          | ost time  |        |      | 12.0        |          |       |      |
| Intersection Capacity Ut | ilization |          | 92.3% | 10    | CU Leve  | el of Sei | vice   |      | F           |          |       |      |
| Analysis Period (min)    |           |          | 15    |       |          |           |        |      |             |          |       |      |
| c Critical Lane Group    |           |          |       |       |          |           |        |      |             |          |       |      |

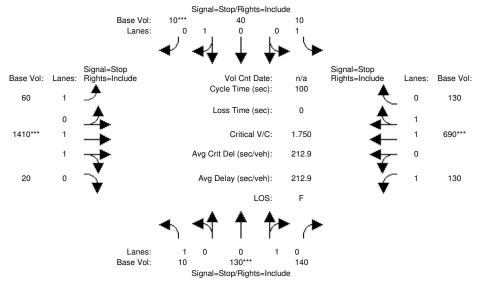
|                               | ۶        | <b>→</b>   | •     | •    | <b>—</b>   | •         | •      | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ     | 4     |
|-------------------------------|----------|------------|-------|------|------------|-----------|--------|----------|----------|-------------|-------|-------|
| Movement                      | EBL      | EBT        | EBR   | WBL  | WBT        | WBR       | NBL    | NBT      | NBR      | SBL         | SBT   | SBR   |
| Lane Configurations           |          | <b>∱</b> ∱ |       |      | <b>∱</b> ∱ |           |        |          |          | ሻ           |       | 7     |
| Ideal Flow (vphpl)            | 1900     | 1900       | 1900  | 1900 | 1900       | 1900      | 1900   | 1900     | 1900     | 1900        | 1900  | 1900  |
| Total Lost time (s)           |          | 4.0        |       |      | 4.0        |           |        |          |          | 4.0         |       | 4.0   |
| Lane Util. Factor             |          | 0.95       |       |      | 0.95       |           |        |          |          | 1.00        |       | 1.00  |
| Frt                           |          | 0.98       |       |      | 0.94       |           |        |          |          | 1.00        |       | 0.85  |
| Flt Protected                 |          | 1.00       |       |      | 1.00       |           |        |          |          | 0.95        |       | 1.00  |
| Satd. Flow (prot)             |          | 3463       |       |      | 3324       |           |        |          |          | 1770        |       | 1583  |
| Flt Permitted                 |          | 1.00       |       |      | 1.00       |           |        |          |          | 0.95        |       | 1.00  |
| Satd. Flow (perm)             |          | 3463       |       |      | 3324       |           |        |          |          | 1770        |       | 1583  |
| Volume (vph)                  | 0        | 180        | 30    | 0    | 1040       | 710       | 0      | 0        | 0        | 40          | 0     | 820   |
| Peak-hour factor, PHF         | 0.97     | 0.97       | 0.97  | 0.97 | 0.97       | 0.97      | 0.97   | 0.97     | 0.97     | 0.97        | 0.97  | 0.97  |
| Adj. Flow (vph)               | 0        | 186        | 31    | 0    | 1072       | 732       | 0      | 0        | 0        | 41          | 0     | 845   |
| RTOR Reduction (vph)          | 0        | 14         | 0     | 0    | 124        | 0         | 0      | 0        | 0        | 0           | 0     | 47    |
| Lane Group Flow (vph)         | 0        | 203        | 0     | 0    | 1680       | 0         | 0      | 0        | 0        | 41          | 0     | 798   |
| Turn Type                     |          |            |       |      |            |           |        |          |          | Prot        | С     | ustom |
| Protected Phases              |          | 4          |       |      | 8          |           |        |          |          | 2           |       |       |
| Permitted Phases              |          |            |       |      |            |           |        |          |          |             |       | 2     |
| Actuated Green, G (s)         |          | 52.3       |       |      | 52.3       |           |        |          |          | 38.0        |       | 38.0  |
| Effective Green, g (s)        |          | 52.3       |       |      | 52.3       |           |        |          |          | 38.0        |       | 38.0  |
| Actuated g/C Ratio            |          | 0.53       |       |      | 0.53       |           |        |          |          | 0.39        |       | 0.39  |
| Clearance Time (s)            |          | 4.0        |       |      | 4.0        |           |        |          |          | 4.0         |       | 4.0   |
| Vehicle Extension (s)         |          | 3.0        |       |      | 3.0        |           |        |          |          | 3.0         |       | 3.0   |
| Lane Grp Cap (vph)            |          | 1842       |       |      | 1769       |           |        |          |          | 684         |       | 612   |
| v/s Ratio Prot                |          | 0.06       |       |      | c0.51      |           |        |          |          | 0.02        |       |       |
| v/s Ratio Perm                |          |            |       |      |            |           |        |          |          |             |       | c0.50 |
| v/c Ratio                     |          | 0.11       |       |      | 0.95       |           |        |          |          | 0.06        |       | 1.30  |
| Uniform Delay, d1             |          | 11.4       |       |      | 21.8       |           |        |          |          | 18.9        |       | 30.1  |
| Progression Factor            |          | 1.00       |       |      | 1.00       |           |        |          |          | 1.00        |       | 1.00  |
| Incremental Delay, d2         |          | 0.0        |       |      | 11.5       |           |        |          |          | 0.0         |       | 148.2 |
| Delay (s)                     |          | 11.5       |       |      | 33.3       |           |        |          |          | 19.0        |       | 178.4 |
| Level of Service              |          | В          |       |      | С          |           |        |          |          | В           |       | F     |
| Approach Delay (s)            |          | 11.5       |       |      | 33.3       |           |        | 0.0      |          |             | 171.0 |       |
| Approach LOS                  |          | В          |       |      | С          |           |        | Α        |          |             | F     |       |
| Intersection Summary          |          |            |       |      |            |           |        |          |          |             |       |       |
| HCM Average Control De        | -        |            | 73.6  | F    | ICM Lev    | vel of Se | ervice |          | E        |             |       |       |
| <b>HCM Volume to Capacity</b> |          |            | 1.10  |      |            |           |        |          |          |             |       |       |
| Actuated Cycle Length (s      | ,        |            | 98.3  |      |            | ost time  |        |          | 8.0      |             |       |       |
| Intersection Capacity Util    | lization | 1          | 08.9% | 10   | CU Leve    | el of Ser | vice   |          | G        |             |       |       |
| Analysis Period (min)         |          |            | 15    |      |            |           |        |          |          |             |       |       |
| c Critical Lane Group         |          |            |       |      |            |           |        |          |          |             |       |       |

|                               | ۶       | <b>→</b>    | •     | •    | <b>←</b>   | •         | 4      | <b>†</b> | ~     | <b>\</b> | <b>↓</b> | 4    |
|-------------------------------|---------|-------------|-------|------|------------|-----------|--------|----------|-------|----------|----------|------|
| Movement                      | EBL     | EBT         | EBR   | WBL  | WBT        | WBR       | NBL    | NBT      | NBR   | SBL      | SBT      | SBR  |
| Lane Configurations           |         | <b>∱</b> î≽ |       |      | <b>∱</b> ∱ |           | 7      |          | 7     |          |          |      |
| Ideal Flow (vphpl)            | 1900    | 1900        | 1900  | 1900 | 1900       | 1900      | 1900   | 1900     | 1900  | 1900     | 1900     | 1900 |
| Total Lost time (s)           |         | 4.0         |       |      | 4.0        |           | 4.0    |          | 4.0   |          |          |      |
| Lane Util. Factor             |         | 0.95        |       |      | 0.95       |           | 1.00   |          | 1.00  |          |          |      |
| Frt                           |         | 0.96        |       |      | 0.98       |           | 1.00   |          | 0.85  |          |          |      |
| Flt Protected                 |         | 1.00        |       |      | 1.00       |           | 0.95   |          | 1.00  |          |          |      |
| Satd. Flow (prot)             |         | 3394        |       |      | 3465       |           | 1770   |          | 1583  |          |          |      |
| Flt Permitted                 |         | 1.00        |       |      | 1.00       |           | 0.95   |          | 1.00  |          |          |      |
| Satd. Flow (perm)             |         | 3394        |       |      | 3465       |           | 1770   |          | 1583  |          |          |      |
| Volume (vph)                  | 0       | 160         | 60    | 0    | 1480       | 240       | 270    | 0        | 330   | 0        | 0        | 0    |
| Peak-hour factor, PHF         | 0.97    | 0.97        | 0.97  | 0.97 | 0.97       | 0.97      | 0.97   | 0.97     | 0.97  | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)               | 0       | 165         | 62    | 0    | 1526       | 247       | 278    | 0        | 340   | 0        | 0        | 0    |
| RTOR Reduction (vph)          | 0       | 26          | 0     | 0    | 19         | 0         | 0      | 0        | 252   | 0        | 0        | 0    |
| Lane Group Flow (vph)         | 0       | 201         | 0     | 0    | 1754       | 0         | 278    | 0        | 88    | 0        | 0        | 0    |
| Turn Type                     |         |             |       |      |            |           | Prot   | С        | ustom |          |          |      |
| Protected Phases              |         | 4           |       |      | 8          |           | 2      |          |       |          |          |      |
| Permitted Phases              |         |             |       |      |            |           |        |          | 2     |          |          |      |
| Actuated Green, G (s)         |         | 30.4        |       |      | 30.4       |           | 13.5   |          | 13.5  |          |          |      |
| Effective Green, g (s)        |         | 30.4        |       |      | 30.4       |           | 13.5   |          | 13.5  |          |          |      |
| Actuated g/C Ratio            |         | 0.59        |       |      | 0.59       |           | 0.26   |          | 0.26  |          |          |      |
| Clearance Time (s)            |         | 4.0         |       |      | 4.0        |           | 4.0    |          | 4.0   |          |          |      |
| Vehicle Extension (s)         |         | 3.0         |       |      | 3.0        |           | 3.0    |          | 3.0   |          |          |      |
| Lane Grp Cap (vph)            |         | 1988        |       |      | 2030       |           | 460    |          | 412   |          |          |      |
| v/s Ratio Prot                |         | 0.06        |       |      | c0.51      |           | c0.16  |          |       |          |          |      |
| v/s Ratio Perm                |         |             |       |      |            |           |        |          | 0.06  |          |          |      |
| v/c Ratio                     |         | 0.10        |       |      | 0.86       |           | 0.60   |          | 0.21  |          |          |      |
| Uniform Delay, d1             |         | 4.7         |       |      | 9.0        |           | 16.9   |          | 15.0  |          |          |      |
| Progression Factor            |         | 1.00        |       |      | 1.00       |           | 1.00   |          | 1.00  |          |          |      |
| Incremental Delay, d2         |         | 0.0         |       |      | 4.1        |           | 2.2    |          | 0.3   |          |          |      |
| Delay (s)                     |         | 4.8         |       |      | 13.1       |           | 19.1   |          | 15.3  |          |          |      |
| Level of Service              |         | Α           |       |      | В          |           | В      |          | В     |          |          |      |
| Approach Delay (s)            |         | 4.8         |       |      | 13.1       |           |        | 17.0     |       |          | 0.0      |      |
| Approach LOS                  |         | Α           |       |      | В          |           |        | В        |       |          | Α        |      |
| Intersection Summary          |         |             |       |      |            |           |        |          |       |          |          |      |
| HCM Average Control De        |         |             | 13.3  | H    | ICM Le     | vel of Se | ervice |          | В     |          |          |      |
| <b>HCM Volume to Capacity</b> |         |             | 0.78  |      |            |           |        |          |       |          |          |      |
| Actuated Cycle Length (s      |         |             | 51.9  |      |            | ost time  |        |          | 8.0   |          |          |      |
| Intersection Capacity Utili   | ization |             | 70.2% | 10   | CU Leve    | el of Ser | vice   |          | С     |          |          |      |
| Analysis Period (min)         |         |             | 15    |      |            |           |        |          |       |          |          |      |
| c Critical Lane Group         |         |             |       |      |            |           |        |          |       |          |          |      |

|                               | ۶        | -               | •     | •    | <b>←</b>    | •         | 4      | †    | <b>/</b> | <b>&gt;</b> | ļ    | 4     |
|-------------------------------|----------|-----------------|-------|------|-------------|-----------|--------|------|----------|-------------|------|-------|
| Movement                      | EBL      | EBT             | EBR   | WBL  | WBT         | WBR       | NBL    | NBT  | NBR      | SBL         | SBT  | SBR   |
| Lane Configurations           |          | ተተ <sub>ጉ</sub> |       |      | <b>↑</b> ↑↑ |           |        |      |          | 7           |      | 7     |
| Ideal Flow (vphpl)            | 1900     | 1900            | 1900  | 1900 | 1900        | 1900      | 1900   | 1900 | 1900     | 1900        | 1900 | 1900  |
| Total Lost time (s)           |          | 4.0             |       |      | 4.0         |           |        |      |          | 4.0         |      | 4.0   |
| Lane Util. Factor             |          | 0.91            |       |      | 0.91        |           |        |      |          | 1.00        |      | 1.00  |
| Frt                           |          | 0.95            |       |      | 0.92        |           |        |      |          | 1.00        |      | 0.85  |
| Flt Protected                 |          | 1.00            |       |      | 1.00        |           |        |      |          | 0.95        |      | 1.00  |
| Satd. Flow (prot)             |          | 4815            |       |      | 4666        |           |        |      |          | 1770        |      | 1583  |
| Flt Permitted                 |          | 1.00            |       |      | 1.00        |           |        |      |          | 0.95        |      | 1.00  |
| Satd. Flow (perm)             |          | 4815            |       |      | 4666        |           |        |      |          | 1770        |      | 1583  |
| Volume (vph)                  | 0        | 110             | 60    | 0    | 670         | 820       | 0      | 0    | 0        | 300         | 0    | 330   |
| Peak-hour factor, PHF         | 0.97     | 0.97            | 0.97  | 0.97 | 0.97        | 0.97      | 0.97   | 0.97 | 0.97     | 0.97        | 0.97 | 0.97  |
| Adj. Flow (vph)               | 0        | 113             | 62    | 0    | 691         | 845       | 0      | 0    | 0        | 309         | 0    | 340   |
| RTOR Reduction (vph)          | 0        | 36              | 0     | 0    | 379         | 0         | 0      | 0    | 0        | 0           | 0    | 39    |
| Lane Group Flow (vph)         | 0        | 139             | 0     | 0    | 1157        | 0         | 0      | 0    | 0        | 309         | 0    | 301   |
| Turn Type                     |          |                 |       |      |             |           |        |      |          | Prot        | С    | ustom |
| Protected Phases              |          | 4               |       |      | 8           |           |        |      |          | 1           |      |       |
| Permitted Phases              |          |                 |       |      |             |           |        |      |          |             |      | 1     |
| Actuated Green, G (s)         |          | 15.0            |       |      | 15.0        |           |        |      |          | 13.1        |      | 13.1  |
| Effective Green, g (s)        |          | 15.0            |       |      | 15.0        |           |        |      |          | 13.1        |      | 13.1  |
| Actuated g/C Ratio            |          | 0.42            |       |      | 0.42        |           |        |      |          | 0.36        |      | 0.36  |
| Clearance Time (s)            |          | 4.0             |       |      | 4.0         |           |        |      |          | 4.0         |      | 4.0   |
| Vehicle Extension (s)         |          | 3.0             |       |      | 3.0         |           |        |      |          | 3.0         |      | 3.0   |
| Lane Grp Cap (vph)            |          | 2001            |       |      | 1939        |           |        |      |          | 642         |      | 574   |
| v/s Ratio Prot                |          | 0.03            |       |      | c0.25       |           |        |      |          | 0.17        |      |       |
| v/s Ratio Perm                |          |                 |       |      |             |           |        |      |          |             |      | c0.19 |
| v/c Ratio                     |          | 0.07            |       |      | 0.60        |           |        |      |          | 0.48        |      | 0.52  |
| Uniform Delay, d1             |          | 6.3             |       |      | 8.2         |           |        |      |          | 8.9         |      | 9.0   |
| Progression Factor            |          | 1.00            |       |      | 1.00        |           |        |      |          | 1.00        |      | 1.00  |
| Incremental Delay, d2         |          | 0.0             |       |      | 0.5         |           |        |      |          | 0.6         |      | 0.9   |
| Delay (s)                     |          | 6.4             |       |      | 8.7         |           |        |      |          | 9.4         |      | 9.9   |
| Level of Service              |          | Α               |       |      | Α           |           |        |      |          | Α           |      | Α     |
| Approach Delay (s)            |          | 6.4             |       |      | 8.7         |           |        | 0.0  |          |             | 9.7  |       |
| Approach LOS                  |          | Α               |       |      | Α           |           |        | Α    |          |             | Α    |       |
| Intersection Summary          |          |                 |       |      |             |           |        |      |          |             |      |       |
| HCM Average Control De        |          |                 | 8.8   | F    | ICM Le      | vel of Se | ervice |      | Α        |             |      |       |
| <b>HCM Volume to Capacity</b> |          |                 | 0.56  |      |             |           |        |      |          |             |      |       |
| Actuated Cycle Length (s      | ,        |                 | 36.1  |      |             | ost time  |        |      | 8.0      |             |      |       |
| Intersection Capacity Util    | lization |                 | 58.5% | [(   | CU Leve     | el of Ser | vice   |      | В        |             |      |       |
| Analysis Period (min)         |          |                 | 15    |      |             |           |        |      |          |             |      |       |
| c Critical Lane Group         |          |                 |       |      |             |           |        |      |          |             |      |       |

|                                       | ۶      | <b>→</b>    | •     | •    | •           | •         | 4     | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ    | 4    |
|---------------------------------------|--------|-------------|-------|------|-------------|-----------|-------|----------|----------|-------------|------|------|
| Movement                              | EBL    | EBT         | EBR   | WBL  | WBT         | WBR       | NBL   | NBT      | NBR      | SBL         | SBT  | SBR  |
| Lane Configurations                   |        | <b>↑</b> ↑₽ |       |      | <b>↑</b> ↑↑ |           | ሻ     |          | 7        |             |      |      |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 1900   | 1900        | 1900  | 1900 | 1900        | 1900      | 1900  | 1900     | 1900     | 1900        | 1900 | 1900 |
| Total Lost time (s)                   |        | 4.0         |       |      | 4.0         |           | 4.0   |          | 4.0      |             |      |      |
| Lane Util. Factor                     |        | 0.91        |       |      | 0.91        |           | 1.00  |          | 1.00     |             |      |      |
| Frt                                   |        | 0.99        |       |      | 0.99        |           | 1.00  |          | 0.85     |             |      |      |
| Flt Protected                         |        | 1.00        |       |      | 1.00        |           | 0.95  |          | 1.00     |             |      |      |
| Satd. Flow (prot)                     |        | 5047        |       |      | 5023        |           | 1770  |          | 1583     |             |      |      |
| Flt Permitted                         |        | 1.00        |       |      | 1.00        |           | 0.95  |          | 1.00     |             |      |      |
| Satd. Flow (perm)                     |        | 5047        |       |      | 5023        |           | 1770  |          | 1583     |             |      |      |
| Volume (vph)                          | 0      | 390         | 20    | 0    | 1350        | 120       | 140   | 0        | 600      | 0           | 0    | 0    |
|                                       | 0.97   | 0.97        | 0.97  | 0.97 | 0.97        | 0.97      | 0.97  | 0.97     | 0.97     | 0.97        | 0.97 | 0.97 |
| Adj. Flow (vph)                       | 0      | 402         | 21    | 0    | 1392        | 124       | 144   | 0        | 619      | 0           | 0    | 0    |
| RTOR Reduction (vph)                  | 0      | 10          | 0     | 0    | 18          | 0         | 0     | 0        | 125      | 0           | 0    | 0    |
| Lane Group Flow (vph)                 | 0      | 413         | 0     | 0    | 1498        | 0         | 144   | 0        | 494      | 0           | 0    | 0    |
| Turn Type                             |        |             |       |      |             |           | Prot  | С        | ustom    |             |      |      |
| Protected Phases                      |        | 4           |       |      | 8           |           | 2     |          |          |             |      |      |
| Permitted Phases                      |        |             |       |      |             |           |       |          | 2        |             |      |      |
| Actuated Green, G (s)                 |        | 16.2        |       |      | 16.2        |           | 16.8  |          | 16.8     |             |      |      |
| Effective Green, g (s)                |        | 16.2        |       |      | 16.2        |           | 16.8  |          | 16.8     |             |      |      |
| Actuated g/C Ratio                    |        | 0.40        |       |      | 0.40        |           | 0.41  |          | 0.41     |             |      |      |
| Clearance Time (s)                    |        | 4.0         |       |      | 4.0         |           | 4.0   |          | 4.0      |             |      |      |
| Vehicle Extension (s)                 |        | 3.0         |       |      | 3.0         |           | 3.0   |          | 3.0      |             |      |      |
| Lane Grp Cap (vph)                    |        | 1994        |       |      | 1985        |           | 725   |          | 649      |             |      |      |
| v/s Ratio Prot                        |        | 0.08        |       |      | c0.30       |           | 0.08  |          |          |             |      |      |
| v/s Ratio Perm                        |        |             |       |      |             |           |       |          | c0.31    |             |      |      |
| v/c Ratio                             |        | 0.21        |       |      | 0.75        |           | 0.20  |          | 0.76     |             |      |      |
| Uniform Delay, d1                     |        | 8.2         |       |      | 10.7        |           | 7.8   |          | 10.4     |             |      |      |
| Progression Factor                    |        | 1.00        |       |      | 1.00        |           | 1.00  |          | 1.00     |             |      |      |
| Incremental Delay, d2                 |        | 0.1         |       |      | 1.7         |           | 0.1   |          | 5.3      |             |      |      |
| Delay (s)                             |        | 8.2         |       |      | 12.4        |           | 7.9   |          | 15.7     |             |      |      |
| Level of Service                      |        | Α           |       |      | В           |           | Α     |          | В        |             |      |      |
| Approach Delay (s)                    |        | 8.2         |       |      | 12.4        |           |       | 14.2     |          |             | 0.0  |      |
| Approach LOS                          |        | Α           |       |      | В           |           |       | В        |          |             | Α    |      |
| Intersection Summary                  |        |             |       |      |             |           |       |          |          |             |      |      |
| HCM Average Control De                | lay    |             | 12.2  | H    | ICM Lev     | vel of Se | rvice |          | В        |             |      |      |
| <b>HCM Volume to Capacity</b>         | ratio  |             | 0.76  |      |             |           |       |          |          |             |      |      |
| Actuated Cycle Length (s)             |        |             | 41.0  |      |             | ost time  |       |          | 8.0      |             |      |      |
| Intersection Capacity Utiliz          | zation |             | 51.8% | [(   | CU Leve     | el of Ser | vice  |          | Α        |             |      |      |
| Analysis Period (min)                 |        |             | 15    |      |             |           |       |          |          |             |      |      |
| c Critical Lane Group                 |        |             |       |      |             |           |       |          |          |             |      |      |

|                          | -         | $\rightarrow$ | •     | <b>←</b>   | 4       | <i>&gt;</i>   |    |
|--------------------------|-----------|---------------|-------|------------|---------|---------------|----|
| Movement                 | EBT       | EBR           | WBL   | WBT        | NBL     | NBR           |    |
| Lane Configurations      | <b>^</b>  |               |       | <b>^</b> ^ |         |               |    |
| Sign Control             | Free      |               |       | Free       | Stop    |               |    |
| Grade                    | 0%        |               |       | 0%         | 0%      |               |    |
| Volume (veh/h)           | 500       | 300           | 0     | 1420       | 0       | 0             |    |
| Peak Hour Factor         | 0.97      | 0.97          | 0.97  | 0.97       | 0.97    | 0.97          |    |
| Hourly flow rate (vph)   | 515       | 309           | 0     | 1464       | 0       | 0             |    |
| Pedestrians              |           |               |       |            |         |               |    |
| Lane Width (ft)          |           |               |       |            |         |               |    |
| Walking Speed (ft/s)     |           |               |       |            |         |               |    |
| Percent Blockage         |           |               |       |            |         |               |    |
| Right turn flare (veh)   |           |               |       |            |         |               |    |
| Median type              |           |               |       |            | None    |               |    |
| Median storage veh)      |           |               |       |            |         |               |    |
| Upstream signal (ft)     |           |               |       | 582        |         |               |    |
| pX, platoon unblocked    |           |               |       |            |         |               |    |
| vC, conflicting volume   |           |               | 825   |            | 1158    | 326           |    |
| vC1, stage 1 conf vol    |           |               |       |            |         |               |    |
| vC2, stage 2 conf vol    |           |               |       |            |         |               |    |
| vCu, unblocked vol       |           |               | 825   |            | 1158    | 326           |    |
| tC, single (s)           |           |               | 4.1   |            | 6.8     | 6.9           |    |
| tC, 2 stage (s)          |           |               |       |            |         |               |    |
| tF (s)                   |           |               | 2.2   |            | 3.5     | 3.3           |    |
| p0 queue free %          |           |               | 100   |            | 100     | 100           |    |
| cM capacity (veh/h)      |           |               | 801   |            | 189     | 669           |    |
| Direction, Lane #        | EB 1      | EB 2          | EB 3  | WB 1       | WB 2    | WB3           |    |
| Volume Total             | 206       | 206           | 412   | 488        | 488     | 488           |    |
| Volume Left              | 0         | 0             | 0     | 0          | 0       | 0             |    |
| Volume Right             | 0         | 0             | 309   | 0          | 0       | 0             |    |
| cSH                      | 1700      | 1700          | 1700  | 1700       | 1700    | 1700          |    |
| Volume to Capacity       | 0.12      | 0.12          | 0.24  | 0.29       | 0.29    | 0.29          |    |
| Queue Length 95th (ft)   | 0         | 0             | 0     | 0          | 0       | 0             |    |
| Control Delay (s)        | 0.0       | 0.0           | 0.0   | 0.0        | 0.0     | 0.0           |    |
| Lane LOS                 |           |               |       |            |         |               |    |
| Approach Delay (s)       | 0.0       |               |       | 0.0        |         |               |    |
| Approach LOS             |           |               |       |            |         |               |    |
| Intersection Summary     |           |               |       |            |         |               |    |
| Average Delay            |           |               | 0.0   |            |         |               |    |
| Intersection Capacity Ut | ilization |               | 30.8% | Į.         | CU Leve | el of Service | се |
| Analysis Period (min)    |           |               | 15    |            |         |               |    |
| 3, 55 : 56 ()            |           |               |       |            |         |               |    |
|                          |           |               |       |            |         |               |    |


|                           | ۶         | <b>→</b> | <b>+</b> | •    | <b>/</b> | 4            |   |
|---------------------------|-----------|----------|----------|------|----------|--------------|---|
| Movement                  | EBL       | EBT      | WBT      | WBR  | SBL      | SBR          |   |
| Lane Configurations       |           | ተተተ      | <b>^</b> |      |          |              |   |
| Sign Control              |           | Free     | Free     |      | Stop     |              |   |
| Grade                     |           | 0%       | 0%       |      | 0%       |              |   |
| Volume (veh/h)            | 0         | 1300     | 2050     | 380  | 0        | 0            |   |
| Peak Hour Factor          | 0.97      | 0.97     | 0.97     | 0.97 | 0.97     | 0.97         |   |
| Hourly flow rate (vph)    | 0         | 1340     | 2113     | 392  | 0        | 0            |   |
| Pedestrians               |           |          |          |      |          |              |   |
| Lane Width (ft)           |           |          |          |      |          |              |   |
| Walking Speed (ft/s)      |           |          |          |      |          |              |   |
| Percent Blockage          |           |          |          |      |          |              |   |
| Right turn flare (veh)    |           |          |          |      |          |              |   |
| Median type               |           |          |          |      | None     |              |   |
| Median storage veh)       |           |          |          |      |          |              |   |
| Upstream signal (ft)      |           | 325      |          |      |          |              |   |
| pX, platoon unblocked     |           |          |          |      | 0.91     |              |   |
| vC, conflicting volume    | 2505      |          |          |      | 2756     | 900          |   |
| vC1, stage 1 conf vol     |           |          |          |      |          |              |   |
| vC2, stage 2 conf vol     |           |          |          |      |          |              |   |
| vCu, unblocked vol        | 2505      |          |          |      | 2733     | 900          |   |
| tC, single (s)            | 4.1       |          |          |      | 6.8      | 6.9          |   |
| tC, 2 stage (s)           |           |          |          |      |          |              |   |
| tF (s)                    | 2.2       |          |          |      | 3.5      | 3.3          |   |
| p0 queue free %           | 100       |          |          |      | 100      | 100          |   |
| cM capacity (veh/h)       | 179       |          |          |      | 15       | 281          |   |
| Direction, Lane #         | EB 1      | EB 2     | EB 3     | WB 1 | WB 2     | WB3          |   |
| Volume Total              | 447       | 447      | 447      | 845  | 845      | 814          |   |
| Volume Left               | 0         | 0        | 0        | 0    | 0        | 0            |   |
| Volume Right              | 0         | 0        | 0        | 0    | 0        | 392          |   |
| cSH                       | 1700      | 1700     | 1700     | 1700 | 1700     | 1700         |   |
| Volume to Capacity        | 0.26      | 0.26     | 0.26     | 0.50 | 0.50     | 0.48         |   |
| Queue Length 95th (ft)    | 0         | 0        | 0        | 0    | 0        | 0            |   |
| Control Delay (s)         | 0.0       | 0.0      | 0.0      | 0.0  | 0.0      | 0.0          |   |
| Lane LOS                  |           |          |          |      |          |              |   |
| Approach Delay (s)        | 0.0       |          |          | 0.0  |          |              |   |
| Approach LOS              |           |          |          |      |          |              |   |
| Intersection Summary      |           |          |          |      |          |              |   |
| Average Delay             |           |          | 0.0      |      |          |              | - |
| Intersection Capacity Uti | ilization |          | 51.4%    | [0   | CU Leve  | el of Servic | е |
| Analysis Period (min)     |           |          | 15       |      |          |              |   |
|                           |           |          |          |      |          |              |   |

|                              | ۶        | <b>→</b> | ←               | •    | <b>&gt;</b> | ✓             |    |     |
|------------------------------|----------|----------|-----------------|------|-------------|---------------|----|-----|
| Movement                     | EBL      | EBT      | WBT             | WBR  | SBL         | SBR           |    |     |
| Lane Configurations          |          | 4        | <del>ተ</del> ተጉ |      |             | *             |    |     |
| Ideal Flow (vphpl)           | 1900     | 1900     | 1900            | 1900 | 1900        | 1900          |    |     |
| Total Lost time (s)          |          | 4.0      | 4.0             |      | 4.0         | 4.0           |    |     |
| Lane Util. Factor            |          | 1.00     | 0.91            |      | 1.00        | 1.00          |    |     |
| Frt                          |          | 1.00     | 0.93            |      | 1.00        | 0.85          |    |     |
| Flt Protected                |          | 1.00     | 1.00            |      | 0.95        | 1.00          |    |     |
| Satd. Flow (prot)            |          | 1863     | 4710            |      | 1770        | 1583          |    |     |
| Flt Permitted                |          | 1.00     | 1.00            |      | 0.95        | 1.00          |    |     |
| Satd. Flow (perm)            |          | 1863     | 4710            |      | 1770        | 1583          |    |     |
| Volume (vph)                 | 0        | 890      | 680             | 660  | 390         | 160           |    |     |
| Peak-hour factor, PHF        | 0.97     | 0.97     | 0.97            | 0.97 | 0.97        | 0.97          |    |     |
| Adj. Flow (vph)              | 0        | 918      | 701             | 680  | 402         | 165           |    |     |
| RTOR Reduction (vph)         | 0        | 0        | 226             | 0    | 0           | 114           |    |     |
| Lane Group Flow (vph)        | 0        | 918      | 1155            | 0    | 402         | 51            |    |     |
| Turn Type                    |          |          |                 |      |             | Perm          |    |     |
| Protected Phases             |          | 4        | 8               |      | 6           |               |    |     |
| Permitted Phases             |          |          |                 |      |             | 6             |    |     |
| Actuated Green, G (s)        |          | 33.4     | 33.4            |      | 18.3        | 18.3          |    |     |
| Effective Green, g (s)       |          | 33.4     | 33.4            |      | 18.3        | 18.3          |    |     |
| Actuated g/C Ratio           |          | 0.56     | 0.56            |      | 0.31        | 0.31          |    |     |
| Clearance Time (s)           |          | 4.0      | 4.0             |      | 4.0         | 4.0           |    |     |
| Vehicle Extension (s)        |          | 3.0      | 3.0             |      | 3.0         | 3.0           |    |     |
| Lane Grp Cap (vph)           |          | 1042     | 2635            |      | 543         | 485           |    |     |
| v/s Ratio Prot               |          | c0.49    | 0.25            |      | c0.23       |               |    |     |
| v/s Ratio Perm               |          |          |                 |      |             | 0.03          |    |     |
| v/c Ratio                    |          | 0.88     | 0.44            |      | 0.74        | 0.10          |    |     |
| Uniform Delay, d1            |          | 11.4     | 7.7             |      | 18.6        | 14.8          |    |     |
| Progression Factor           |          | 1.00     | 1.00            |      | 1.00        | 1.00          |    |     |
| Incremental Delay, d2        |          | 8.9      | 0.1             |      | 5.4         | 0.1           |    |     |
| Delay (s)                    |          | 20.3     | 7.8             |      | 24.0        | 14.9          |    |     |
| Level of Service             |          | С        | A               |      | С           | В             |    |     |
| Approach Delay (s)           |          | 20.3     | 7.8             |      | 21.3        |               |    |     |
| Approach LOS                 |          | С        | Α               |      | С           |               |    |     |
| Intersection Summary         |          |          |                 |      |             |               |    |     |
| HCM Average Control D        |          |          | 14.5            | H    | ICM Le      | vel of Servi  | ce | В   |
| <b>HCM Volume to Capacit</b> |          |          | 0.83            |      |             |               |    |     |
| Actuated Cycle Length (      | ,        |          | 59.7            |      |             | ost time (s)  |    | 8.0 |
| Intersection Capacity Uti    | lization |          | 75.1%           | 10   | CU Leve     | el of Service | 9  | D   |
| Analysis Period (min)        |          |          | 15              |      |             |               |    |     |
| c Critical Lane Group        |          |          |                 |      |             |               |    |     |

|                          | -               | •    | •     | ←    | 1       | <b>/</b>       |     |
|--------------------------|-----------------|------|-------|------|---------|----------------|-----|
| Movement                 | EBT             | EBR  | WBL   | WBT  | NBL     | NBR            |     |
| Lane Configurations      | <del>ተ</del> ተጉ |      |       | ተተተ  | ኝ       | #              |     |
| Ideal Flow (vphpl)       | 1900            | 1900 | 1900  | 1900 | 1900    | 1900           |     |
| Total Lost time (s)      | 4.0             |      |       | 4.0  | 4.0     | 4.0            |     |
| Lane Util. Factor        | 0.91            |      |       | 0.91 | 1.00    | 1.00           |     |
| Frt                      | 0.98            |      |       | 1.00 | 1.00    | 0.85           |     |
| Flt Protected            | 1.00            |      |       | 1.00 | 0.95    | 1.00           |     |
| Satd. Flow (prot)        | 5002            |      |       | 5085 | 1770    | 1583           |     |
| Flt Permitted            | 1.00            |      |       | 1.00 | 0.95    | 1.00           |     |
| Satd. Flow (perm)        | 5002            |      |       | 5085 | 1770    | 1583           |     |
| Volume (vph)             | 1140            | 140  | 0     | 1050 | 290     | 1390           |     |
| Peak-hour factor, PHF    | 0.97            | 0.97 | 0.97  | 0.97 | 0.97    | 0.97           |     |
| Adj. Flow (vph)          | 1175            | 144  | 0     | 1082 | 299     | 1433           |     |
| RTOR Reduction (vph)     | 23              | 0    | 0     | 0    | 0       | 0              |     |
| Lane Group Flow (vph)    | 1296            | 0    | 0     | 1082 | 299     | 1433           |     |
| Turn Type                |                 |      |       |      |         | Perm           |     |
| Protected Phases         | 4               |      |       | 8    | 2       |                |     |
| Permitted Phases         |                 |      |       |      |         | 2              |     |
| Actuated Green, G (s)    | 16.0            |      |       | 16.0 | 41.0    | 41.0           |     |
| Effective Green, g (s)   | 16.0            |      |       | 16.0 | 41.0    | 41.0           |     |
| Actuated g/C Ratio       | 0.25            |      |       | 0.25 | 0.63    | 0.63           |     |
| Clearance Time (s)       | 4.0             |      |       | 4.0  | 4.0     | 4.0            |     |
| Vehicle Extension (s)    | 3.0             |      |       | 3.0  | 3.0     | 3.0            |     |
| Lane Grp Cap (vph)       | 1231            |      |       | 1252 | 1116    | 999            |     |
| v/s Ratio Prot           | c0.26           |      |       | 0.21 | 0.17    |                |     |
| v/s Ratio Perm           |                 |      |       |      |         | c0.90          |     |
| v/c Ratio                | 1.05            |      |       | 0.86 | 0.27    | 1.43           |     |
| Uniform Delay, d1        | 24.5            |      |       | 23.5 | 5.3     | 12.0           |     |
| Progression Factor       | 1.00            |      |       | 1.00 | 1.00    | 1.00           |     |
| Incremental Delay, d2    | 40.7            |      |       | 6.4  | 0.1     | 201.1          |     |
| Delay (s)                | 65.2            |      |       | 29.9 | 5.5     | 213.1          |     |
| Level of Service         | Е               |      |       | С    | Α       | F              |     |
| Approach Delay (s)       | 65.2            |      |       | 29.9 | 177.3   |                |     |
| Approach LOS             | Е               |      |       | С    | F       |                |     |
| Intersection Summary     |                 |      |       |      |         |                |     |
| HCM Average Control D    |                 |      | 102.9 | H    | ICM Le  | vel of Service | e F |
| HCM Volume to Capaci     |                 |      | 1.33  |      |         |                |     |
| Actuated Cycle Length (  | s)              |      | 65.0  |      |         | ost time (s)   | 8.0 |
| Intersection Capacity Ut | ilization       | 1    | 17.9% | [0   | CU Leve | el of Service  | H   |
| Analysis Period (min)    |                 |      | 15    |      |         |                |     |
| c Critical Lane Group    |                 |      |       |      |         |                |     |

## Level Of Service Computation Report 2000 HCM 4-Way Stop (Base Volume Alternative) C. + Preferred Alt. PM

# Intersection #5: Elverta Road / East Levee Road

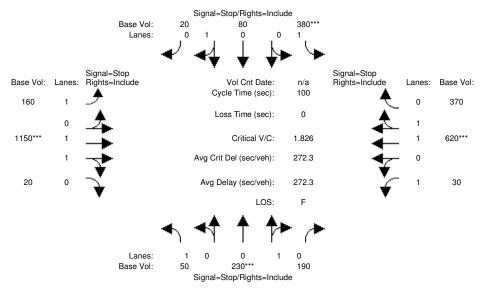


| Street Name: Approach:     | Noi  | Ea<br>cth Bo | st Lev    | ee Roa | ad<br>uth Bo | und    | Εá   | ast Bo | Elvert<br>ound | a Road<br>We | d<br>est Bo | ound      |
|----------------------------|------|--------------|-----------|--------|--------------|--------|------|--------|----------------|--------------|-------------|-----------|
| Movement:                  | L -  | - T          | - R       | L -    | - T          | - R    | L -  | - T    | - R            | L ·          |             |           |
| Min. Green:                | 0    | 0            | 0         | 0      | 0            | 0      | 0    | 0      | 0              | 0            | 0           | 0         |
| Volume Module              |      |              |           |        |              |        |      |        |                |              |             |           |
| Base Vol:                  | 10   | 130          | 140       | 10     | 40           | 10     | 60   | 1410   | 20             | 130          | 690         | 130       |
| Growth Adj:                | 1.00 | 1.00         | 1.00      | 1.00   | 1.00         | 1.00   | 1.00 | 1.00   | 1.00           | 1.00         | 1.00        | 1.00      |
| Initial Bse:               |      |              | 140       | 10     | 40           | 10     | 60   | 1410   | 20             | 130          | 690         | 130       |
| User Adj:                  |      |              | 1.00      | 1.00   | 1.00         | 1.00   | 1.00 | 1.00   | 1.00           | 1.00         | 1.00        | 1.00      |
| PHF Adj:                   | 0.97 | 0.97         | 0.97      | 0.97   | 0.97         | 0.97   |      | 0.97   |                | 0.97         | 0.97        | 0.97      |
| PHF Volume:                |      | 134          | 144       | 10     | 41           | 10     |      | 1454   | 21             | 134          |             | 134       |
| Reduct Vol:                |      | 0            | 0         | 0      | 0            | 0      | 0    |        | 0              | 0            |             | 0         |
| Reduced Vol:               |      |              |           | 10     | 41           | 10     | 62   |        |                | 134          |             | 134       |
| PCE Adj:                   |      |              | 1.00      |        | 1.00         | 1.00   |      | 1.00   |                |              | 1.00        | 1.00      |
| MLF Adj:                   |      |              | 1.00      |        | 1.00         | 1.00   |      | 1.00   |                |              | 1.00        | 1.00      |
| FinalVolume:               |      |              |           | 10     |              |        | 62   |        |                | 134          |             | 134       |
|                            |      |              |           |        |              |        |      |        |                |              |             |           |
| Saturation Fi              |      |              |           |        |              |        |      |        |                |              |             |           |
| Adjustment:                |      |              |           |        |              |        |      |        |                |              | 1.00        |           |
| Lanes:                     |      |              |           |        |              | 0.20   |      |        | 0.03           |              |             | 0.32      |
| Final Sat.:                |      |              |           |        |              |        | 393  |        |                | 400          |             | 139       |
| Canadity                   |      |              |           |        |              |        |      |        |                |              |             |           |
| Capacity Anal              | -    |              |           | 0 02   | 0 1 1        | 0 1 4  | 0 10 | 1 75   | 1 75           | 0 22         | 0 00        | 0 07      |
| Vol/Sat:                   |      |              | 0.68      | 0.03   | 0.14         | 0.14   |      | 1./5   | 1.75           | 0.33         | 0.98        | 0.97      |
| Crit Moves:<br>Delay/Veh:  |      |              | 27 /      | 13.3   | 12 0         | 13.9   |      |        | 366.6          | 16 1         | 67.8        | 63.5      |
|                            |      |              |           | 1.00   |              | 1.00   |      |        | 1.00           |              | 1.00        | 1.00      |
| Delay Adj:<br>AdjDel/Veh:  |      |              |           | 13.3   |              | 13.9   |      |        | 366.6          |              | 67.8        | 63.5      |
| LOS by Move:               |      |              | 27.4<br>D |        | 13.9         | 13.9   |      |        | 500.0<br>F     |              | 07.0<br>F   | 03.3<br>F |
|                            |      | 26 9         |           |        | 13.8         | ם      |      | 353.2  |                | C            | 60.1        | Е         |
| ApproachDel:<br>Delay Adj: |      | 26.9<br>1.00 |           |        | 1.00         |        |      | 1.00   |                |              | 1.00        |           |
| ApprAdjDel:                |      |              |           |        |              |        |      | 353.2  |                |              | 60.1        |           |
| LOS by Appr:               |      |              |           |        | В            |        |      | F.     |                |              | F           |           |
| AllWayAvgQ:                |      |              |           |        |              |        |      | _      | 41.6           | 0.5          | _           | 6.4       |
| Note: Queue                |      |              |           |        |              |        |      |        | 11.0           | 0.0          | / • ±       | 0.1       |
| noco, gacac                |      |              |           |        |              | Warran |      |        | Irbanl         |              |             |           |
| *****                      |      |              |           |        |              |        |      |        |                | ****         | *****       | *****     |
| Intersection ******        |      |              |           |        |              |        |      | ****   | *****          | ****         | *****       | ****      |
| Base Volume A              |      |              |           |        |              |        |      |        |                |              |             |           |
|                            |      |              |           |        |              |        |      |        |                |              |             |           |
| Approach:                  | Noi  |              |           |        |              | und    |      |        | ound           |              | est Bo      | und       |

| Movement: | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L - T - R | L -

## SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).


The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

|                           | ۶        | <b>→</b> | •               | •    | <b>&gt;</b> | 4         |      |       |      |  |
|---------------------------|----------|----------|-----------------|------|-------------|-----------|------|-------|------|--|
| Movement                  | EBL      | EBT      | WBT             | WBR  | SBL         | SBR       |      |       |      |  |
| Lane Configurations       | ሻ        | ተተተ      | ተተ <sub>ጉ</sub> |      | ሻ           | 7         |      |       |      |  |
| Sign Control              |          | Free     | Free            |      | Stop        |           |      |       |      |  |
| Grade                     |          | 0%       | 0%              |      | 0%          |           |      |       |      |  |
| Volume (veh/h)            | 250      | 1990     | 810             | 90   | 40          | 150       |      |       |      |  |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97            | 0.97 | 0.97        | 0.97      |      |       |      |  |
| Hourly flow rate (vph)    | 258      | 2052     | 835             | 93   | 41          | 155       |      |       |      |  |
| Pedestrians               |          |          |                 |      |             |           |      |       |      |  |
| Lane Width (ft)           |          |          |                 |      |             |           |      |       |      |  |
| Walking Speed (ft/s)      |          |          |                 |      |             |           |      |       |      |  |
| Percent Blockage          |          |          |                 |      |             |           |      |       |      |  |
| Right turn flare (veh)    |          |          |                 |      |             |           |      |       |      |  |
| Median type               |          |          |                 |      | None        |           |      |       |      |  |
| Median storage veh)       |          |          |                 |      |             |           |      |       |      |  |
| Upstream signal (ft)      |          |          |                 |      |             |           |      |       |      |  |
| pX, platoon unblocked     |          |          |                 |      |             |           |      |       |      |  |
| vC, conflicting volume    | 928      |          |                 |      | 2081        | 325       |      |       |      |  |
| vC1, stage 1 conf vol     |          |          |                 |      |             |           |      |       |      |  |
| vC2, stage 2 conf vol     |          |          |                 |      |             |           |      |       |      |  |
| vCu, unblocked vol        | 928      |          |                 |      | 2081        | 325       |      |       |      |  |
| tC, single (s)            | 4.1      |          |                 |      | 6.8         | 6.9       |      |       |      |  |
| tC, 2 stage (s)           |          |          |                 |      |             |           |      |       |      |  |
| tF (s)                    | 2.2      |          |                 |      | 3.5         | 3.3       |      |       |      |  |
| p0 queue free %           | 65       |          |                 |      | 0           | 77        |      |       |      |  |
| cM capacity (veh/h)       | 733      |          |                 |      | 30          | 671       |      |       |      |  |
| Direction, Lane #         | EB 1     | EB 2     | EB 3            | EB 4 | WB 1        | WB2       | WB3  | SB 1  | SB 2 |  |
| Volume Total              | 258      | 684      | 684             | 684  | 334         | 334       | 260  | 41    | 155  |  |
| Volume Left               | 258      | 0        | 0               | 0    | 0           | 0         | 0    | 41    | 0    |  |
| Volume Right              | 0        | 0        | 0               | 0    | 0           | 0         | 93   | 0     | 155  |  |
| cSH                       | 733      | 1700     | 1700            | 1700 | 1700        | 1700      | 1700 | 30    | 671  |  |
| Volume to Capacity        | 0.35     | 0.40     | 0.40            | 0.40 | 0.20        | 0.20      | 0.15 | 1.39  | 0.23 |  |
| Queue Length 95th (ft)    | 40       | 0        | 0               | 0    | 0           | 0         | 0    | 118   | 22   |  |
| Control Delay (s)         | 12.6     | 0.0      | 0.0             | 0.0  | 0.0         | 0.0       | 0.0  | 500.4 | 12.0 |  |
| Lane LOS                  | В        |          |                 |      |             |           |      | F     | В    |  |
| Approach Delay (s)        | 1.4      |          |                 |      | 0.0         |           |      | 114.8 |      |  |
| Approach LOS              |          |          |                 |      |             |           |      | F     |      |  |
| Intersection Summary      |          |          |                 |      |             |           |      |       |      |  |
| Average Delay             |          |          | 7.5             |      |             |           |      |       |      |  |
| Intersection Capacity Uti | lization |          | 48.4%           | l l  | CU Leve     | el of Sei | vice |       | Α    |  |
| Analysis Period (min)     |          |          | 15              |      |             |           |      |       |      |  |
|                           |          |          |                 |      |             |           |      |       |      |  |

|                          | ۶    | <b>→</b>   | •    | •    | <b>←</b>   | 4         | 4      | <b>†</b> | ~      | <b>&gt;</b> | <b></b> | 1    |
|--------------------------|------|------------|------|------|------------|-----------|--------|----------|--------|-------------|---------|------|
| Movement                 | EBL  | EBT        | EBR  | WBL  | WBT        | WBR       | NBL    | NBT      | NBR    | SBL         | SBT     | SBR  |
| Lane Configurations      | ሻ    | <b>∱</b> } |      | ሻ    | <b>∱</b> } |           | ሻ      | ĵ»       |        | ሻ           | ĵ»      |      |
| Sign Control             |      | Free       |      |      | Free       |           |        | Stop     |        |             | Stop    |      |
| Grade                    |      | 0%         |      |      | 0%         |           |        | 0%       |        |             | 0%      |      |
| Volume (veh/h)           | 330  | 1220       | 10   | 10   | 690        | 10        | 10     | 10       | 10     | 10          | 10      | 250  |
| Peak Hour Factor         | 0.97 | 0.97       | 0.97 | 0.97 | 0.97       | 0.97      | 0.97   | 0.97     | 0.97   | 0.97        | 0.97    | 0.97 |
| Hourly flow rate (vph)   | 340  | 1258       | 10   | 10   | 711        | 10        | 10     | 10       | 10     | 10          | 10      | 258  |
| Pedestrians              |      |            |      |      |            |           |        |          |        |             |         |      |
| Lane Width (ft)          |      |            |      |      |            |           |        |          |        |             |         |      |
| Walking Speed (ft/s)     |      |            |      |      |            |           |        |          |        |             |         |      |
| Percent Blockage         |      |            |      |      |            |           |        |          |        |             |         |      |
| Right turn flare (veh)   |      |            |      |      |            |           |        |          |        |             |         |      |
| Median type              |      |            |      |      |            |           |        | None     |        |             | None    |      |
| Median storage veh)      |      |            |      |      |            |           |        |          |        |             |         |      |
| Upstream signal (ft)     |      |            |      |      |            |           |        |          |        |             |         |      |
| pX, platoon unblocked    |      |            |      |      |            |           |        |          |        |             |         |      |
| vC, conflicting volume   | 722  |            |      | 1268 |            |           | 2582   | 2686     | 634    | 2062        | 2686    | 361  |
| vC1, stage 1 conf vol    |      |            |      |      |            |           |        |          |        |             |         |      |
| vC2, stage 2 conf vol    |      |            |      |      |            |           |        |          |        |             |         |      |
| vCu, unblocked vol       | 722  |            |      | 1268 |            |           | 2582   | 2686     | 634    | 2062        | 2686    | 361  |
| tC, single (s)           | 4.1  |            |      | 4.1  |            |           | 7.5    | 6.5      | 6.9    | 7.5         | 6.5     | 6.9  |
| tC, 2 stage (s)          |      |            |      |      |            |           |        |          |        |             |         |      |
| tF (s)                   | 2.2  |            |      | 2.2  |            |           | 3.5    | 4.0      | 3.3    | 3.5         | 4.0     | 3.3  |
| p0 queue free %          | 61   |            |      | 98   |            |           | 0      | 20       | 98     | 0           | 20      | 59   |
| cM capacity (veh/h)      | 876  |            |      | 544  |            |           | 2      | 13       | 422    | 8           | 13      | 636  |
| Direction, Lane #        | EB 1 | EB 2       | EB 3 | WB 1 | WB 2       | WB3       | NB 1   | NB 2     | SB 1   | SB 2        |         |      |
| Volume Total             | 340  | 838        | 430  | 10   | 474        | 247       | 10     | 21       | 10     | 268         |         |      |
| Volume Left              | 340  | 0          | 0    | 10   | 0          | 0         | 10     | 0        | 10     | 0           |         |      |
| Volume Right             | 0    | 0          | 10   | 0    | 0          | 10        | 0      | 10       | 0      | 258         |         |      |
| cSH                      | 876  | 1700       | 1700 | 544  | 1700       | 1700      | 2      | 25       | 8      | 223         |         |      |
| Volume to Capacity       | 0.39 | 0.49       | 0.25 | 0.02 | 0.28       | 0.15      | 5.56   | 0.82     | 1.34   | 1.20        |         |      |
| Queue Length 95th (ft)   | 46   | 0          | 0    | 1    | 0          | 0         | Err    | 63       | 53     | 332         |         |      |
| Control Delay (s)        | 11.7 | 0.0        | 0.0  | 11.7 | 0.0        | 0.0       | Err    | 343.3    | 1090.4 | 171.5       |         |      |
| Lane LOS                 | В    |            |      | В    |            |           | F      | F        | F      | F           |         |      |
| Approach Delay (s)       | 2.5  |            |      | 0.2  |            | ;         | 3561.9 |          | 205.5  |             |         |      |
| Approach LOS             |      |            |      |      |            |           | F      |          | F      |             |         |      |
| Intersection Summary     |      |            |      |      |            |           |        |          |        |             |         |      |
| Average Delay            |      |            | 64.7 |      |            |           |        |          |        |             |         | _    |
| Intersection Capacity Ut |      |            |      |      | CU Lev     | el of Sei | vice   |          | В      |             |         |      |
| Analysis Period (min)    |      |            | 15   |      |            |           |        |          |        |             |         |      |
|                          |      |            |      |      |            |           |        |          |        |             |         |      |

## Level Of Service Computation Report 2000 HCM 4-Way Stop (Base Volume Alternative) C. + Preferred Alt. PM

# Intersection #8: Elverta Road / Elwyn Road

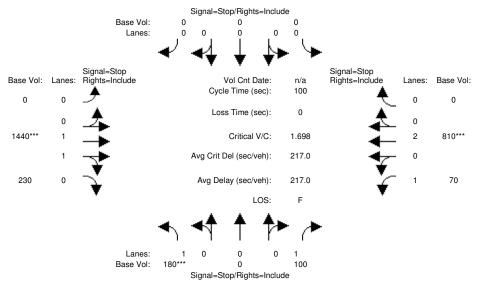


| Street Name:<br>Approach:  | North E                                    | Elwyr<br>Bound      | n Road<br>Soi | uth Bo | ound            | Eas    | st Bo         | Elvert | a Roac<br>We                            | l<br>est Bo | ound   |
|----------------------------|--------------------------------------------|---------------------|---------------|--------|-----------------|--------|---------------|--------|-----------------------------------------|-------------|--------|
| Movement:                  | L – T                                      | - R                 | L ·           | - T    | - R             | L -    | Τ             | - R    | L -                                     | - T         | - R    |
| Min. Green:                | 0 0                                        | 0                   | 0             | 0      | 0               | 0      | 0             | 0      | 0                                       | 0           | 0      |
| Volume Module              |                                            |                     |               |        |                 |        |               |        |                                         |             |        |
| Base Vol:                  | 50 230                                     | 190                 | 380           | 80     | 20              | 160 1  | 1150          | 20     | 30                                      | 620         | 370    |
| Growth Adj:                | 1.00 1.00                                  | 1.00                | 1.00          | 1.00   | 1.00            | 1.00 1 | 1.00          | 1.00   | 1.00                                    | 1.00        | 1.00   |
| Initial Bse:               | 50 230                                     | 190                 | 380           | 80     | 20              | 160 1  | 1150          | 20     | 30                                      | 620         | 370    |
| User Adj:                  |                                            |                     |               | 1.00   | 1.00            | 1.00 1 |               | 1.00   | 1.00                                    |             | 1.00   |
| PHF Adj:                   |                                            |                     |               | 0.97   | 0.97            | 0.97 0 | 0.97          |        | 0.97                                    |             | 0.97   |
| PHF Volume:                |                                            | 196                 | 392           | 82     | 21              | 165 1  | 1186          | 21     | 31                                      | 639         | 381    |
| Reduct Vol:                |                                            |                     | 0             | 0      | 0               | 0      | 0             | 0      | 0                                       | 0           | 0      |
| Reduced Vol:               |                                            |                     | 392           |        | 21              | 165 1  |               |        |                                         |             | 381    |
| PCE Adj:                   |                                            |                     |               | 1.00   | 1.00            | 1.00 1 | 1.00          |        | 1.00                                    |             | 1.00   |
| MLF Adj:                   |                                            |                     |               | 1.00   | 1.00            | 1.00 1 |               |        |                                         |             | 1.00   |
| FinalVolume:               |                                            |                     | 392           |        |                 | 165 1  |               |        | 31                                      |             | 381    |
|                            | '                                          |                     |               |        |                 |        |               |        |                                         |             |        |
| Saturation F               |                                            |                     |               |        |                 |        |               |        |                                         |             |        |
| Adjustment:                |                                            |                     |               |        |                 |        |               |        |                                         |             |        |
| Lanes:                     |                                            |                     |               |        |                 |        |               | 0.03   |                                         |             |        |
| Final Sat.:                |                                            |                     |               |        |                 |        |               |        | 304                                     |             |        |
|                            | '                                          |                     |               |        |                 |        |               |        |                                         |             |        |
| Capacity Anal              | -                                          |                     |               |        |                 |        |               |        |                                         |             |        |
| Vol/Sat:                   |                                            |                     |               |        | 0.30            |        | L.83          |        | 0.10                                    | 1.58        | 1.52   |
| Crit Moves:                |                                            |                     |               |        | 4.5.4           |        |               |        | 4.5.0                                   |             | 0.00   |
| Delay/Veh:                 |                                            |                     |               |        |                 |        |               | 406.9  |                                         |             | 277.2  |
| Delay Adj:                 | 1.00 1.00                                  | 1.00                | 1.00          | 1.00   | 1.00            |        |               | 1.00   |                                         |             | 1.00   |
| AdjDel/Veh:                |                                            |                     |               |        | 17.4            |        |               | 406.9  |                                         |             | 277.2  |
| LOS by Move:               |                                            |                     |               |        | С               | D      |               |        |                                         |             | F      |
| ApproachDel:<br>Delay Adj: | 144.5                                      | )                   |               | 120.9  |                 |        | 51.9          |        |                                         | 285.7       |        |
| Delay Adj:                 | 1.00                                       |                     |               | 1.00   |                 |        | 1.00          |        |                                         | 1.00        |        |
| ApprAdjDel: LOS by Appr:   | 144.5                                      | )                   | •             | 120.9  |                 | 36     | 01.9          |        | 4                                       | 7.85.7<br>F |        |
| LOS by Appr: AllWayAvgQ:   |                                            |                     |               |        |                 | 1 0 3  |               |        |                                         | _           | 24 5   |
|                            |                                            |                     |               |        |                 |        | 30.2          | 30.1   | 0.1                                     | 26.3        | 24.5   |
| Note: Queue                |                                            | s the f<br>Iour Vol |               |        |                 |        | o+ Γτ         | Imbanl |                                         |             |        |
| ******                     | reak r<br>******                           | *******             | .ume 5.       | *****  | warran<br>***** | ****** | LL [(<br>**** | )rbanj | *****                                   | ****        | ****** |
| Intersection ********      | #8 Elvert                                  | a Road              | / Elw         | yn Roa | ıd              |        |               |        |                                         |             |        |
| Base Volume A              |                                            |                     |               |        |                 |        |               |        | ^ ^ ^ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | . ^ ^ * * 7 |        |
|                            |                                            |                     |               |        |                 |        |               | 1      |                                         |             | 1      |
| Approach:                  | North Bound South Bound East Bound West Bo |                     |               |        |                 |        |               |        |                                         |             |        |

 
 COMPARE
 Tue Nov 23 09:56:29 2010

 Movement:
 L - T - R
 L - T - R
 L - T - R
 -----||-----||------| -----||-----||-----| Major Street Volume: 2350 Minor Approach Volume: 480 Minor Approach Volume Threshold: 7 [less than minimum of 150]

\_\_\_\_\_\_


## SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

# Level Of Service Computation Report 2000 HCM 4-Way Stop (Base Volume Alternative) C. + Preferred Alt. PM

# Intersection #9: Elverta Road / Rio Linda Boulevard



| Movement:                                                                                                                                                                                                                                                                                                                                                                                                                                    | Street Name: Approach: |        |        | Linda<br>ound |        |       | ound    | E    | ast Bo | Elvert<br>ound |      |             | ound  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|--------|---------------|--------|-------|---------|------|--------|----------------|------|-------------|-------|
| Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                            | Movement:              | L -    | - T    | - R           | L -    | - T   | - R     | L ·  | - T    | - R            |      |             |       |
| Volume Module: Base Vol: 180 0 100 0 0 0 0 1440 230 70 810 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                              | Min. Green:            | 0      | 0      | 0             | . 0    | 0     | 0       | . 0  | 0      | 0              | . 0  | 0           | 0     |
| Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                           |                        |        |        |               |        |       |         |      |        |                |      |             |       |
| Initial Bse: 180                                                                                                                                                                                                                                                                                                                                                                                                                             | Base Vol:              | 180    | 0      | 100           | 0      | 0     | 0       | 0    | 1440   | 230            | 70   | 810         | 0     |
| User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                             | Growth Adj:            | 1.00   | 1.00   | 1.00          | 1.00   | 1.00  | 1.00    | 1.00 | 1.00   | 1.00           | 1.00 | 1.00        | 1.00  |
| PHF Adj: 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97                                                                                                                                                                                                                                                                                                                                                                                             | Initial Bse:           | 180    | 0      | 100           | 0      | 0     | 0       | 0    | 1440   | 230            | 70   | 810         | 0     |
| PHF Volume: 186  0 103  0 0 0 0 1485 237 72 835 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                          | User Adj:              | 1.00   | 1.00   | 1.00          | 1.00   | 1.00  | 1.00    | 1.00 | 1.00   | 1.00           | 1.00 | 1.00        | 1.00  |
| Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                            | PHF Adj:               | 0.97   | 0.97   | 0.97          | 0.97   | 0.97  | 0.97    | 0.97 | 0.97   | 0.97           | 0.97 | 0.97        | 0.97  |
| Reduced Vol: 186  0 103  0 0 0 0 1485 237 72 835 0  PCE Adj:  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.                                                                                                                                                                                                                                                                                                                                          | PHF Volume:            | 186    | 0      | 103           | 0      | 0     | 0       | 0    | 1485   | 237            | 72   | 835         | 0     |
| PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                              | Reduct Vol:            | 0      | 0      | 0             | 0      | 0     | 0       | 0    | 0      | 0              | 0    | 0           | 0     |
| MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                              | Reduced Vol:           | 186    | 0      | 103           | 0      | 0     | 0       | 0    | 1485   | 237            | 72   | 835         | 0     |
| FinalVolume: 186  0  103  0  0  0  1485  237  72  835  0                                                                                                                                                                                                                                                                                                                                                                                     | PCE Adj:               | 1.00   | 1.00   | 1.00          | 1.00   | 1.00  | 1.00    | 1.00 | 1.00   | 1.00           | 1.00 | 1.00        | 1.00  |
| Saturation Flow Module: Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                   | MLF Adj:               | 1.00   | 1.00   | 1.00          | 1.00   | 1.00  | 1.00    | 1.00 | 1.00   | 1.00           | 1.00 | 1.00        | 1.00  |
| Saturation Flow Module: Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                   | FinalVolume:           | 186    | 0      |               | 0      | 0     | 0       | 0    | 1485   | 237            | 72   | 835         | 0     |
| Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                           |                        |        |        |               |        |       |         |      |        |                |      |             |       |
| Lanes: 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.72 0.28 1.00 2.00 0.00  Final Sat.: 390 0 446 0 0 0 0 874 142 426 907 0                                                                                                                                                                                                                                                                                                                          | Saturation F           | low Mo | odule: |               |        |       |         |      |        |                |      |             |       |
| Final Sat.: 390  0  446  0  0  0  0  874  142  426  907  0                                                                                                                                                                                                                                                                                                                                                                                   | Adjustment:            | 1.00   | 1.00   | 1.00          | 1.00   | 1.00  | 1.00    | 1.00 | 1.00   | 1.00           | 1.00 | 1.00        | 1.00  |
| Capacity Analysis Module:  Vol/Sat:                                                                                                                                                                                                                                                                                                                                                                                                          | Lanes:                 | 1.00   | 0.00   | 1.00          | 0.00   | 0.00  | 0.00    | 0.00 | 1.72   | 0.28           | 1.00 | 2.00        | 0.00  |
| Capacity Analysis Module:  Vol/Sat: 0.48 xxxx 0.23 xxxx xxxx xxxx xxxx 1.70 1.67 0.17 0.92 xxxx Crit Moves: ****  Delay/Veh: 19.5 0.0 12.9 0.0 0.0 0.0 0.0 340 328.4 12.8 52.7 0.0 Delay Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                         | Final Sat.:            | 390    | 0      | 446           | 0      | 0     | 0       | 0    | 874    | 142            | 426  | 907         | 0     |
| Vol/Sat: 0.48 xxxx 0.23 xxxx xxxx xxxx xxxx 1.70 1.67 0.17 0.92 xxxx Crit Moves: ****  Delay/Veh: 19.5 0.0 12.9 0.0 0.0 0.0 0.0 340 328.4 12.8 52.7 0.0 Delay Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                    |                        |        |        |               |        |       |         |      |        |                |      |             |       |
| Crit Moves: ****  Delay/Veh: 19.5 0.0 12.9 0.0 0.0 0.0 0.0 340 328.4 12.8 52.7 0.0 Delay Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                         | Capacity Anal          | lysis  | Modul  | e:            |        |       |         |      |        |                |      |             |       |
| Delay/Veh: 19.5 0.0 12.9 0.0 0.0 0.0 340 328.4 12.8 52.7 0.0 Delay Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                               | Vol/Sat:               | 0.48   | XXXX   | 0.23          | XXXX   | XXXX  | XXXX    | XXXX | 1.70   | 1.67           | 0.17 | 0.92        | XXXX  |
| Delay Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                            | Crit Moves:            | ****   |        |               |        |       |         |      | ****   |                |      | ****        |       |
| AdjDel/Veh: 19.5 0.0 12.9 0.0 0.0 0.0 0.0 340 328.4 12.8 52.7 0.0 LOS by Move: C * B * * * * * F F B F * ApproachDel: 17.2 xxxxxx 338.8 49.5 Delay Adj: 1.00 xxxxx 1.00 1.00 ApprAdjDel: 17.2 xxxxxx 338.8 49.5 LOS by Appr: C * F E AllWayAvgQ: 0.8 0.0 0.3 0.0 0.0 0.0 0.0 47.2 45.6 0.2 5.3 0.0 Note: Queue reported is the number of cars per lane.  Peak Hour Volume Signal Warrant Report [Urban]  *********************************** | Delay/Veh:             | 19.5   | 0.0    | 12.9          | 0.0    | 0.0   | 0.0     | 0.0  | 340    | 328.4          | 12.8 | 52.7        | 0.0   |
| LOS by Move: C * B * * * * * F F B F *  ApproachDel: 17.2                                                                                                                                                                                                                                                                                                                                                                                    | Delay Adj:             | 1.00   | 1.00   | 1.00          | 1.00   | 1.00  | 1.00    | 1.00 | 1.00   | 1.00           | 1.00 | 1.00        | 1.00  |
| ApproachDel: 17.2 xxxxxx 338.8 49.5  Delay Adj: 1.00 xxxxx 1.00 1.00  ApprAdjDel: 17.2 xxxxxx 338.8 49.5  LOS by Appr: C * F E  AllWayAvgQ: 0.8 0.0 0.3 0.0 0.0 0.0 0.0 47.2 45.6 0.2 5.3 0.0  Note: Queue reported is the number of cars per lane.  Peak Hour Volume Signal Warrant Report [Urban]  ***********************************                                                                                                     | AdjDel/Veh:            | 19.5   | 0.0    | 12.9          | 0.0    | 0.0   | 0.0     | 0.0  | 340    | 328.4          | 12.8 | 52.7        | 0.0   |
| Delay Adj: 1.00 xxxxx 1.00 1.00 ApprAdjDel: 17.2 xxxxxx 338.8 49.5  LOS by Appr: C * F E  AllWayAvgQ: 0.8 0.0 0.3 0.0 0.0 0.0 47.2 45.6 0.2 5.3 0.0  Note: Queue reported is the number of cars per lane.  Peak Hour Volume Signal Warrant Report [Urban]  ***********************************                                                                                                                                               | LOS by Move:           | С      | *      | В             | *      | *     | *       | *    | F      | F              | В    | F           | *     |
| Delay Adj: 1.00 xxxxx 1.00 1.00 ApprAdjDel: 17.2 xxxxxx 338.8 49.5  LOS by Appr: C * F E  AllWayAvgQ: 0.8 0.0 0.3 0.0 0.0 0.0 47.2 45.6 0.2 5.3 0.0  Note: Queue reported is the number of cars per lane.  Peak Hour Volume Signal Warrant Report [Urban]  ***********************************                                                                                                                                               | ApproachDel:           |        | 17.2   |               | XX     | XXXXX |         |      | 338.8  |                |      | 49.5        |       |
| LOS by Appr: C                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |        |        |               | 2      | XXXXX |         |      | 1.00   |                |      | 1.00        |       |
| AllWayAvgQ: 0.8 0.0 0.3 0.0 0.0 0.0 47.2 45.6 0.2 5.3 0.0 Note: Queue reported is the number of cars per lane.  Peak Hour Volume Signal Warrant Report [Urban]  ***********************************                                                                                                                                                                                                                                          | ApprAdjDel:            |        | 17.2   |               | XX     | XXXXX |         |      | 338.8  |                |      | 49.5        |       |
| Note: Queue reported is the number of cars per lane.  Peak Hour Volume Signal Warrant Report [Urban]  ***********************************                                                                                                                                                                                                                                                                                                    |                        |        |        |               |        | *     |         |      | F      |                |      | E           |       |
| Peak Hour Volume Signal Warrant Report [Urban]  ***********************************                                                                                                                                                                                                                                                                                                                                                          | AllWayAvgQ:            | 0.8    | 0.0    | 0.3           | 0.0    | 0.0   | 0.0     | 0.0  | 47.2   | 45.6           | 0.2  | 5.3         | 0.0   |
| Peak Hour Volume Signal Warrant Report [Urban]  ***********************************                                                                                                                                                                                                                                                                                                                                                          | Note: Queue            | report | ted is | the r         | number | of ca | ırs per | lane |        |                |      |             |       |
| Intersection #9 Elverta Road / Rio Linda Boulevard ************************************                                                                                                                                                                                                                                                                                                                                                      |                        |        |        |               |        |       |         |      |        | Urban]         |      |             |       |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                       | *****                  | ****   | *****  | *****         | ****   | ***** | *****   | **** | ****   | *****          | **** | *****       | ***** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |        |        |               | ,      |       |         |      | ****   | *****          | **** | * * * * * * | ***** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |        |        |               |        |       |         |      |        |                |      |             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |        |        |               |        |       |         |      |        |                |      |             |       |

-----||-----||------| 

 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign

 Lanes:
 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 2 0 0

 Initial Vol:
 180 0 100 0 0 0 0 0 1440 230 70 810 0

 -----||-----||-----| Major Street Volume: 2550 Minor Approach Volume: 280 Minor Approach Volume Threshold: -28 [less than minimum of 150] \_\_\_\_\_\_

## SIGNAL WARRANT DISCLAIMER

This peak hour signal warrant analysis should be considered solely as an "indicator" of the likelihood of an unsignalized intersection warranting a traffic signal in the future. Intersections that exceed this warrant are probably more likely to meet one or more of the other volume based signal warrant (such as the 4-hour or 8-hour warrants).

The peak hour warrant analysis in this report is not intended to replace a rigorous and complete traffic signal warrant analysis by the responsible jurisdiction. Consideration of the other signal warrants, which is beyond the scope of this software, may yield different results.

|                          | <b>→</b>   | •    | •     | <b>←</b> | 4      | <i>&gt;</i> |      |   |
|--------------------------|------------|------|-------|----------|--------|-------------|------|---|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL    | NBR         |      |   |
| Lane Configurations      | <b>↑</b> Ъ |      | ች     | <b>^</b> | *      | 7           |      |   |
| Sign Control             | Free       |      | •     | Free     | Stop   | •           |      |   |
| Grade                    | 0%         |      |       | 0%       | 0%     |             |      |   |
| /olume (veh/h)           | 1280       | 40   | 110   | 830      | 60     | 290         |      |   |
| Peak Hour Factor         | 0.97       | 0.97 | 0.97  | 0.97     | 0.97   | 0.97        |      |   |
| lourly flow rate (vph)   | 1320       | 41   | 113   | 856      | 62     | 299         |      |   |
| Pedestrians              |            |      |       |          |        |             |      |   |
| ane Width (ft)           |            |      |       |          |        |             |      |   |
| Valking Speed (ft/s)     |            |      |       |          |        |             |      |   |
| ercent Blockage          |            |      |       |          |        |             |      |   |
| light turn flare (veh)   |            |      |       |          |        |             |      |   |
| Median type              |            |      |       |          | None   |             |      |   |
| Median storage veh)      |            |      |       |          |        |             |      |   |
| Jpstream signal (ft)     |            |      |       | 714      |        |             |      |   |
| X, platoon unblocked     |            |      |       |          | 0.85   |             |      |   |
| C, conflicting volume    |            |      | 1361  |          | 1995   | 680         |      |   |
| C1, stage 1 conf vol     |            |      |       |          |        |             |      |   |
| C2, stage 2 conf vol     |            |      |       |          |        |             |      |   |
| Cu, unblocked vol        |            |      | 1361  |          | 1994   | 680         |      |   |
| C, single (s)            |            |      | 4.1   |          | 6.8    | 6.9         |      |   |
| C, 2 stage (s)           |            |      |       |          |        |             |      |   |
| F (s)                    |            |      | 2.2   |          | 3.5    | 3.3         |      |   |
| 00 queue free %          |            |      | 77    |          | 0      | 24          |      |   |
| cM capacity (veh/h)      |            |      | 501   |          | 34     | 393         |      |   |
| Direction, Lane #        | EB 1       | EB 2 | WB 1  | WB 2     | WB3    | NB 1        | NB 2 |   |
| /olume Total             | 880        | 481  | 113   | 428      | 428    | 62          | 299  |   |
| /olume Left              | 0          | 0    | 113   | 0        | 0      | 62          | 0    |   |
| /olume Right             | 0          | 41   | 0     | 0        | 0      | 0           | 299  |   |
| SH                       | 1700       | 1700 | 501   | 1700     | 1700   | 34          | 393  |   |
| /olume to Capacity       | 0.52       | 0.28 | 0.23  | 0.25     | 0.25   | 1.80        | 0.76 |   |
| Queue Length 95th (ft)   | 0          | 0    | 22    | 0        | 0      | 171         | 156  |   |
| Control Delay (s)        | 0.0        | 0.0  | 14.3  | 0.0      | 0.0    | 630.9       | 37.9 |   |
| ane LOS                  |            |      | В     |          |        | F           | Е    |   |
| Approach Delay (s)       | 0.0        |      | 1.7   |          |        | 139.6       |      |   |
| Approach LOS             |            |      |       |          |        | F           |      |   |
| ntersection Summary      |            |      |       |          |        |             |      |   |
| verage Delay             |            |      | 19.3  |          |        |             |      |   |
| ntersection Capacity Uti | ilization  |      | 61.3% | I.       | CU Lev | el of Ser   | vice | В |
| Analysis Period (min)    |            |      | 15    |          |        |             |      |   |
|                          |            |      |       |          |        |             |      |   |

|                              | •         | <b>→</b> | ←     | •    | <b>&gt;</b> | 4            |     |     |
|------------------------------|-----------|----------|-------|------|-------------|--------------|-----|-----|
| Movement                     | EBL       | EBT      | WBT   | WBR  | SBL         | SBR          |     |     |
| Lane Configurations          | ች         | <b>^</b> | ħβ    |      |             | *            |     |     |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900  | 1900 | 1900        | 1900         |     |     |
| Total Lost time (s)          | 4.0       | 4.0      | 4.0   |      | 4.0         | 4.0          |     |     |
| Lane Util. Factor            | 1.00      | 0.95     | 0.95  |      | 1.00        | 1.00         |     |     |
| Frt                          | 1.00      | 1.00     | 0.99  |      | 1.00        | 0.85         |     |     |
| Flt Protected                | 0.95      | 1.00     | 1.00  |      | 0.95        | 1.00         |     |     |
| Satd. Flow (prot)            | 1770      | 3539     | 3509  |      | 1770        | 1583         |     |     |
| Flt Permitted                | 0.95      | 1.00     | 1.00  |      | 0.95        | 1.00         |     |     |
| Satd. Flow (perm)            | 1770      | 3539     | 3509  |      | 1770        | 1583         |     |     |
| Volume (vph)                 | 360       | 1210     | 830   | 50   | 20          | 110          |     |     |
| Peak-hour factor, PHF        | 0.97      | 0.97     | 0.97  | 0.97 | 0.97        | 0.97         |     |     |
| Adj. Flow (vph)              | 371       | 1247     | 856   | 52   | 21          | 113          |     |     |
| RTOR Reduction (vph)         | 0         | 0        | 5     | 0    | 0           | 99           |     |     |
| Lane Group Flow (vph)        | 371       | 1247     | 903   | 0    | 21          | 14           |     |     |
| Turn Type                    | Prot      |          |       |      |             | Perm         |     |     |
| Protected Phases             | 7         | 4        | 8     |      | 6           |              |     |     |
| Permitted Phases             |           |          |       |      |             | 6            |     |     |
| Actuated Green, G (s)        | 16.0      | 39.5     | 19.5  |      | 6.8         | 6.8          |     |     |
| Effective Green, g (s)       | 16.0      | 39.5     | 19.5  |      | 6.8         | 6.8          |     |     |
| Actuated g/C Ratio           | 0.29      | 0.73     | 0.36  |      | 0.13        | 0.13         |     |     |
| Clearance Time (s)           | 4.0       | 4.0      | 4.0   |      | 4.0         | 4.0          |     |     |
| Vehicle Extension (s)        | 3.0       | 3.0      | 3.0   |      | 3.0         | 3.0          |     |     |
| Lane Grp Cap (vph)           | 522       | 2574     | 1260  |      | 222         | 198          |     |     |
| v/s Ratio Prot               | c0.21     | 0.35     | c0.26 |      | c0.01       |              |     |     |
| v/s Ratio Perm               |           |          |       |      |             | 0.01         |     |     |
| v/c Ratio                    | 0.71      | 0.48     | 0.72  |      | 0.09        | 0.07         |     |     |
| Uniform Delay, d1            | 17.1      | 3.1      | 15.0  |      | 21.0        | 21.0         |     |     |
| Progression Factor           | 1.00      | 1.00     | 1.00  |      | 1.00        | 1.00         |     |     |
| Incremental Delay, d2        | 4.5       | 0.1      | 2.0   |      | 0.2         | 0.2          |     |     |
| Delay (s)                    | 21.6      | 3.3      | 17.0  |      | 21.2        | 21.1         |     |     |
| Level of Service             | С         | Α        | В     |      | С           | С            |     |     |
| Approach Delay (s)           |           | 7.5      | 17.0  |      | 21.1        |              |     |     |
| Approach LOS                 |           | Α        | В     |      | С           |              |     |     |
| Intersection Summary         |           |          |       |      |             |              |     |     |
| HCM Average Control D        |           |          | 11.4  | F    | ICM Le      | vel of Serv  | ice | В   |
| <b>HCM Volume to Capacit</b> |           |          | 0.61  |      |             |              |     |     |
| Actuated Cycle Length (      |           |          | 54.3  |      |             | ost time (s  | ,   | 2.0 |
| Intersection Capacity Ut     | ilization |          | 57.8% | 10   | CU Leve     | el of Servic | е   | В   |
| Analysis Period (min)        |           |          | 15    |      |             |              |     |     |
| c Critical Lane Group        |           |          |       |      |             |              |     |     |

|                           | •        | <b>→</b> | •     | •    | +       | •          | •    | <b>†</b> | ~    | <b>/</b> | <b></b> | -√   |
|---------------------------|----------|----------|-------|------|---------|------------|------|----------|------|----------|---------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL  | WBT     | WBR        | NBL  | NBT      | NBR  | SBL      | SBT     | SBR  |
| Lane Configurations       |          | 4        |       |      | 4       |            |      | 4        |      |          | 4       |      |
| Sign Control              |          | Stop     |       |      | Stop    |            |      | Stop     |      |          | Stop    |      |
| Volume (vph)              | 40       | 60       | 50    | 100  | 70      | 10         | 110  | 390      | 30   | 10       | 220     | 10   |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97  | 0.97 | 0.97    | 0.97       | 0.97 | 0.97     | 0.97 | 0.97     | 0.97    | 0.97 |
| Hourly flow rate (vph)    | 41       | 62       | 52    | 103  | 72      | 10         | 113  | 402      | 31   | 10       | 227     | 10   |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1 |         |            |      |          |      |          |         |      |
| Volume Total (vph)        | 155      | 186      | 546   | 247  |         |            |      |          |      |          |         |      |
| Volume Left (vph)         | 41       | 103      | 113   | 10   |         |            |      |          |      |          |         |      |
| Volume Right (vph)        | 52       | 10       | 31    | 10   |         |            |      |          |      |          |         |      |
| Hadj (s)                  | -0.11    | 0.11     | 0.04  | 0.02 |         |            |      |          |      |          |         |      |
| Departure Headway (s)     | 6.6      | 6.7      | 5.6   | 6.1  |         |            |      |          |      |          |         |      |
| Degree Utilization, x     | 0.28     | 0.35     | 0.85  | 0.42 |         |            |      |          |      |          |         |      |
| Capacity (veh/h)          | 496      | 492      | 632   | 538  |         |            |      |          |      |          |         |      |
| Control Delay (s)         | 12.2     | 13.2     | 31.9  | 13.4 |         |            |      |          |      |          |         |      |
| Approach Delay (s)        | 12.2     | 13.2     | 31.9  | 13.4 |         |            |      |          |      |          |         |      |
| Approach LOS              | В        | В        | D     | В    |         |            |      |          |      |          |         |      |
| Intersection Summary      |          |          |       |      |         |            |      |          |      |          |         |      |
| Delay                     |          |          | 22.1  |      |         |            |      |          |      |          |         |      |
| HCM Level of Service      |          |          | С     |      |         |            |      |          |      |          |         |      |
| Intersection Capacity Uti | lization |          | 67.7% | - 10 | CU Leve | el of Serv | vice |          | С    |          |         |      |
| Analysis Period (min)     |          |          | 15    |      |         |            |      |          |      |          |         |      |
|                           |          |          |       |      |         |            |      |          |      |          |         |      |

|                           | ۶         | <b>→</b> | •     | •     | +       | •          | •    | <b>†</b> | ~    | <b>\</b> | Ţ    | 1    |
|---------------------------|-----------|----------|-------|-------|---------|------------|------|----------|------|----------|------|------|
| Movement                  | EBL       | EBT      | EBR   | WBL   | WBT     | WBR        | NBL  | NBT      | NBR  | SBL      | SBT  | SBR  |
| Lane Configurations       |           | 4        |       |       | 4       |            |      | 4        |      |          | 4    |      |
| Sign Control              |           | Stop     |       |       | Stop    |            |      | Stop     |      |          | Stop |      |
| Volume (vph)              | 150       | 130      | 50    | 120   | 140     | 20         | 90   | 350      | 210  | 10       | 330  | 50   |
| Peak Hour Factor          | 0.97      | 0.97     | 0.97  | 0.97  | 0.97    | 0.97       | 0.97 | 0.97     | 0.97 | 0.97     | 0.97 | 0.97 |
| Hourly flow rate (vph)    | 155       | 134      | 52    | 124   | 144     | 21         | 93   | 361      | 216  | 10       | 340  | 52   |
| Direction, Lane #         | EB 1      | WB 1     | NB 1  | SB 1  |         |            |      |          |      |          |      |      |
| Volume Total (vph)        | 340       | 289      | 670   | 402   |         |            |      |          |      |          |      |      |
| Volume Left (vph)         | 155       | 124      | 93    | 10    |         |            |      |          |      |          |      |      |
| Volume Right (vph)        | 52        | 21       | 216   | 52    |         |            |      |          |      |          |      |      |
| Hadj (s)                  | 0.03      | 0.08     | -0.13 | -0.04 |         |            |      |          |      |          |      |      |
| Departure Headway (s)     | 8.7       | 9.0      | 8.3   | 8.4   |         |            |      |          |      |          |      |      |
| Degree Utilization, x     | 0.83      | 0.72     | 1.55  | 0.94  |         |            |      |          |      |          |      |      |
| Capacity (veh/h)          | 390       | 377      | 433   | 420   |         |            |      |          |      |          |      |      |
| Control Delay (s)         | 41.6      | 32.4     | 278.4 | 58.3  |         |            |      |          |      |          |      |      |
| Approach Delay (s)        | 41.6      | 32.4     | 278.4 | 58.3  |         |            |      |          |      |          |      |      |
| Approach LOS              | Е         | D        | F     | F     |         |            |      |          |      |          |      |      |
| Intersection Summary      |           |          |       |       |         |            |      |          |      |          |      |      |
| Delay                     |           |          | 137.3 |       |         |            |      |          |      |          |      |      |
| HCM Level of Service      |           |          | F     |       |         |            |      |          |      |          |      |      |
| Intersection Capacity Uti | ilization |          | 91.0% | [0    | CU Leve | el of Serv | rice |          | Е    |          |      |      |
| Analysis Period (min)     |           |          | 15    |       |         |            |      |          |      |          |      |      |

|                           | ۶        | -        | •     | •     | <b>←</b> | •         | 4      | <b>†</b> | <i>&gt;</i> | <b>/</b> | ţ        | 4    |
|---------------------------|----------|----------|-------|-------|----------|-----------|--------|----------|-------------|----------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations       | 1,1      | <b>^</b> | 7     | 44    | ተተተ      | 7         | Ť      | <b>†</b> | 7           | 7        | <b>^</b> | 7    |
| Ideal Flow (vphpl)        | 1900     | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900        | 1900     | 1900     | 1900 |
| Total Lost time (s)       | 4.0      | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0         | 4.0      | 4.0      | 4.0  |
| Lane Util. Factor         | 0.97     | 0.91     | 1.00  | 0.97  | 0.91     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00     | 0.95     | 1.00 |
| Frt                       | 1.00     | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85        | 1.00     | 1.00     | 0.85 |
| Flt Protected             | 0.95     | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00     | 1.00 |
| Satd. Flow (prot)         | 3433     | 5085     | 1583  | 3433  | 5085     | 1583      | 1770   | 1863     | 1583        | 1770     | 3539     | 1583 |
| Flt Permitted             | 0.95     | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00     | 1.00 |
| Satd. Flow (perm)         | 3433     | 5085     | 1583  | 3433  | 5085     | 1583      | 1770   | 1863     | 1583        | 1770     | 3539     | 1583 |
| Volume (vph)              | 60       | 1270     | 180   | 200   | 740      | 170       | 140    | 570      | 80          | 110      | 490      | 20   |
| Peak-hour factor, PHF     | 0.97     | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97   | 0.97     | 0.97        | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)           | 62       | 1309     | 186   | 206   | 763      | 175       | 144    | 588      | 82          | 113      | 505      | 21   |
| RTOR Reduction (vph)      | 0        | 0        | 126   | 0     | 0        | 118       | 0      | 0        | 51          | 0        | 0        | 13   |
| Lane Group Flow (vph)     | 62       | 1309     | 60    | 206   | 763      | 57        | 144    | 588      | 31          | 113      | 505      | 8    |
| Turn Type                 | Prot     |          | Perm  | Prot  |          | Perm      | Prot   |          | Perm        | Prot     |          | Perm |
| Protected Phases          | 1        | 6        |       | 5     | 2        |           | 3      | 8        |             | 7        | 4        |      |
| Permitted Phases          |          |          | 6     |       |          | 2         |        |          | 8           |          |          | 4    |
| Actuated Green, G (s)     | 3.3      | 25.0     | 25.0  | 3.1   | 25.1     | 25.1      | 3.1    | 26.9     | 26.9        | 5.3      | 28.9     | 28.9 |
| Effective Green, g (s)    | 4.1      | 26.1     | 26.1  | 4.6   | 26.6     | 26.6      | 4.6    | 28.0     | 28.0        | 6.8      | 30.2     | 30.2 |
| Actuated g/C Ratio        | 0.05     | 0.32     | 0.32  | 0.06  | 0.33     | 0.33      | 0.06   | 0.34     | 0.34        | 0.08     | 0.37     | 0.37 |
| Clearance Time (s)        | 4.8      | 5.1      | 5.1   | 5.5   | 5.5      | 5.5       | 5.5    | 5.1      | 5.1         | 5.5      | 5.3      | 5.3  |
| Vehicle Extension (s)     | 1.0      | 1.0      | 1.0   | 1.0   | 1.0      | 1.0       | 1.0    | 1.0      | 1.0         | 1.0      | 1.0      | 1.0  |
| Lane Grp Cap (vph)        | 173      | 1628     | 507   | 194   | 1660     | 517       | 100    | 640      | 544         | 148      | 1311     | 587  |
| v/s Ratio Prot            | 0.02     | c0.26    |       | c0.06 | 0.15     |           | c0.08  | c0.32    |             | 0.06     | 0.14     |      |
| v/s Ratio Perm            |          |          | 0.04  |       |          | 0.04      |        |          | 0.02        |          |          | 0.00 |
| v/c Ratio                 | 0.36     | 0.80     | 0.12  | 1.06  | 0.46     | 0.11      | 1.44   | 0.92     | 0.06        | 0.76     | 0.39     | 0.01 |
| Uniform Delay, d1         | 37.4     | 25.4     | 19.6  | 38.5  | 21.8     | 19.2      | 38.5   | 25.7     | 17.9        | 36.6     | 18.8     | 16.2 |
| Progression Factor        | 1.00     | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00     | 1.00     | 1.00 |
| Incremental Delay, d2     | 0.5      | 2.8      | 0.0   | 81.9  | 0.1      | 0.0       | 245.5  | 17.9     | 0.0         | 18.7     | 0.1      | 0.0  |
| Delay (s)                 | 37.9     | 28.2     | 19.6  | 120.4 | 21.8     | 19.2      | 284.0  | 43.6     | 17.9        | 55.3     | 18.9     | 16.2 |
| Level of Service          | D        | С        | В     | F     | С        | В         | F      | D        | В           | E        | В        | В    |
| Approach Delay (s)        |          | 27.5     |       |       | 39.2     |           |        | 83.5     |             |          | 25.2     |      |
| Approach LOS              |          | С        |       |       | D        |           |        | F        |             |          | С        |      |
| Intersection Summary      |          |          |       |       |          |           |        |          |             |          |          |      |
| HCM Average Control D     | ,        |          | 41.4  | F     | ICM Le   | vel of S  | ervice |          | D           |          |          |      |
| HCM Volume to Capacit     |          |          | 0.89  |       |          |           |        |          |             |          |          |      |
| Actuated Cycle Length (   | ,        |          | 81.5  |       |          | ost time  |        |          | 16.0        |          |          |      |
| Intersection Capacity Uti | lization |          | 79.7% | I     | CU Leve  | el of Sei | rvice  |          | D           |          |          |      |
| Analysis Period (min)     |          |          | 15    |       |          |           |        |          |             |          |          |      |
| c Critical Lane Group     |          |          |       |       |          |           |        |          |             |          |          |      |

|                              | ۶        | <b>→</b> | •     | •     | +           | •         | •      | <b>†</b> | ~    | <b>/</b> | <b>+</b> | 4    |
|------------------------------|----------|----------|-------|-------|-------------|-----------|--------|----------|------|----------|----------|------|
| Movement                     | EBL      | EBT      | EBR   | WBL   | WBT         | WBR       | NBL    | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations          | 7        | ħβ       |       | 7     | <b>∱</b> î≽ |           | ሻ      | f)       |      | 7        | f)       |      |
| Ideal Flow (vphpl)           | 1900     | 1900     | 1900  | 1900  | 1900        | 1900      | 1900   | 1900     | 1900 | 1900     | 1900     | 1900 |
| Total Lost time (s)          | 4.0      | 4.0      |       | 4.0   | 4.0         |           | 4.0    | 4.0      |      | 4.0      | 4.0      |      |
| Lane Util. Factor            | 1.00     | 0.95     |       | 1.00  | 0.95        |           | 1.00   | 1.00     |      | 1.00     | 1.00     |      |
| Frt                          | 1.00     | 1.00     |       | 1.00  | 0.97        |           | 1.00   | 0.94     |      | 1.00     | 0.96     |      |
| Flt Protected                | 0.95     | 1.00     |       | 0.95  | 1.00        |           | 0.95   | 1.00     |      | 0.95     | 1.00     |      |
| Satd. Flow (prot)            | 1770     | 3535     |       | 1770  | 3443        |           | 1770   | 1748     |      | 1770     | 1780     |      |
| Flt Permitted                | 0.95     | 1.00     |       | 0.95  | 1.00        |           | 0.95   | 1.00     |      | 0.95     | 1.00     |      |
| Satd. Flow (perm)            | 1770     | 3535     |       | 1770  | 3443        |           | 1770   | 1748     |      | 1770     | 1780     |      |
| Volume (vph)                 | 90       | 1160     | 10    | 210   | 900         | 200       | 10     | 330      | 230  | 110      | 260      | 110  |
| Peak-hour factor, PHF        | 0.97     | 0.97     | 0.97  | 0.97  | 0.97        | 0.97      | 0.97   | 0.97     | 0.97 | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)              | 93       | 1196     | 10    | 216   | 928         | 206       | 10     | 340      | 237  | 113      | 268      | 113  |
| RTOR Reduction (vph)         | 0        | 1        | 0     | 0     | 21          | 0         | 0      | 27       | 0    | 0        | 16       | 0    |
| Lane Group Flow (vph)        | 93       | 1205     | 0     | 216   | 1113        | 0         | 10     | 550      | 0    | 113      | 365      | 0    |
| Turn Type                    | Prot     |          |       | Prot  |             |           | Prot   |          |      | Prot     |          |      |
| Protected Phases             | 7        | 4        |       | 3     | 8           |           | 5      | 2        |      | 1        | 6        |      |
| Permitted Phases             |          |          |       |       |             |           |        |          |      |          |          |      |
| Actuated Green, G (s)        | 5.6      | 30.8     |       | 11.0  | 36.2        |           | 0.8    | 30.2     |      | 6.0      | 35.4     |      |
| Effective Green, g (s)       | 5.6      | 30.8     |       | 11.0  | 36.2        |           | 0.8    | 30.2     |      | 6.0      | 35.4     |      |
| Actuated g/C Ratio           | 0.06     | 0.33     |       | 0.12  | 0.39        |           | 0.01   | 0.32     |      | 0.06     | 0.38     |      |
| Clearance Time (s)           | 4.0      | 4.0      |       | 4.0   | 4.0         |           | 4.0    | 4.0      |      | 4.0      | 4.0      |      |
| Vehicle Extension (s)        | 3.0      | 3.0      |       | 3.0   | 3.0         |           | 3.0    | 3.0      |      | 3.0      | 3.0      |      |
| Lane Grp Cap (vph)           | 105      | 1158     |       | 207   | 1326        |           | 15     | 562      |      | 113      | 670      |      |
| v/s Ratio Prot               | 0.05     | c0.34    |       | c0.12 | 0.32        |           | 0.01   | c0.31    |      | c0.06    | 0.21     |      |
| v/s Ratio Perm               |          |          |       |       |             |           |        |          |      |          |          |      |
| v/c Ratio                    | 0.89     | 1.04     |       | 1.04  | 0.84        |           | 0.67   | 0.98     |      | 1.00     | 0.55     |      |
| Uniform Delay, d1            | 43.9     | 31.6     |       | 41.5  | 26.3        |           | 46.5   | 31.6     |      | 44.0     | 23.0     |      |
| Progression Factor           | 1.00     | 1.00     |       | 1.00  | 1.00        |           | 1.00   | 1.00     |      | 1.00     | 1.00     |      |
| Incremental Delay, d2        | 52.9     | 37.7     |       | 74.4  | 4.8         |           | 75.9   | 32.1     |      | 84.7     | 0.9      |      |
| Delay (s)                    | 96.8     | 69.3     |       | 115.9 | 31.1        |           | 122.3  | 63.7     |      | 128.7    | 23.9     |      |
| Level of Service             | F        | Е        |       | F     | С           |           | F      | Е        |      | F        | С        |      |
| Approach Delay (s)           |          | 71.3     |       |       | 44.7        |           |        | 64.7     |      |          | 47.9     |      |
| Approach LOS                 |          | E        |       |       | D           |           |        | E        |      |          | D        |      |
| Intersection Summary         |          |          |       |       |             |           |        |          |      |          |          |      |
| HCM Average Control D        |          |          | 57.5  | H     | ICM Le      | vel of Se | ervice |          | E    |          |          |      |
| <b>HCM Volume to Capacit</b> |          |          | 1.01  |       |             |           |        |          |      |          |          |      |
| Actuated Cycle Length (      |          |          | 94.0  |       |             | ost time  |        |          | 16.0 |          |          |      |
| Intersection Capacity Uti    | lization |          | 94.9% | 10    | CU Leve     | el of Ser | vice   |          | F    |          |          |      |
| Analysis Period (min)        |          |          | 15    |       |             |           |        |          |      |          |          |      |
| c Critical Lane Group        |          |          |       |       |             |           |        |          |      |          |          |      |

|                          | ٠         | <b>→</b> | •     | •     | <b>←</b> | •          | 4    | <b>†</b> | *    | <b>\</b> | ļ    | 4    |
|--------------------------|-----------|----------|-------|-------|----------|------------|------|----------|------|----------|------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL   | WBT      | WBR        | NBL  | NBT      | NBR  | SBL      | SBT  | SBR  |
| Lane Configurations      |           | 4        |       |       | 4        |            |      | 4        |      |          | 4    |      |
| Sign Control             |           | Stop     |       |       | Stop     |            |      | Stop     |      |          | Stop |      |
| Volume (vph)             | 120       | 10       | 10    | 20    | 10       | 10         | 40   | 500      | 30   | 30       | 200  | 160  |
| Peak Hour Factor         | 0.97      | 0.97     | 0.97  | 0.97  | 0.97     | 0.97       | 0.97 | 0.97     | 0.97 | 0.97     | 0.97 | 0.97 |
| Hourly flow rate (vph)   | 124       | 10       | 10    | 21    | 10       | 10         | 41   | 515      | 31   | 31       | 206  | 165  |
| Direction, Lane #        | EB 1      | WB 1     | NB 1  | SB 1  |          |            |      |          |      |          |      |      |
| Volume Total (vph)       | 144       | 41       | 588   | 402   |          |            |      |          |      |          |      |      |
| Volume Left (vph)        | 124       | 21       | 41    | 31    |          |            |      |          |      |          |      |      |
| Volume Right (vph)       | 10        | 10       | 31    | 165   |          |            |      |          |      |          |      |      |
| Hadj (s)                 | 0.16      | -0.02    | 0.02  | -0.20 |          |            |      |          |      |          |      |      |
| Departure Headway (s)    | 6.6       | 6.8      | 5.1   | 5.2   |          |            |      |          |      |          |      |      |
| Degree Utilization, x    | 0.27      | 0.08     | 0.84  | 0.58  |          |            |      |          |      |          |      |      |
| Capacity (veh/h)         | 502       | 463      | 688   | 668   |          |            |      |          |      |          |      |      |
| Control Delay (s)        | 12.0      | 10.4     | 28.8  | 15.0  |          |            |      |          |      |          |      |      |
| Approach Delay (s)       | 12.0      | 10.4     | 28.8  | 15.0  |          |            |      |          |      |          |      |      |
| Approach LOS             | В         | В        | D     | С     |          |            |      |          |      |          |      |      |
| Intersection Summary     |           |          |       |       |          |            |      |          |      |          |      |      |
| Delay                    |           |          | 21.4  |       |          |            |      |          |      |          |      |      |
| HCM Level of Service     |           |          | С     |       |          |            |      |          |      |          |      |      |
| Intersection Capacity Ut | ilization |          | 57.9% | 10    | CU Leve  | el of Serv | vice |          | В    |          |      |      |
| Analysis Period (min)    |           |          | 15    |       |          |            |      |          |      |          |      |      |
|                          |           |          |       |       |          |            |      |          |      |          |      |      |

|                           | •         | <b>→</b> | <b>←</b> | 4    | -       | 4          |  |
|---------------------------|-----------|----------|----------|------|---------|------------|--|
| Movement                  | EBL       | EBT      | WBT      | WBR  | SBL     | SBR        |  |
| Lane Configurations       |           | 4        | f)       |      | ¥       |            |  |
| Sign Control              |           | Free     | Free     |      | Stop    |            |  |
| Grade                     |           | 0%       | 0%       |      | 0%      |            |  |
| Volume (veh/h)            | 270       | 130      | 150      | 300  | 90      | 140        |  |
| Peak Hour Factor          | 0.97      | 0.97     | 0.97     | 0.97 | 0.97    | 0.97       |  |
| Hourly flow rate (vph)    | 278       | 134      | 155      | 309  | 93      | 144        |  |
| Pedestrians               |           |          |          |      |         |            |  |
| Lane Width (ft)           |           |          |          |      |         |            |  |
| Walking Speed (ft/s)      |           |          |          |      |         |            |  |
| Percent Blockage          |           |          |          |      |         |            |  |
| Right turn flare (veh)    |           |          |          |      |         |            |  |
| Median type               |           |          |          |      | None    |            |  |
| Median storage veh)       |           |          |          |      |         |            |  |
| Upstream signal (ft)      |           |          |          |      |         |            |  |
| pX, platoon unblocked     |           |          |          |      |         |            |  |
| vC, conflicting volume    | 464       |          |          |      | 1000    | 309        |  |
| vC1, stage 1 conf vol     |           |          |          |      |         |            |  |
| vC2, stage 2 conf vol     |           |          |          |      |         |            |  |
| vCu, unblocked vol        | 464       |          |          |      | 1000    | 309        |  |
| tC, single (s)            | 4.1       |          |          |      | 6.4     | 6.2        |  |
| tC, 2 stage (s)           |           |          |          |      |         |            |  |
| tF (s)                    | 2.2       |          |          |      | 3.5     | 3.3        |  |
| p0 queue free %           | 75        |          |          |      | 54      | 80         |  |
| cM capacity (veh/h)       | 1097      |          |          |      | 201     | 731        |  |
| Direction, Lane #         | EB 1      | WB 1     | SB 1     |      |         |            |  |
| Volume Total              | 412       | 464      | 237      |      |         |            |  |
| Volume Left               | 278       | 0        | 93       |      |         |            |  |
| Volume Right              | 0         | 309      | 144      |      |         |            |  |
| cSH                       | 1097      | 1700     | 360      |      |         |            |  |
| Volume to Capacity        | 0.25      | 0.27     | 0.66     |      |         |            |  |
| Queue Length 95th (ft)    | 25        | 0        | 112      |      |         |            |  |
| Control Delay (s)         | 7.2       | 0.0      | 32.4     |      |         |            |  |
| Lane LOS                  | Α         |          | D        |      |         |            |  |
| Approach Delay (s)        | 7.2       | 0.0      | 32.4     |      |         |            |  |
| Approach LOS              |           |          | D        |      |         |            |  |
| Intersection Summary      |           |          |          |      |         |            |  |
| Average Delay             |           |          | 9.5      |      |         |            |  |
| Intersection Capacity Uti | ilization |          | 71.7%    | [(   | CU Leve | of Service |  |
| Analysis Period (min)     |           |          | 15       |      |         |            |  |
| , = = = = ()              |           |          |          |      |         |            |  |
|                           |           |          |          |      |         |            |  |

|                          | ቌ         | -          | •     | •     | <b>←</b>   | •         | ~      |      |
|--------------------------|-----------|------------|-------|-------|------------|-----------|--------|------|
| Movement                 | EBU       | EBT        | EBR   | WBL   | WBT        | NBL       | NBR    |      |
| Lane Configurations      | Ð         | <b>^</b> ^ | 7     | ች     | <b>^</b> ^ | *         | 7      |      |
| Ideal Flow (vphpl)       | 1900      | 1900       | 1900  | 1900  | 1900       | 1900      | 1900   |      |
| Total Lost time (s)      | 4.0       | 4.0        | 4.0   | 4.0   | 4.0        | 4.0       | 4.0    |      |
| Lane Util. Factor        | 1.00      | 0.91       | 1.00  | 1.00  | 0.91       | 1.00      | 1.00   |      |
| Frt                      | 1.00      | 1.00       | 0.85  | 1.00  | 1.00       | 1.00      | 0.85   |      |
| Flt Protected            | 0.95      | 1.00       | 1.00  | 0.95  | 1.00       | 0.95      | 1.00   |      |
| Satd. Flow (prot)        | 1770      | 5085       | 1583  | 1770  | 5085       | 1770      | 1583   |      |
| Flt Permitted /          | 0.95      | 1.00       | 1.00  | 0.95  | 1.00       | 0.95      | 1.00   |      |
| Satd. Flow (perm)        | 1770      | 5085       | 1583  | 1770  | 5085       | 1770      | 1583   |      |
| Volume (vph)             | 10        | 1380       | 50    | 410   | 930        | 170       | 640    |      |
| Peak-hour factor, PHF    | 0.97      | 0.97       | 0.97  | 0.97  | 0.97       | 0.97      | 0.97   |      |
| Adj. Flow (vph)          | 10        | 1423       | 52    | 423   | 959        | 175       | 660    |      |
| RTOR Reduction (vph)     | 0         | 0          | 27    | 0     | 0          | 0         | 497    |      |
| Lane Group Flow (vph)    | 10        | 1423       | 25    | 423   | 959        | 175       | 163    |      |
| Turn Type                | Prot      |            | Perm  | Prot  |            |           | Perm   |      |
| Protected Phases         | 1         | 6          | . 0   | 4 5   | 2          | 3         |        |      |
| Permitted Phases         | •         |            | 6     | . 0   | _          | J         | 3      |      |
| Actuated Green, G (s)    | 0.4       | 30.3       | 30.3  | 9.9   | 32.4       | 10.2      | 10.2   |      |
| Effective Green, g (s)   | 1.1       | 31.4       | 31.4  | 9.9   | 33.5       | 11.6      | 11.6   |      |
| Actuated g/C Ratio       | 0.02      | 0.48       | 0.48  | 0.15  | 0.52       | 0.18      | 0.18   |      |
| Clearance Time (s)       | 4.7       | 5.1        | 5.1   | 00    | 5.1        | 5.4       | 5.4    |      |
| Vehicle Extension (s)    | 1.0       | 4.9        | 4.9   |       | 4.9        | 1.0       | 1.0    |      |
| Lane Grp Cap (vph)       | 30        | 2460       | 766   | 270   | 2625       | 316       | 283    |      |
| v/s Ratio Prot           | 0.01      | c0.28      | 700   | c0.24 | 0.19       | 0.10      | 200    |      |
| v/s Ratio Perm           | 0.01      | 00.20      | 0.02  | 00.24 | 0.10       | 0.10      | c0.10  |      |
| v/c Ratio                | 0.33      | 0.58       | 0.02  | 1.57  | 0.37       | 0.55      | 0.58   |      |
| Uniform Delay, d1        | 31.5      | 12.0       | 8.8   | 27.5  | 9.4        | 24.3      | 24.4   |      |
| Progression Factor       | 1.00      | 1.00       | 1.00  | 1.00  | 1.00       | 1.00      | 1.00   |      |
| Incremental Delay, d2    | 2.4       | 0.5        | 0.0   | 272.3 | 0.2        | 1.2       | 1.8    |      |
| Delay (s)                | 33.9      | 12.5       | 8.8   | 299.8 | 9.5        | 25.5      | 26.2   |      |
| Level of Service         | C         | В          | A     | F     | Α          | C         | C      |      |
| Approach Delay (s)       |           | 12.5       | , ,   |       | 98.4       | 26.0      |        |      |
| Approach LOS             |           | В          |       |       | F          | C         |        |      |
|                          |           |            |       |       | •          |           |        |      |
| Intersection Summary     |           |            |       |       |            |           |        |      |
| HCM Average Control D    |           |            | 47.6  | H     | ICM Lev    | el of Se  | ervice | D    |
| HCM Volume to Capacit    |           |            | 0.75  |       |            |           |        |      |
| Actuated Cycle Length (  |           |            | 64.9  |       | Sum of lo  |           |        | 12.0 |
| Intersection Capacity Ut | ilization |            | 73.0% | 10    | CU Leve    | el of Ser | vice   | С    |
| Analysis Period (min)    |           |            | 15    |       |            |           |        |      |
| c Critical Lane Group    |           |            |       |       |            |           |        |      |

|                          | -           | •    | •     | •        | •       | <b>/</b>      |    |
|--------------------------|-------------|------|-------|----------|---------|---------------|----|
| Movement                 | EBT         | EBR  | WBL   | WBT      | NBL     | NBR           |    |
| Lane Configurations      | <b>†</b> 1> |      | ሻ     | <b>^</b> |         | 1             |    |
| Ideal Flow (vphpl)       | 1900        | 1900 | 1900  | 1900     | 1900    | 1900          |    |
| Total Lost time (s)      | 4.0         |      | 4.0   | 4.0      | 4.0     | 4.0           |    |
| Lane Util. Factor        | 0.95        |      | 1.00  | 0.95     | 1.00    | 1.00          |    |
| Frt                      | 0.99        |      | 1.00  | 1.00     | 1.00    | 0.85          |    |
| Flt Protected            | 1.00        |      | 0.95  | 1.00     | 0.95    | 1.00          |    |
| Satd. Flow (prot)        | 3487        |      | 1770  | 3539     | 1770    | 1583          |    |
| Flt Permitted            | 1.00        |      | 0.95  | 1.00     | 0.95    | 1.00          |    |
| Satd. Flow (perm)        | 3487        |      | 1770  | 3539     | 1770    | 1583          |    |
| Volume (vph)             | 1560        | 170  | 290   | 1590     | 410     | 300           |    |
| Peak-hour factor, PHF    | 0.97        | 0.97 | 0.97  | 0.97     | 0.97    | 0.97          |    |
| Adj. Flow (vph)          | 1608        | 175  | 299   | 1639     | 423     | 309           |    |
| RTOR Reduction (vph)     | 5           | 0    | 0     | 0        | 0       | 190           |    |
| Lane Group Flow (vph)    | 1778        | 0    | 299   | 1639     | 423     | 119           |    |
| Turn Type                |             |      | Split |          |         | Perm          |    |
| Protected Phases         | 2           |      | 1     | 1        | 3       |               |    |
| Permitted Phases         |             |      |       |          |         | 3             |    |
| Actuated Green, G (s)    | 55.6        |      | 43.3  | 43.3     | 21.5    | 21.5          |    |
| Effective Green, g (s)   | 56.6        |      | 44.1  | 44.1     | 21.0    | 21.0          |    |
| Actuated g/C Ratio       | 0.41        |      | 0.32  | 0.32     | 0.15    | 0.15          |    |
| Clearance Time (s)       | 5.0         |      | 4.8   | 4.8      | 3.5     | 3.5           |    |
| Vehicle Extension (s)    | 6.8         |      | 6.3   | 6.3      | 2.0     | 2.0           |    |
| Lane Grp Cap (vph)       | 1414        |      | 559   | 1118     | 266     | 238           |    |
| v/s Ratio Prot           | c0.51       |      | 0.17  | c0.46    | c0.24   |               |    |
| v/s Ratio Perm           |             |      |       |          |         | 0.07          |    |
| v/c Ratio                | 1.26        |      | 0.53  | 1.47     | 1.59    | 0.50          |    |
| Uniform Delay, d1        | 41.5        |      | 39.3  | 47.8     | 59.3    | 54.5          |    |
| Progression Factor       | 1.00        |      | 1.00  | 1.00     | 1.00    | 1.00          |    |
| Incremental Delay, d2    | 121.6       |      | 2.5   | 214.7    | 282.7   | 0.6           |    |
| Delay (s)                | 163.1       |      | 41.8  | 262.4    | 342.0   | 55.1          |    |
| Level of Service         | F           |      | D     | F        | F       | Е             |    |
| Approach Delay (s)       | 163.1       |      |       | 228.4    | 220.9   |               |    |
| Approach LOS             | F           |      |       | F        | F       |               |    |
| Intersection Summary     |             |      |       |          |         |               |    |
| HCM Average Control D    |             |      | 201.0 | H        | ICM Lev | el of Servic  | се |
| HCM Volume to Capaci     |             |      | 1.39  |          |         |               |    |
| Actuated Cycle Length (  | ` '         |      | 139.6 |          |         | ost time (s)  |    |
| Intersection Capacity Ut | tilization  |      | 97.3% | I        | CU Leve | el of Service | 9  |
| Analysis Period (min)    |             |      | 15    |          |         |               |    |
| c Critical Lane Group    |             |      |       |          |         |               |    |

|                              | ۶         | <b>→</b> | •     | €     | <b>←</b> | •         | •      | <b>†</b>   | <i>&gt;</i> | <b>/</b> | <b>+</b>   | 4    |
|------------------------------|-----------|----------|-------|-------|----------|-----------|--------|------------|-------------|----------|------------|------|
| Movement                     | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT        | NBR         | SBL      | SBT        | SBR  |
| Lane Configurations          | 1,1       | ተተተ      | 7     | 14.54 | ተተተ      | 7         | ň      | <b>†</b> † | 7           | ¥        | <b>†</b> † | 7    |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900       | 1900        | 1900     | 1900       | 1900 |
| Total Lost time (s)          | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0        | 4.0         | 4.0      | 4.0        | 4.0  |
| Lane Util. Factor            | 0.97      | 0.91     | 1.00  | 0.97  | 0.91     | 1.00      | 1.00   | 0.95       | 1.00        | 1.00     | 0.95       | 1.00 |
| Frt                          | 1.00      | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00       | 0.85        | 1.00     | 1.00       | 0.85 |
| Flt Protected                | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00       | 1.00        | 0.95     | 1.00       | 1.00 |
| Satd. Flow (prot)            | 3433      | 5085     | 1583  | 3433  | 5085     | 1583      | 1770   | 3539       | 1583        | 1770     | 3539       | 1583 |
| Flt Permitted                | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00       | 1.00        | 0.95     | 1.00       | 1.00 |
| Satd. Flow (perm)            | 3433      | 5085     | 1583  | 3433  | 5085     | 1583      | 1770   | 3539       | 1583        | 1770     | 3539       | 1583 |
| Volume (vph)                 | 480       | 1810     | 50    | 210   | 1220     | 10        | 50     | 570        | 350         | 10       | 510        | 440  |
| Peak-hour factor, PHF        | 0.97      | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97   | 0.97       | 0.97        | 0.97     | 0.97       | 0.97 |
| Adj. Flow (vph)              | 495       | 1866     | 52    | 216   | 1258     | 10        | 52     | 588        | 361         | 10       | 526        | 454  |
| RTOR Reduction (vph)         | 0         | 0        | 31    | 0     | 0        | 7         | 0      | 0          | 94          | 0        | 0          | 340  |
| Lane Group Flow (vph)        | 495       | 1866     | 21    | 216   | 1258     | 3         | 52     | 588        | 267         | 10       | 526        | 114  |
| Turn Type                    | Prot      |          | Perm  | Prot  |          | Perm      | Prot   | 1          | om+ov       | Prot     |            | Perm |
| Protected Phases             | 5         | 2        |       | 1     | 6        |           | 4      | 8          | 1           | 7        | 3          |      |
| Permitted Phases             |           |          | 2     |       |          | 6         |        |            | 8           |          |            | 3    |
| Actuated Green, G (s)        | 12.0      | 24.3     | 24.3  | 6.0   | 17.9     | 17.9      | 4.6    | 16.9       | 22.9        | 0.7      | 11.4       | 11.4 |
| Effective Green, g (s)       | 12.0      | 26.3     | 26.3  | 5.6   | 19.9     | 19.9      | 4.9    | 15.9       | 21.5        | 0.7      | 11.7       | 11.7 |
| Actuated g/C Ratio           | 0.19      | 0.41     | 0.41  | 0.09  | 0.31     | 0.31      | 0.08   | 0.25       | 0.33        | 0.01     | 0.18       | 0.18 |
| Clearance Time (s)           | 4.0       | 6.0      | 6.0   | 3.6   | 6.0      | 6.0       | 4.3    | 3.0        | 3.6         | 4.0      | 4.3        | 4.3  |
| Vehicle Extension (s)        | 3.0       | 2.0      | 2.0   | 1.0   | 2.0      | 2.0       | 1.0    | 0.2        | 1.0         | 3.0      | 1.0        | 1.0  |
| Lane Grp Cap (vph)           | 639       | 2073     | 645   | 298   | 1569     | 488       | 134    | 872        | 626         | 19       | 642        | 287  |
| v/s Ratio Prot               | c0.14     | c0.37    |       | 0.06  | 0.25     |           | 0.03   | c0.17      | 0.04        | 0.01     | c0.15      |      |
| v/s Ratio Perm               |           |          | 0.01  |       |          | 0.00      |        |            | 0.13        |          |            | 0.07 |
| v/c Ratio                    | 0.77      | 0.90     | 0.03  | 0.72  | 0.80     | 0.01      | 0.39   | 0.67       | 0.43        | 0.53     | 0.82       | 0.40 |
| Uniform Delay, d1            | 25.0      | 17.9     | 11.5  | 28.7  | 20.5     | 15.4      | 28.4   | 22.0       | 16.7        | 31.7     | 25.4       | 23.3 |
| Progression Factor           | 1.00      | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00       | 1.00        | 1.00     | 1.00       | 1.00 |
| Incremental Delay, d2        | 5.8       | 5.7      | 0.0   | 7.2   | 2.9      | 0.0       | 0.7    | 1.6        | 0.2         | 23.9     | 7.6        | 0.3  |
| Delay (s)                    | 30.8      | 23.6     | 11.5  | 35.9  | 23.4     | 15.5      | 29.1   | 23.6       | 16.9        | 55.6     | 33.0       | 23.6 |
| Level of Service             | С         | С        | В     | D     | С        | В         | С      | С          | В           | Е        | С          | С    |
| Approach Delay (s)           |           | 24.8     |       |       | 25.1     |           |        | 21.5       |             |          | 28.9       |      |
| Approach LOS                 |           | С        |       |       | С        |           |        | С          |             |          | С          |      |
| Intersection Summary         |           |          |       |       |          |           |        |            |             |          |            |      |
| HCM Average Control D        |           |          | 25.0  | H     | ICM Le   | vel of Se | ervice |            | С           |          |            |      |
| <b>HCM Volume to Capacit</b> |           |          | 0.78  |       |          |           |        |            |             |          |            |      |
|                              |           |          | 64.5  |       |          | ost time  |        |            | 8.0         |          |            |      |
| Intersection Capacity Ut     | ilization |          | 73.4% | 10    | CU Leve  | el of Ser | vice   |            | D           |          |            |      |
| Analysis Period (min)        |           |          | 15    |       |          |           |        |            |             |          |            |      |
| c Critical Lane Group        |           |          |       |       |          |           |        |            |             |          |            |      |

|                          | ۶           | <b>→</b> | •     | •     | <b>←</b> | •         | 4      | <b>†</b> | <i>&gt;</i> | <b>/</b> | ţ     | ✓    |
|--------------------------|-------------|----------|-------|-------|----------|-----------|--------|----------|-------------|----------|-------|------|
| Movement                 | EBL         | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR         | SBL      | SBT   | SBR  |
| Lane Configurations      | ሻሻ          | ተተተ      | 7     | ሻሻ    | ተተተ      | 7         | ሻሻ     | ተተተ      | 7           | 77       | ተተተ   | 7    |
| Ideal Flow (vphpl)       | 1900        | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900        | 1900     | 1900  | 1900 |
| Total Lost time (s)      | 4.0         | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0         | 4.0      | 4.0   | 4.0  |
| Lane Util. Factor        | 0.97        | 0.91     | 1.00  | 0.97  | 0.91     | 1.00      | 0.97   | 0.91     | 1.00        | 0.97     | 0.91  | 1.00 |
| Frt                      | 1.00        | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85        | 1.00     | 1.00  | 0.85 |
| Flt Protected            | 0.95        | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00  | 1.00 |
| Satd. Flow (prot)        | 3433        | 5085     | 1583  | 3433  | 5085     | 1583      | 3433   | 5085     | 1583        | 3433     | 5085  | 1583 |
| Flt Permitted            | 0.95        | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00  | 1.00 |
| Satd. Flow (perm)        | 3433        | 5085     | 1583  | 3433  | 5085     | 1583      | 3433   | 5085     | 1583        | 3433     | 5085  | 1583 |
| Volume (vph)             | 530         | 500      | 960   | 270   | 360      | 90        | 1170   | 1420     | 280         | 140      | 1330  | 440  |
| Peak-hour factor, PHF    | 0.97        | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97   | 0.97     | 0.97        | 0.97     | 0.97  | 0.97 |
| Adj. Flow (vph)          | 546         | 515      | 990   | 278   | 371      | 93        | 1206   | 1464     | 289         | 144      | 1371  | 454  |
| RTOR Reduction (vph)     | 0           | 0        | 277   | 0     | 0        | 70        | 0      | 0        | 141         | 0        | 0     | 218  |
| Lane Group Flow (vph)    | 546         | 515      | 713   | 278   | 371      | 23        | 1206   | 1464     | 148         | 144      | 1371  | 236  |
| Turn Type                | Prot        |          | Perm  | Prot  |          | Perm      | Prot   |          | Perm        | Prot     |       | Perm |
| Protected Phases         | 7           | 4        |       | 3     | 8        |           | 5      | 2        |             | 1        | 6     |      |
| Permitted Phases         |             |          | 4     |       |          | 8         |        |          | 2           |          |       | 6    |
| Actuated Green, G (s)    | 21.8        | 48.4     | 48.4  | 9.5   | 36.0     | 36.0      | 33.5   | 61.2     | 61.2        | 8.8      | 36.1  | 36.1 |
| Effective Green, g (s)   | 23.3        | 50.0     | 50.0  | 11.0  | 37.7     | 37.7      | 35.0   | 62.7     | 62.7        | 10.3     | 38.0  | 38.0 |
| Actuated g/C Ratio       | 0.16        | 0.33     | 0.33  | 0.07  | 0.25     | 0.25      | 0.23   | 0.42     | 0.42        | 0.07     | 0.25  | 0.25 |
| Clearance Time (s)       | 5.5         | 5.6      | 5.6   | 5.5   | 5.7      | 5.7       | 5.5    | 5.5      | 5.5         | 5.5      | 5.9   | 5.9  |
| Vehicle Extension (s)    | 1.0         | 5.0      | 5.0   | 1.0   | 5.9      | 5.9       | 1.0    | 5.4      | 5.4         | 1.0      | 5.4   | 5.4  |
| Lane Grp Cap (vph)       | 533         | 1695     | 528   | 252   | 1278     | 398       | 801    | 2126     | 662         | 236      | 1288  | 401  |
| v/s Ratio Prot           | c0.16       | 0.10     |       | 0.08  | 0.07     |           | c0.35  | 0.29     |             | 0.04     | c0.27 |      |
| v/s Ratio Perm           |             |          | c0.45 |       |          | 0.01      |        |          | 0.09        |          |       | 0.15 |
| v/c Ratio                | 1.02        | 0.30     | 1.35  | 1.10  | 0.29     | 0.06      | 1.51   | 0.69     | 0.22        | 0.61     | 1.06  | 0.59 |
| Uniform Delay, d1        | 63.4        | 37.1     | 50.0  | 69.5  | 45.3     | 42.7      | 57.5   | 35.7     | 28.0        | 67.9     | 56.0  | 49.1 |
| Progression Factor       | 1.00        | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00     | 1.00  | 1.00 |
| Incremental Delay, d2    | 45.3        | 0.2      | 169.6 | 87.1  | 0.3      | 0.2       | 234.0  | 1.3      | 0.4         | 3.3      | 44.2  | 3.7  |
| Delay (s)                | 108.7       | 37.3     | 219.6 | 156.6 | 45.7     | 42.8      | 291.5  | 37.0     | 28.4        | 71.2     | 100.2 | 52.9 |
| Level of Service         | F           | D        | F     | F     | D        | D         | F      | D        | С           | Е        | F     | D    |
| Approach Delay (s)       |             | 144.3    |       |       | 86.9     |           |        | 139.9    |             |          | 87.1  |      |
| Approach LOS             |             | F        |       |       | F        |           |        | F        |             |          | F     |      |
| Intersection Summary     |             |          |       |       |          |           |        |          |             |          |       |      |
| HCM Average Control D    | Delay 122.5 |          |       | F     | ICM Le   | vel of S  | ervice |          | F           |          |       |      |
| HCM Volume to Capacit    |             |          |       |       |          |           |        |          |             |          |       |      |
| Actuated Cycle Length (  |             |          | 150.0 |       |          | ost time  |        |          | 16.0        |          |       |      |
| Intersection Capacity Ut | ilization   | 1        | 02.8% | 10    | CU Leve  | el of Sei | rvice  |          | G           |          |       |      |
| Analysis Period (min)    |             |          | 15    |       |          |           |        |          |             |          |       |      |
| c Critical Lane Group    |             |          |       |       |          |           |        |          |             |          |       |      |

|                          | ۶                               | <b>→</b> | •     | •    | <b>+</b> | •         | 4      | †     | <i>&gt;</i> | <b>/</b> | <b>+</b> | 4    |
|--------------------------|---------------------------------|----------|-------|------|----------|-----------|--------|-------|-------------|----------|----------|------|
| Movement                 | EBL                             | EBT      | EBR   | WBL  | WBT      | WBR       | NBL    | NBT   | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations      | 1,4                             | ተተተ      | 7     | 1,1  | ተተተ      | 7         | ሻሻ     | ተተተ   | 7           | 44       | ተተተ      | 7    |
| Ideal Flow (vphpl)       | 1900                            | 1900     | 1900  | 1900 | 1900     | 1900      | 1900   | 1900  | 1900        | 1900     | 1900     | 1900 |
| Total Lost time (s)      | 4.0                             | 4.0      | 4.0   | 4.0  | 4.0      | 4.0       | 4.0    | 4.0   | 4.0         | 4.0      | 4.0      | 4.0  |
| Lane Util. Factor        | 0.97                            | 0.91     | 1.00  | 0.97 | 0.91     | 1.00      | 0.97   | 0.91  | 1.00        | 0.97     | 0.91     | 1.00 |
| Frt                      | 1.00                            | 1.00     | 0.85  | 1.00 | 1.00     | 0.85      | 1.00   | 1.00  | 0.85        | 1.00     | 1.00     | 0.85 |
| Flt Protected            | 0.95                            | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00  | 1.00        | 0.95     | 1.00     | 1.00 |
| Satd. Flow (prot)        | 3433                            | 5085     | 1583  | 3433 | 5085     | 1583      | 3433   | 5085  | 1583        | 3433     | 5085     | 1583 |
| Flt Permitted            | 0.95                            | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00  | 1.00        | 0.95     | 1.00     | 1.00 |
| Satd. Flow (perm)        | 3433                            | 5085     | 1583  | 3433 | 5085     | 1583      | 3433   | 5085  | 1583        | 3433     | 5085     | 1583 |
| Volume (vph)             | 610                             | 920      | 410   | 240  | 880      | 390       | 400    | 1840  | 170         | 380      | 1390     | 350  |
| Peak-hour factor, PHF    | 0.97                            | 0.97     | 0.97  | 0.97 | 0.97     | 0.97      | 0.97   | 0.97  | 0.97        | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)          | 629                             | 948      | 423   | 247  | 907      | 402       | 412    | 1897  | 175         | 392      | 1433     | 361  |
| RTOR Reduction (vph)     | 0                               | 0        | 156   | 0    | 0        | 158       | 0      | 0     | 58          | 0        | 0        | 159  |
| Lane Group Flow (vph)    | 629                             | 948      | 267   | 247  | 907      | 244       | 412    | 1897  | 117         | 392      | 1433     | 202  |
| Turn Type                | Prot                            |          | Perm  | Prot |          | Perm      | Prot   |       | Perm        | Prot     |          | Perm |
| Protected Phases         | 7                               | 4        |       | 3    | 8        |           | 5      | 2     |             | 1        | 6        |      |
| Permitted Phases         |                                 |          | 4     |      |          | 8         |        |       | 2           |          |          | 6    |
| Actuated Green, G (s)    | 22.5                            | 41.1     | 41.1  | 11.2 | 30.0     | 30.0      | 15.2   | 49.9  | 49.9        | 15.5     | 50.2     | 50.2 |
| Effective Green, g (s)   | 24.0                            | 42.8     | 42.8  | 12.7 | 31.5     | 31.5      | 16.7   | 51.5  | 51.5        | 17.0     | 51.8     | 51.8 |
| Actuated g/C Ratio       | 0.17                            | 0.31     | 0.31  | 0.09 | 0.22     | 0.22      | 0.12   | 0.37  | 0.37        | 0.12     | 0.37     | 0.37 |
| Clearance Time (s)       | 5.5                             | 5.7      | 5.7   | 5.5  | 5.5      | 5.5       | 5.5    | 5.6   | 5.6         | 5.5      | 5.6      | 5.6  |
| Vehicle Extension (s)    | 1.0                             | 4.9      | 4.9   | 1.0  | 4.9      | 4.9       | 1.0    | 4.9   | 4.9         | 1.0      | 4.9      | 4.9  |
| Lane Grp Cap (vph)       | 589                             | 1555     | 484   | 311  | 1144     | 356       | 410    | 1871  | 582         | 417      | 1881     | 586  |
| v/s Ratio Prot           | c0.18                           | 0.19     |       | 0.07 | c0.18    |           | c0.12  | c0.37 |             | 0.11     | 0.28     |      |
| v/s Ratio Perm           |                                 |          | 0.17  |      |          | 0.15      |        |       | 0.07        |          |          | 0.13 |
| v/c Ratio                | 1.07                            | 0.61     | 0.55  | 0.79 | 0.79     | 0.69      | 1.00   | 1.01  | 0.20        | 0.94     | 0.76     | 0.34 |
| Uniform Delay, d1        | 58.0                            | 41.5     | 40.6  | 62.4 | 51.2     | 49.7      | 61.6   | 44.2  | 30.2        | 61.0     | 38.7     | 31.8 |
| Progression Factor       | 1.00                            | 1.00     | 1.00  | 1.00 | 1.00     | 1.00      | 1.00   | 1.00  | 1.00        | 1.00     | 1.00     | 1.00 |
| Incremental Delay, d2    | 56.5                            | 1.0      | 2.3   | 12.2 | 4.4      | 6.8       | 45.7   | 24.3  | 0.3         | 29.1     | 2.2      | 0.7  |
| Delay (s)                | 114.5                           | 42.5     | 42.9  | 74.6 | 55.6     | 56.5      | 107.3  | 68.6  | 30.5        | 90.1     | 40.9     | 32.5 |
| Level of Service         | F                               | D        | D     | Е    | Е        | Е         | F      | E     | С           | F        | D        | С    |
| Approach Delay (s)       |                                 | 65.2     |       |      | 58.8     |           |        | 72.3  |             |          | 48.3     |      |
| Approach LOS             |                                 | Е        |       |      | Е        |           |        | Е     |             |          | D        |      |
| Intersection Summary     |                                 |          |       |      |          |           |        |       |             |          |          |      |
|                          | ICM Average Control Delay 61.7  |          |       |      | HCM Le   | vel of Se | ervice |       | E           |          |          |      |
|                          | olume to Capacity ratio 0.96    |          |       |      |          |           |        |       |             |          |          |      |
|                          | Actuated Cycle Length (s) 140.0 |          |       |      |          | ost time  |        |       | 16.0        |          |          |      |
| Intersection Capacity Ut | ilization                       |          | 94.1% | ŀ    | CU Lev   | el of Sei | vice   |       | F           |          |          |      |
| Analysis Period (min)    |                                 |          | 15    |      |          |           |        |       |             |          |          |      |
| c Critical Lane Group    |                                 |          |       |      |          |           |        |       |             |          |          |      |

|                              | ۶         | <b>→</b> | •     | •     | <b>←</b> | •         | 4      | <b>†</b> | <i>&gt;</i> | <b>/</b> | ţ    | 4    |
|------------------------------|-----------|----------|-------|-------|----------|-----------|--------|----------|-------------|----------|------|------|
| Movement                     | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR         | SBL      | SBT  | SBR  |
| Lane Configurations          | 44        | <b>^</b> | 7     | Ţ     | ተተተ      | 7         | ሻሻ     | ተተተ      | 7           | 7        | 1111 | 7    |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900        | 1900     | 1900 | 1900 |
| Total Lost time (s)          | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0         | 4.0      | 4.0  | 4.0  |
| Lane Util. Factor            | 0.97      | 0.95     | 1.00  | 1.00  | 0.91     | 1.00      | 0.97   | 0.91     | 1.00        | 1.00     | 0.86 | 1.00 |
| Frt                          | 1.00      | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85        | 1.00     | 1.00 | 0.85 |
| Flt Protected                | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00 | 1.00 |
| Satd. Flow (prot)            | 3433      | 3539     | 1583  | 1770  | 5085     | 1583      | 3433   | 5085     | 1583        | 1770     | 6408 | 1583 |
| Flt Permitted                | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00 | 1.00 |
| Satd. Flow (perm)            | 3433      | 3539     | 1583  | 1770  | 5085     | 1583      | 3433   | 5085     | 1583        | 1770     | 6408 | 1583 |
| Volume (vph)                 | 190       | 480      | 480   | 110   | 590      | 240       | 730    | 1630     | 90          | 220      | 1660 | 140  |
| Peak-hour factor, PHF        | 0.97      | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97   | 0.97     | 0.97        | 0.97     | 0.97 | 0.97 |
| Adj. Flow (vph)              | 196       | 495      | 495   | 113   | 608      | 247       | 753    | 1680     | 93          | 227      | 1711 | 144  |
| RTOR Reduction (vph)         | 0         | 0        | 259   | 0     | 0        | 189       | 0      | 0        | 47          | 0        | 0    | 91   |
| Lane Group Flow (vph)        | 196       | 495      | 236   | 113   | 608      | 58        | 753    | 1680     | 46          | 227      | 1711 | 53   |
| Turn Type                    | Prot      |          | Perm  | Prot  |          | Perm      | Prot   |          | Perm        | Prot     |      | Perm |
| Protected Phases             | 7         | 4        |       | 3     | 8        |           | 5      | 2        |             | 1        | 6    |      |
| Permitted Phases             |           |          | 4     |       |          | 8         |        |          | 2           |          |      | 6    |
| Actuated Green, G (s)        | 8.6       | 26.0     | 26.0  | 6.0   | 24.4     | 24.4      | 22.1   | 40.2     | 40.2        | 15.1     | 33.2 | 33.2 |
| Effective Green, g (s)       | 8.6       | 28.0     | 28.0  | 6.0   | 25.4     | 25.4      | 22.1   | 42.2     | 42.2        | 15.1     | 35.2 | 35.2 |
| Actuated g/C Ratio           | 0.08      | 0.26     | 0.26  | 0.06  | 0.24     | 0.24      | 0.21   | 0.39     | 0.39        | 0.14     | 0.33 | 0.33 |
| Clearance Time (s)           | 4.0       | 6.0      | 6.0   | 4.0   | 5.0      | 5.0       | 4.0    | 6.0      | 6.0         | 4.0      | 6.0  | 6.0  |
| Vehicle Extension (s)        | 2.0       | 4.5      | 4.5   | 2.0   | 5.0      | 5.0       | 2.0    | 3.4      | 3.4         | 2.0      | 4.1  | 4.1  |
| Lane Grp Cap (vph)           | 275       | 924      | 413   | 99    | 1204     | 375       | 707    | 2000     | 623         | 249      | 2102 | 519  |
| v/s Ratio Prot               | 0.06      | 0.14     |       | c0.06 | 0.12     |           | c0.22  | c0.33    |             | 0.13     | 0.27 |      |
| v/s Ratio Perm               |           |          | c0.15 |       |          | 0.04      |        |          | 0.03        |          |      | 0.03 |
| v/c Ratio                    | 0.71      | 0.54     | 0.57  | 1.14  | 0.50     | 0.16      | 1.07   | 0.84     | 0.07        | 0.91     | 0.81 | 0.10 |
| Uniform Delay, d1            | 48.1      | 34.1     | 34.4  | 50.6  | 35.5     | 32.5      | 42.6   | 29.5     | 20.3        | 45.4     | 33.0 | 25.1 |
| Progression Factor           | 1.00      | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00     | 1.00 | 1.00 |
| Incremental Delay, d2        | 7.1       | 0.9      | 2.7   | 133.6 | 0.7      | 0.4       | 52.5   | 4.4      | 0.2         | 33.8     | 3.6  | 0.4  |
| Delay (s)                    | 55.2      | 35.0     | 37.1  | 184.2 | 36.2     | 32.9      | 95.1   | 33.9     | 20.6        | 79.2     | 36.6 | 25.5 |
| Level of Service             | Е         | С        | D     | F     | D        | С         | F      | С        | С           | Е        | D    | С    |
| Approach Delay (s)           |           | 39.2     |       |       | 52.6     |           |        | 51.7     |             |          | 40.5 |      |
| Approach LOS                 |           | D        |       |       | D        |           |        | D        |             |          | D    |      |
| Intersection Summary         |           |          |       |       |          |           |        |          |             |          |      |      |
| HCM Average Control D        | •         |          | 46.2  | F     | ICM Le   | vel of Se | ervice |          | D           |          |      |      |
| <b>HCM Volume to Capacit</b> | y ratio   |          | 0.82  |       |          |           |        |          |             |          |      |      |
| Actuated Cycle Length (      |           |          | 107.3 |       |          | ost time  |        |          | 12.0        |          |      |      |
| Intersection Capacity Ut     | ilization |          | 77.6% | [0    | CU Leve  | el of Sei | vice   |          | D           |          |      |      |
| Analysis Period (min)        |           |          | 15    |       |          |           |        |          |             |          |      |      |
| c Critical Lane Group        |           |          |       |       |          |           |        |          |             |          |      |      |

|                               | ۶        | <b>→</b>   | •     | •    | +          | •         | •      | <b>†</b> | <b>/</b> | <b>/</b> | <b>↓</b> | 4     |
|-------------------------------|----------|------------|-------|------|------------|-----------|--------|----------|----------|----------|----------|-------|
| Movement                      | EBL      | EBT        | EBR   | WBL  | WBT        | WBR       | NBL    | NBT      | NBR      | SBL      | SBT      | SBR   |
| Lane Configurations           |          | <b>∱</b> ⊅ |       |      | <b>∱</b> } |           |        |          |          | 7        |          | 7     |
| Ideal Flow (vphpl)            | 1900     | 1900       | 1900  | 1900 | 1900       | 1900      | 1900   | 1900     | 1900     | 1900     | 1900     | 1900  |
| Total Lost time (s)           |          | 4.0        |       |      | 4.0        |           |        |          |          | 4.0      |          | 4.0   |
| Lane Util. Factor             |          | 0.95       |       |      | 0.95       |           |        |          |          | 1.00     |          | 1.00  |
| Frt                           |          | 0.99       |       |      | 0.89       |           |        |          |          | 1.00     |          | 0.85  |
| Flt Protected                 |          | 1.00       |       |      | 1.00       |           |        |          |          | 0.95     |          | 1.00  |
| Satd. Flow (prot)             |          | 3491       |       |      | 3139       |           |        |          |          | 1770     |          | 1583  |
| Flt Permitted                 |          | 1.00       |       |      | 1.00       |           |        |          |          | 0.95     |          | 1.00  |
| Satd. Flow (perm)             |          | 3491       |       |      | 3139       |           |        |          |          | 1770     |          | 1583  |
| Volume (vph)                  | 0        | 1310       | 130   | 0    | 170        | 520       | 0      | 0        | 0        | 100      | 0        | 180   |
| Peak-hour factor, PHF         | 0.97     | 0.97       | 0.97  | 0.97 | 0.97       | 0.97      | 0.97   | 0.97     | 0.97     | 0.97     | 0.97     | 0.97  |
| Adj. Flow (vph)               | 0        | 1351       | 134   | 0    | 175        | 536       | 0      | 0        | 0        | 103      | 0        | 186   |
| RTOR Reduction (vph)          | 0        | 11         | 0     | 0    | 210        | 0         | 0      | 0        | 0        | 0        | 0        | 152   |
| Lane Group Flow (vph)         | 0        | 1474       | 0     | 0    | 501        | 0         | 0      | 0        | 0        | 103      | 0        | 34    |
| Turn Type                     |          |            |       |      |            |           |        |          |          | Prot     | С        | ustom |
| Protected Phases              |          | 4          |       |      | 8          |           |        |          |          | 2        |          |       |
| Permitted Phases              |          |            |       |      |            |           |        |          |          |          |          | 2     |
| Actuated Green, G (s)         |          | 23.3       |       |      | 23.3       |           |        |          |          | 7.0      |          | 7.0   |
| Effective Green, g (s)        |          | 23.3       |       |      | 23.3       |           |        |          |          | 7.0      |          | 7.0   |
| Actuated g/C Ratio            |          | 0.61       |       |      | 0.61       |           |        |          |          | 0.18     |          | 0.18  |
| Clearance Time (s)            |          | 4.0        |       |      | 4.0        |           |        |          |          | 4.0      |          | 4.0   |
| Vehicle Extension (s)         |          | 3.0        |       |      | 3.0        |           |        |          |          | 3.0      |          | 3.0   |
| Lane Grp Cap (vph)            |          | 2124       |       |      | 1910       |           |        |          |          | 323      |          | 289   |
| v/s Ratio Prot                |          | c0.42      |       |      | 0.16       |           |        |          |          | c0.06    |          |       |
| v/s Ratio Perm                |          |            |       |      |            |           |        |          |          |          |          | 0.02  |
| v/c Ratio                     |          | 0.69       |       |      | 0.26       |           |        |          |          | 0.32     |          | 0.12  |
| Uniform Delay, d1             |          | 5.1        |       |      | 3.5        |           |        |          |          | 13.6     |          | 13.1  |
| Progression Factor            |          | 1.00       |       |      | 1.00       |           |        |          |          | 1.00     |          | 1.00  |
| Incremental Delay, d2         |          | 1.0        |       |      | 0.1        |           |        |          |          | 0.6      |          | 0.2   |
| Delay (s)                     |          | 6.1        |       |      | 3.6        |           |        |          |          | 14.2     |          | 13.3  |
| Level of Service              |          | Α          |       |      | Α          |           |        |          |          | В        |          | В     |
| Approach Delay (s)            |          | 6.1        |       |      | 3.6        |           |        | 0.0      |          |          | 13.6     |       |
| Approach LOS                  |          | Α          |       |      | Α          |           |        | Α        |          |          | В        |       |
| Intersection Summary          |          |            |       |      |            |           |        |          |          |          |          |       |
| HCM Average Control Do        |          |            | 6.2   | H    | ICM Lev    | vel of Se | ervice |          | Α        |          |          |       |
| <b>HCM Volume to Capacity</b> |          |            | 0.61  |      |            |           |        |          |          |          |          |       |
| Actuated Cycle Length (s      |          |            | 38.3  |      |            | ost time  |        |          | 8.0      |          |          |       |
| Intersection Capacity Util    | lization |            | 52.6% | 10   | CU Leve    | el of Ser | vice   |          | Α        |          |          |       |
| Analysis Period (min)         |          |            | 15    |      |            |           |        |          |          |          |          |       |
| c Critical Lane Group         |          |            |       |      |            |           |        |          |          |          |          |       |

|                               | ۶       | <b>→</b>   | •     | •    | <b>←</b>   | •         | 1      | <b>†</b> | ~     | <b>\</b> | <b>↓</b> | 4    |
|-------------------------------|---------|------------|-------|------|------------|-----------|--------|----------|-------|----------|----------|------|
| Movement                      | EBL     | EBT        | EBR   | WBL  | WBT        | WBR       | NBL    | NBT      | NBR   | SBL      | SBT      | SBR  |
| Lane Configurations           |         | <b>∱</b> ∱ |       |      | <b>∱</b> } |           | 7      |          | 7     |          |          |      |
| Ideal Flow (vphpl)            | 1900    | 1900       | 1900  | 1900 | 1900       | 1900      | 1900   | 1900     | 1900  | 1900     | 1900     | 1900 |
| Total Lost time (s)           |         | 4.0        |       |      | 4.0        |           | 4.0    |          | 4.0   |          |          |      |
| Lane Util. Factor             |         | 0.95       |       |      | 0.95       |           | 1.00   |          | 1.00  |          |          |      |
| Frt                           |         | 0.94       |       |      | 0.99       |           | 1.00   |          | 0.85  |          |          |      |
| Flt Protected                 |         | 1.00       |       |      | 1.00       |           | 0.95   |          | 1.00  |          |          |      |
| Satd. Flow (prot)             |         | 3332       |       |      | 3502       |           | 1770   |          | 1583  |          |          |      |
| Flt Permitted                 |         | 1.00       |       |      | 1.00       |           | 0.95   |          | 1.00  |          |          |      |
| Satd. Flow (perm)             |         | 3332       |       |      | 3502       |           | 1770   |          | 1583  |          |          |      |
| Volume (vph)                  | 0       | 860        | 550   | 0    | 670        | 50        | 20     | 0        | 520   | 0        | 0        | 0    |
| Peak-hour factor, PHF         | 0.97    | 0.97       | 0.97  | 0.97 | 0.97       | 0.97      | 0.97   | 0.97     | 0.97  | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)               | 0       | 887        | 567   | 0    | 691        | 52        | 21     | 0        | 536   | 0        | 0        | 0    |
| RTOR Reduction (vph)          | 0       | 203        | 0     | 0    | 11         | 0         | 0      | 0        | 46    | 0        | 0        | 0    |
| Lane Group Flow (vph)         | 0       | 1251       | 0     | 0    | 732        | 0         | 21     | 0        | 490   | 0        | 0        | 0    |
| Turn Type                     |         |            |       |      |            |           | Prot   | С        | ustom |          |          |      |
| Protected Phases              |         | 4          |       |      | 8          |           | 2      |          |       |          |          |      |
| Permitted Phases              |         |            |       |      |            |           |        |          | 2     |          |          |      |
| Actuated Green, G (s)         |         | 20.4       |       |      | 20.4       |           | 17.1   |          | 17.1  |          |          |      |
| Effective Green, g (s)        |         | 20.4       |       |      | 20.4       |           | 17.1   |          | 17.1  |          |          |      |
| Actuated g/C Ratio            |         | 0.45       |       |      | 0.45       |           | 0.38   |          | 0.38  |          |          |      |
| Clearance Time (s)            |         | 4.0        |       |      | 4.0        |           | 4.0    |          | 4.0   |          |          |      |
| Vehicle Extension (s)         |         | 3.0        |       |      | 3.0        |           | 3.0    |          | 3.0   |          |          |      |
| Lane Grp Cap (vph)            |         | 1494       |       |      | 1570       |           | 665    |          | 595   |          |          |      |
| v/s Ratio Prot                |         | c0.38      |       |      | 0.21       |           | 0.01   |          |       |          |          |      |
| v/s Ratio Perm                |         |            |       |      |            |           |        |          | c0.31 |          |          |      |
| v/c Ratio                     |         | 0.84       |       |      | 0.47       |           | 0.03   |          | 0.82  |          |          |      |
| Uniform Delay, d1             |         | 11.1       |       |      | 8.8        |           | 9.0    |          | 12.8  |          |          |      |
| Progression Factor            |         | 1.00       |       |      | 1.00       |           | 1.00   |          | 1.00  |          |          |      |
| Incremental Delay, d2         |         | 4.3        |       |      | 0.2        |           | 0.0    |          | 9.0   |          |          |      |
| Delay (s)                     |         | 15.4       |       |      | 9.0        |           | 9.0    |          | 21.8  |          |          |      |
| Level of Service              |         | В          |       |      | Α          |           | Α      |          | С     |          |          |      |
| Approach Delay (s)            |         | 15.4       |       |      | 9.0        |           |        | 21.4     |       |          | 0.0      |      |
| Approach LOS                  |         | В          |       |      | Α          |           |        | С        |       |          | Α        |      |
| Intersection Summary          |         |            |       |      |            |           |        |          |       |          |          |      |
| HCM Average Control De        |         |            | 14.8  | H    | ICM Le     | vel of Se | ervice |          | В     |          |          |      |
| <b>HCM Volume to Capacity</b> |         |            | 0.83  |      |            |           |        |          |       |          |          |      |
| Actuated Cycle Length (s      |         |            | 45.5  |      |            | ost time  | ` '    |          | 8.0   |          |          |      |
| Intersection Capacity Utili   | ization |            | 80.3% | 10   | CU Leve    | el of Ser | vice   |          | D     |          |          |      |
| Analysis Period (min)         |         |            | 15    |      |            |           |        |          |       |          |          |      |
| c Critical Lane Group         |         |            |       |      |            |           |        |          |       |          |          |      |

|                           | ۶        | <b>→</b>   | •     | •    | <b>←</b>    | 4         | 4      | †    | ~    | <b>\</b> | Ţ    | 1     |
|---------------------------|----------|------------|-------|------|-------------|-----------|--------|------|------|----------|------|-------|
| Movement                  | EBL      | EBT        | EBR   | WBL  | WBT         | WBR       | NBL    | NBT  | NBR  | SBL      | SBT  | SBR   |
| Lane Configurations       |          | <b>↑</b> ↑ |       |      | <b>↑</b> ↑↑ |           |        |      |      | Ť        |      | 7     |
| Ideal Flow (vphpl)        | 1900     | 1900       | 1900  | 1900 | 1900        | 1900      | 1900   | 1900 | 1900 | 1900     | 1900 | 1900  |
| Total Lost time (s)       |          | 4.0        |       |      | 4.0         |           |        |      |      | 4.0      |      | 4.0   |
| Lane Util. Factor         |          | 0.91       |       |      | 0.91        |           |        |      |      | 1.00     |      | 1.00  |
| Frt                       |          | 0.96       |       |      | 0.88        |           |        |      |      | 1.00     |      | 0.85  |
| Flt Protected             |          | 1.00       |       |      | 1.00        |           |        |      |      | 0.95     |      | 1.00  |
| Satd. Flow (prot)         |          | 4895       |       |      | 4473        |           |        |      |      | 1770     |      | 1583  |
| Flt Permitted             |          | 1.00       |       |      | 1.00        |           |        |      |      | 0.95     |      | 1.00  |
| Satd. Flow (perm)         |          | 4895       |       |      | 4473        |           |        |      |      | 1770     |      | 1583  |
| Volume (vph)              | 0        | 480        | 160   | 0    | 170         | 690       | 0      | 0    | 0    | 90       | 0    | 30    |
| Peak-hour factor, PHF     | 0.97     | 0.97       | 0.97  | 0.97 | 0.97        | 0.97      | 0.97   | 0.97 | 0.97 | 0.97     | 0.97 | 0.97  |
| Adj. Flow (vph)           | 0        | 495        | 165   | 0    | 175         | 711       | 0      | 0    | 0    | 93       | 0    | 31    |
| RTOR Reduction (vph)      | 0        | 84         | 0     | 0    | 362         | 0         | 0      | 0    | 0    | 0        | 0    | 26    |
| Lane Group Flow (vph)     | 0        | 576        | 0     | 0    | 524         | 0         | 0      | 0    | 0    | 93       | 0    | 5     |
| Turn Type                 |          |            |       |      |             |           |        |      |      | Prot     | С    | ustom |
| Protected Phases          |          | 4          |       |      | 8           |           |        |      |      | 1        |      |       |
| Permitted Phases          |          |            |       |      |             |           |        |      |      |          |      | 1     |
| Actuated Green, G (s)     |          | 11.1       |       |      | 11.1        |           |        |      |      | 3.5      |      | 3.5   |
| Effective Green, g (s)    |          | 11.1       |       |      | 11.1        |           |        |      |      | 3.5      |      | 3.5   |
| Actuated g/C Ratio        |          | 0.49       |       |      | 0.49        |           |        |      |      | 0.15     |      | 0.15  |
| Clearance Time (s)        |          | 4.0        |       |      | 4.0         |           |        |      |      | 4.0      |      | 4.0   |
| Vehicle Extension (s)     |          | 3.0        |       |      | 3.0         |           |        |      |      | 3.0      |      | 3.0   |
| Lane Grp Cap (vph)        |          | 2404       |       |      | 2197        |           |        |      |      | 274      |      | 245   |
| v/s Ratio Prot            |          | c0.12      |       |      | 0.12        |           |        |      |      | c0.05    |      |       |
| v/s Ratio Perm            |          |            |       |      |             |           |        |      |      |          |      | 0.00  |
| v/c Ratio                 |          | 0.24       |       |      | 0.24        |           |        |      |      | 0.34     |      | 0.02  |
| Uniform Delay, d1         |          | 3.3        |       |      | 3.3         |           |        |      |      | 8.5      |      | 8.1   |
| Progression Factor        |          | 1.00       |       |      | 1.00        |           |        |      |      | 1.00     |      | 1.00  |
| Incremental Delay, d2     |          | 0.1        |       |      | 0.1         |           |        |      |      | 0.7      |      | 0.0   |
| Delay (s)                 |          | 3.4        |       |      | 3.4         |           |        |      |      | 9.3      |      | 8.1   |
| Level of Service          |          | Α          |       |      | Α           |           |        |      |      | Α        |      | Α     |
| Approach Delay (s)        |          | 3.4        |       |      | 3.4         |           |        | 0.0  |      |          | 9.0  |       |
| Approach LOS              |          | Α          |       |      | Α           |           |        | Α    |      |          | Α    |       |
| Intersection Summary      |          |            |       |      |             |           |        |      |      |          |      |       |
| HCM Average Control D     |          |            | 3.8   | -    | ICM Lev     | vel of Se | ervice |      | Α    |          |      |       |
| HCM Volume to Capacit     |          |            | 0.26  |      |             |           | ( )    |      |      |          |      |       |
| Actuated Cycle Length (   |          |            | 22.6  |      |             | ost time  |        |      | 8.0  |          |      |       |
| Intersection Capacity Uti | lization |            | 30.5% | [(   | CU Leve     | el of Ser | vice   |      | Α    |          |      |       |
| Analysis Period (min)     |          |            | 15    |      |             |           |        |      |      |          |      |       |
| c Critical Lane Group     |          |            |       |      |             |           |        |      |      |          |      |       |

|                               | ۶      | <b>→</b>        | •     | •    | •          | •         | 4      | <b>†</b> | <b>/</b> | <b>&gt;</b> | ţ    | 4    |
|-------------------------------|--------|-----------------|-------|------|------------|-----------|--------|----------|----------|-------------|------|------|
| Movement                      | EBL    | EBT             | EBR   | WBL  | WBT        | WBR       | NBL    | NBT      | NBR      | SBL         | SBT  | SBR  |
| Lane Configurations           |        | ተተ <sub>ጉ</sub> |       |      | <b>↑</b> ↑ |           | Ţ      |          | 7        |             |      |      |
|                               | 1900   | 1900            | 1900  | 1900 | 1900       | 1900      | 1900   | 1900     | 1900     | 1900        | 1900 | 1900 |
| Total Lost time (s)           |        | 4.0             |       |      | 4.0        |           | 4.0    |          | 4.0      |             |      |      |
| Lane Util. Factor             |        | 0.91            |       |      | 0.91       |           | 1.00   |          | 1.00     |             |      |      |
| Frt                           |        | 0.98            |       |      | 0.96       |           | 1.00   |          | 0.85     |             |      |      |
| Flt Protected                 |        | 1.00            |       |      | 1.00       |           | 0.95   |          | 1.00     |             |      |      |
| Satd. Flow (prot)             |        | 4992            |       |      | 4884       |           | 1770   |          | 1583     |             |      |      |
| Flt Permitted                 |        | 1.00            |       |      | 1.00       |           | 0.95   |          | 1.00     |             |      |      |
| Satd. Flow (perm)             |        | 4992            |       |      | 4884       |           | 1770   |          | 1583     |             |      |      |
| Volume (vph)                  | 0      | 500             | 70    | 0    | 780        | 280       | 80     | 0        | 1110     | 0           | 0    | 0    |
| Peak-hour factor, PHF         | 0.97   | 0.97            | 0.97  | 0.97 | 0.97       | 0.97      | 0.97   | 0.97     | 0.97     | 0.97        | 0.97 | 0.97 |
| Adj. Flow (vph)               | 0      | 515             | 72    | 0    | 804        | 289       | 82     | 0        | 1144     | 0           | 0    | 0    |
| RTOR Reduction (vph)          | 0      | 28              | 0     | 0    | 101        | 0         | 0      | 0        | 25       | 0           | 0    | 0    |
| Lane Group Flow (vph)         | 0      | 559             | 0     | 0    | 992        | 0         | 82     | 0        | 1119     | 0           | 0    | 0    |
| Turn Type                     |        |                 |       |      |            |           | Prot   | С        | ustom    |             |      |      |
| Protected Phases              |        | 4               |       |      | 8          |           | 2      |          |          |             |      |      |
| Permitted Phases              |        |                 |       |      |            |           |        |          | 2        |             |      |      |
| Actuated Green, G (s)         |        | 15.8            |       |      | 15.8       |           | 41.0   |          | 41.0     |             |      |      |
| Effective Green, g (s)        |        | 15.8            |       |      | 15.8       |           | 41.0   |          | 41.0     |             |      |      |
| Actuated g/C Ratio            |        | 0.24            |       |      | 0.24       |           | 0.63   |          | 0.63     |             |      |      |
| Clearance Time (s)            |        | 4.0             |       |      | 4.0        |           | 4.0    |          | 4.0      |             |      |      |
| Vehicle Extension (s)         |        | 3.0             |       |      | 3.0        |           | 3.0    |          | 3.0      |             |      |      |
| Lane Grp Cap (vph)            |        | 1217            |       |      | 1191       |           | 1120   |          | 1002     |             |      |      |
| v/s Ratio Prot                |        | 0.11            |       |      | c0.20      |           | 0.05   |          |          |             |      |      |
| v/s Ratio Perm                |        |                 |       |      |            |           |        |          | c0.71    |             |      |      |
| v/c Ratio                     |        | 0.46            |       |      | 0.83       |           | 0.07   |          | 1.12     |             |      |      |
| Uniform Delay, d1             |        | 20.9            |       |      | 23.3       |           | 4.6    |          | 11.9     |             |      |      |
| Progression Factor            |        | 1.00            |       |      | 1.00       |           | 1.00   |          | 1.00     |             |      |      |
| Incremental Delay, d2         |        | 0.3             |       |      | 5.1        |           | 0.0    |          | 66.3     |             |      |      |
| Delay (s)                     |        | 21.1            |       |      | 28.4       |           | 4.6    |          | 78.2     |             |      |      |
| Level of Service              |        | С               |       |      | С          |           | Α      |          | E        |             |      |      |
| Approach Delay (s)            |        | 21.1            |       |      | 28.4       |           |        | 73.3     |          |             | 0.0  |      |
| Approach LOS                  |        | С               |       |      | С          |           |        | Е        |          |             | Α    |      |
| Intersection Summary          |        |                 |       |      |            |           |        |          |          |             |      |      |
| HCM Average Control De        | lay    |                 | 45.9  | H    | ICM Lev    | vel of Se | ervice |          | D        |             |      |      |
| <b>HCM Volume to Capacity</b> | ratio  |                 | 1.04  |      |            |           |        |          |          |             |      |      |
| Actuated Cycle Length (s)     | )      |                 | 64.8  |      |            | ost time  |        |          | 8.0      |             |      |      |
| Intersection Capacity Utili   | zation |                 | 86.6% | [0   | CU Leve    | el of Ser | vice   |          | Е        |             |      |      |
| Analysis Period (min)         |        |                 | 15    |      |            |           |        |          |          |             |      |      |
| c Critical Lane Group         |        |                 |       |      |            |           |        |          |          |             |      |      |

|                          | <b>→</b>   | •    | •     | ←        | <b>1</b> | ~         |      |   |  |
|--------------------------|------------|------|-------|----------|----------|-----------|------|---|--|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL      | NBR       |      |   |  |
| Lane Configurations      | <b>↑</b> Ъ |      | ኻ     | <b>^</b> | ሻ        | 7         |      |   |  |
| Sign Control             | Free       |      | ·     | Free     | Stop     | •         |      |   |  |
| Grade                    | 0%         |      |       | 0%       | 0%       |           |      |   |  |
| Volume (veh/h)           | 680        | 70   | 320   | 1170     | 10       | 80        |      |   |  |
| Peak Hour Factor         | 0.97       | 0.97 | 0.97  | 0.97     | 0.97     | 0.97      |      |   |  |
| Hourly flow rate (vph)   | 701        | 72   | 330   | 1206     | 10       | 82        |      |   |  |
| Pedestrians              |            |      |       |          |          |           |      |   |  |
| Lane Width (ft)          |            |      |       |          |          |           |      |   |  |
| Walking Speed (ft/s)     |            |      |       |          |          |           |      |   |  |
| Percent Blockage         |            |      |       |          |          |           |      |   |  |
| Right turn flare (veh)   |            |      |       |          |          |           |      |   |  |
| Median type              |            |      |       |          | None     |           |      |   |  |
| Median storage veh)      |            |      |       |          |          |           |      |   |  |
| Upstream signal (ft)     |            |      |       | 714      |          |           |      |   |  |
| pX, platoon unblocked    |            |      |       |          | 0.82     |           |      |   |  |
| vC, conflicting volume   |            |      | 773   |          | 2000     | 387       |      |   |  |
| vC1, stage 1 conf vol    |            |      |       |          |          |           |      |   |  |
| vC2, stage 2 conf vol    |            |      |       |          |          |           |      |   |  |
| vCu, unblocked vol       |            |      | 773   |          | 2000     | 387       |      |   |  |
| tC, single (s)           |            |      | 4.1   |          | 6.8      | 6.9       |      |   |  |
| tC, 2 stage (s)          |            |      |       |          |          |           |      |   |  |
| tF (s)                   |            |      | 2.2   |          | 3.5      | 3.3       |      |   |  |
| p0 queue free %          |            |      | 61    |          | 60       | 87        |      |   |  |
| cM capacity (veh/h)      |            |      | 838   |          | 26       | 612       |      |   |  |
| Direction, Lane #        | EB 1       | EB 2 | WB 1  | WB 2     | WB3      | NB 1      | NB 2 |   |  |
| Volume Total             | 467        | 306  | 330   | 603      | 603      | 10        | 82   |   |  |
| Volume Left              | 0          | 0    | 330   | 0        | 0        | 10        | 0    |   |  |
| Volume Right             | 0          | 72   | 0     | 0        | 0        | 0         | 82   |   |  |
| cSH                      | 1700       | 1700 | 838   | 1700     | 1700     | 26        | 612  |   |  |
| Volume to Capacity       | 0.27       | 0.18 | 0.39  | 0.35     | 0.35     | 0.40      | 0.13 |   |  |
| Queue Length 95th (ft)   | 0          | 0    | 47    | 0        | 0        | 30        | 12   |   |  |
| Control Delay (s)        | 0.0        | 0.0  | 12.1  | 0.0      | 0.0      | 215.8     | 11.8 |   |  |
| Lane LOS                 |            |      | В     |          |          | F         | В    |   |  |
| Approach Delay (s)       | 0.0        |      | 2.6   |          |          | 34.5      |      |   |  |
| Approach LOS             |            |      |       |          |          | D         |      |   |  |
| Intersection Summary     |            |      |       |          |          |           |      |   |  |
| Average Delay            |            |      | 3.0   |          |          |           |      |   |  |
| Intersection Capacity Ut | ilization  |      | 52.1% | ŀ        | CU Leve  | el of Ser | vice | Α |  |
| Analysis Period (min)    |            |      | 15    |          |          |           |      |   |  |
|                          |            |      |       |          |          |           |      |   |  |

|                          | ۶         | <b>→</b> | <b>←</b>   | •    | <b>&gt;</b> | 4             |    |
|--------------------------|-----------|----------|------------|------|-------------|---------------|----|
| Movement                 | EBL       | EBT      | WBT        | WBR  | SBL         | SBR           |    |
| Lane Configurations      | ች         | <b>^</b> | <b>↑</b> ↑ |      | ች           | 7             |    |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900       | 1900 | 1900        | 1900          |    |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0        |      | 4.0         | 4.0           |    |
| Lane Util. Factor        | 1.00      | 0.95     | 0.95       |      | 1.00        | 1.00          |    |
| Frt                      | 1.00      | 1.00     | 1.00       |      | 1.00        | 0.85          |    |
| Flt Protected            | 0.95      | 1.00     | 1.00       |      | 0.95        | 1.00          |    |
| Satd. Flow (prot)        | 1770      | 3539     | 3530       |      | 1770        | 1583          |    |
| Flt Permitted            | 0.95      | 1.00     | 1.00       |      | 0.95        | 1.00          |    |
| Satd. Flow (perm)        | 1770      | 3539     | 3530       |      | 1770        | 1583          |    |
| Volume (vph)             | 60        | 710      | 1130       | 20   | 60          | 370           |    |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.97       | 0.97 | 0.97        | 0.97          |    |
| Adj. Flow (vph)          | 62        | 732      | 1165       | 21   | 62          | 381           |    |
| RTOR Reduction (vph)     | 0         | 0        | 2          | 0    | 0           | 145           |    |
| Lane Group Flow (vph)    | 62        | 732      | 1184       | 0    | 62          | 236           |    |
| Turn Type                | Prot      |          |            |      |             | Perm          |    |
| Protected Phases         | 7         | 4        | 8          |      | 6           |               |    |
| Permitted Phases         |           |          |            |      |             | 6             |    |
| Actuated Green, G (s)    | 2.8       | 30.3     | 23.5       |      | 12.8        | 12.8          |    |
| Effective Green, g (s)   | 2.8       | 30.3     | 23.5       |      | 12.8        | 12.8          |    |
| Actuated g/C Ratio       | 0.05      | 0.59     | 0.46       |      | 0.25        | 0.25          |    |
| Clearance Time (s)       | 4.0       | 4.0      | 4.0        |      | 4.0         | 4.0           |    |
| Vehicle Extension (s)    | 3.0       | 3.0      | 3.0        |      | 3.0         | 3.0           |    |
| Lane Grp Cap (vph)       | 97        | 2098     | 1623       |      | 443         | 397           |    |
| v/s Ratio Prot           | c0.04     | 0.21     | c0.34      |      | 0.04        |               |    |
| v/s Ratio Perm           |           |          |            |      |             | c0.15         |    |
| v/c Ratio                | 0.64      | 0.35     | 0.73       |      | 0.14        | 0.60          |    |
| Uniform Delay, d1        | 23.7      | 5.3      | 11.2       |      | 14.9        | 16.9          |    |
| Progression Factor       | 1.00      | 1.00     | 1.00       |      | 1.00        | 1.00          |    |
| Incremental Delay, d2    | 13.0      | 0.1      | 1.7        |      | 0.1         | 2.4           |    |
| Delay (s)                | 36.7      | 5.4      | 12.9       |      | 15.0        | 19.3          |    |
| Level of Service         | D         | Α        | В          |      | В           | В             |    |
| Approach Delay (s)       |           | 7.9      | 12.9       |      | 18.7        |               |    |
| Approach LOS             |           | Α        | В          |      | В           |               |    |
| Intersection Summary     |           |          |            |      |             |               |    |
| HCM Average Control D    | •         |          | 12.3       | Н    | ICM Lev     | vel of Servi  | се |
| HCM Volume to Capacit    |           |          | 0.68       |      |             |               |    |
| Actuated Cycle Length (  |           |          | 51.1       |      |             | ost time (s)  |    |
| Intersection Capacity Ut | ilization |          | 61.4%      | IC   | CU Leve     | el of Service | Э  |
| Analysis Period (min)    |           |          | 15         |      |             |               |    |
| c Critical Lane Group    |           |          |            |      |             |               |    |

|                           | ٠         | <b>→</b> | •     | •     | •       | •          | 4    | <b>†</b> | /    | <b>&gt;</b> | <b>↓</b> | 4    |
|---------------------------|-----------|----------|-------|-------|---------|------------|------|----------|------|-------------|----------|------|
| Movement                  | EBL       | EBT      | EBR   | WBL   | WBT     | WBR        | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations       |           | 4        |       |       | 4       |            |      | 4        |      |             | 4        |      |
| Sign Control              |           | Stop     |       |       | Stop    |            |      | Stop     |      |             | Stop     |      |
| Volume (vph)              | 10        | 50       | 100   | 20    | 60      | 10         | 20   | 190      | 110  | 10          | 460      | 50   |
| Peak Hour Factor          | 0.97      | 0.97     | 0.97  | 0.97  | 0.97    | 0.97       | 0.97 | 0.97     | 0.97 | 0.97        | 0.97     | 0.97 |
| Hourly flow rate (vph)    | 10        | 52       | 103   | 21    | 62      | 10         | 21   | 196      | 113  | 10          | 474      | 52   |
| Direction, Lane #         | EB 1      | WB 1     | NB 1  | SB 1  |         |            |      |          |      |             |          |      |
| Volume Total (vph)        | 165       | 93       | 330   | 536   |         |            |      |          |      |             |          |      |
| Volume Left (vph)         | 10        | 21       | 21    | 10    |         |            |      |          |      |             |          |      |
| Volume Right (vph)        | 103       | 10       | 113   | 52    |         |            |      |          |      |             |          |      |
| Hadj (s)                  | -0.33     | 0.01     | -0.16 | -0.02 |         |            |      |          |      |             |          |      |
| Departure Headway (s)     | 6.0       | 6.6      | 5.4   | 5.2   |         |            |      |          |      |             |          |      |
| Degree Utilization, x     | 0.28      | 0.17     | 0.49  | 0.78  |         |            |      |          |      |             |          |      |
| Capacity (veh/h)          | 530       | 474      | 624   | 671   |         |            |      |          |      |             |          |      |
| Control Delay (s)         | 11.4      | 10.9     | 13.5  | 24.1  |         |            |      |          |      |             |          |      |
| Approach Delay (s)        | 11.4      | 10.9     | 13.5  | 24.1  |         |            |      |          |      |             |          |      |
| Approach LOS              | В         | В        | В     | С     |         |            |      |          |      |             |          |      |
| Intersection Summary      |           |          |       |       |         |            |      |          |      |             |          |      |
| Delay                     |           |          | 18.0  |       |         |            |      |          |      |             |          |      |
| HCM Level of Service      |           |          | С     |       |         |            |      |          |      |             |          |      |
| Intersection Capacity Uti | ilization |          | 47.5% | [0    | CU Leve | el of Serv | vice |          | Α    |             |          |      |
| Analysis Period (min)     |           |          | 15    |       |         |            |      |          |      |             |          |      |

|                              | ۶        | <b>→</b>   | •     | •     | <b>←</b>   | •         | •      | †     | ~    | <b>/</b> | <b>↓</b> | 4    |
|------------------------------|----------|------------|-------|-------|------------|-----------|--------|-------|------|----------|----------|------|
| Movement                     | EBL      | EBT        | EBR   | WBL   | WBT        | WBR       | NBL    | NBT   | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations          | Ţ        | <b>∱</b> ∱ |       | 7     | <b>∱</b> } |           | *      | f)    |      | 7        | £        |      |
| Ideal Flow (vphpl)           | 1900     | 1900       | 1900  | 1900  | 1900       | 1900      | 1900   | 1900  | 1900 | 1900     | 1900     | 1900 |
| Total Lost time (s)          | 4.0      | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0   |      | 4.0      | 4.0      |      |
| Lane Util. Factor            | 1.00     | 0.95       |       | 1.00  | 0.95       |           | 1.00   | 1.00  |      | 1.00     | 1.00     |      |
| Frt                          | 1.00     | 1.00       |       | 1.00  | 0.99       |           | 1.00   | 0.93  |      | 1.00     | 0.96     |      |
| Flt Protected                | 0.95     | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00  |      | 0.95     | 1.00     |      |
| Satd. Flow (prot)            | 1770     | 3533       |       | 1770  | 3500       |           | 1770   | 1726  |      | 1770     | 1784     |      |
| Flt Permitted                | 0.95     | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00  |      | 0.95     | 1.00     |      |
| Satd. Flow (perm)            | 1770     | 3533       |       | 1770  | 3500       |           | 1770   | 1726  |      | 1770     | 1784     |      |
| Volume (vph)                 | 100      | 870        | 10    | 230   | 1000       | 80        | 10     | 230   | 220  | 200      | 330      | 130  |
| Peak-hour factor, PHF        | 0.97     | 0.97       | 0.97  | 0.97  | 0.97       | 0.97      | 0.97   | 0.97  | 0.97 | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)              | 103      | 897        | 10    | 237   | 1031       | 82        | 10     | 237   | 227  | 206      | 340      | 134  |
| RTOR Reduction (vph)         | 0        | 1          | 0     | 0     | 6          | 0         | 0      | 38    | 0    | 0        | 15       | 0    |
| Lane Group Flow (vph)        | 103      | 906        | 0     | 237   | 1107       | 0         | 10     | 426   | 0    | 206      | 459      | 0    |
| Turn Type                    | Prot     |            |       | Prot  |            |           | Prot   |       |      | Prot     |          |      |
| Protected Phases             | 7        | 4          |       | 3     | 8          |           | 5      | 2     |      | 1        | 6        |      |
| Permitted Phases             |          |            |       |       |            |           |        |       |      |          |          |      |
| Actuated Green, G (s)        | 6.0      | 24.8       |       | 13.0  | 31.8       |           | 0.8    | 26.9  |      | 9.1      | 35.2     |      |
| Effective Green, g (s)       | 6.0      | 24.8       |       | 13.0  | 31.8       |           | 0.8    | 26.9  |      | 9.1      | 35.2     |      |
| Actuated g/C Ratio           | 0.07     | 0.28       |       | 0.14  | 0.35       |           | 0.01   | 0.30  |      | 0.10     | 0.39     |      |
| Clearance Time (s)           | 4.0      | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0   |      | 4.0      | 4.0      |      |
| Vehicle Extension (s)        | 3.0      | 3.0        |       | 3.0   | 3.0        |           | 3.0    | 3.0   |      | 3.0      | 3.0      |      |
| Lane Grp Cap (vph)           | 118      | 976        |       | 256   | 1239       |           | 16     | 517   |      | 179      | 699      | _    |
| v/s Ratio Prot               | 0.06     | 0.26       |       | c0.13 | c0.32      |           | 0.01   | c0.25 |      | c0.12    | 0.26     |      |
| v/s Ratio Perm               |          |            |       |       |            |           |        |       |      |          |          |      |
| v/c Ratio                    | 0.87     | 0.93       |       | 0.93  | 0.89       |           | 0.62   | 0.82  |      | 1.15     | 0.66     |      |
| Uniform Delay, d1            | 41.5     | 31.6       |       | 37.9  | 27.4       |           | 44.4   | 29.3  |      | 40.4     | 22.4     |      |
| Progression Factor           | 1.00     | 1.00       |       | 1.00  | 1.00       |           | 1.00   | 1.00  |      | 1.00     | 1.00     |      |
| Incremental Delay, d2        | 46.0     | 14.4       |       | 36.5  | 8.5        |           | 57.6   | 10.3  |      | 113.7    | 2.2      |      |
| Delay (s)                    | 87.5     | 46.1       |       | 74.5  | 35.9       |           | 101.9  | 39.5  |      | 154.0    | 24.6     |      |
| Level of Service             | F        | D          |       | Ε     | D          |           | F      | D     |      | F        | С        |      |
| Approach Delay (s)           |          | 50.3       |       |       | 42.7       |           |        | 40.9  |      |          | 63.8     |      |
| Approach LOS                 |          | D          |       |       | D          |           |        | D     |      |          | Е        |      |
| Intersection Summary         |          |            |       |       |            |           |        |       |      |          |          |      |
| HCM Average Control D        |          |            | 48.7  | H     | ICM Lev    | vel of Se | ervice |       | D    |          |          |      |
| <b>HCM Volume to Capacit</b> |          |            | 0.89  |       |            |           |        |       |      |          |          |      |
| Actuated Cycle Length (      |          |            | 89.8  | · /   |            |           |        |       | 12.0 |          |          |      |
| Intersection Capacity Uti    | lization |            | 87.1% | l l   | CU Leve    | el of Ser | vice   |       | Е    |          |          |      |
| Analysis Period (min)        |          |            | 15    |       |            |           |        |       |      |          |          |      |
| c Critical Lane Group        |          |            |       |       |            |           |        |       |      |          |          |      |

|                           | ۶         | <b>→</b> | •     | •     | <b>←</b> | •         | 4    | <b>†</b> | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 4    |
|---------------------------|-----------|----------|-------|-------|----------|-----------|------|----------|----------|-------------|----------|------|
| Movement                  | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL  | NBT      | NBR      | SBL         | SBT      | SBR  |
| Lane Configurations       |           | 4        |       |       | 4        |           |      | 4        |          |             | 4        |      |
| Sign Control              |           | Stop     |       |       | Stop     |           |      | Stop     |          |             | Stop     |      |
| Volume (vph)              | 150       | 10       | 40    | 30    | 10       | 10        | 20   | 70       | 10       | 10          | 560      | 80   |
| Peak Hour Factor          | 0.97      | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97 | 0.97     | 0.97     | 0.97        | 0.97     | 0.97 |
| Hourly flow rate (vph)    | 155       | 10       | 41    | 31    | 10       | 10        | 21   | 72       | 10       | 10          | 577      | 82   |
| Direction, Lane #         | EB 1      | WB 1     | NB 1  | SB 1  |          |           |      |          |          |             |          |      |
| Volume Total (vph)        | 206       | 52       | 103   | 670   |          |           |      |          |          |             |          |      |
| Volume Left (vph)         | 155       | 31       | 21    | 10    |          |           |      |          |          |             |          |      |
| Volume Right (vph)        | 41        | 10       | 10    | 82    |          |           |      |          |          |             |          |      |
| Hadj (s)                  | 0.06      | 0.03     | 0.01  | -0.04 |          |           |      |          |          |             |          |      |
| Departure Headway (s)     | 6.1       | 6.4      | 5.7   | 4.9   |          |           |      |          |          |             |          |      |
| Degree Utilization, x     | 0.35      | 0.09     | 0.16  | 0.90  |          |           |      |          |          |             |          |      |
| Capacity (veh/h)          | 571       | 525      | 601   | 732   |          |           |      |          |          |             |          |      |
| Control Delay (s)         | 12.2      | 10.0     | 9.8   | 35.6  |          |           |      |          |          |             |          |      |
| Approach Delay (s)        | 12.2      | 10.0     | 9.8   | 35.6  |          |           |      |          |          |             |          |      |
| Approach LOS              | В         | В        | Α     | Е     |          |           |      |          |          |             |          |      |
| Intersection Summary      |           |          |       |       |          |           |      |          |          |             |          |      |
| Delay                     |           |          | 27.1  |       |          |           |      |          |          |             |          |      |
| HCM Level of Service      |           |          | D     |       |          |           |      |          |          |             |          |      |
| Intersection Capacity Uti | ilization |          | 57.0% | - 10  | CU Leve  | el of Ser | vice |          | В        |             |          |      |
| Analysis Period (min)     |           |          | 15    |       |          |           |      |          |          |             |          |      |
|                           |           |          |       |       |          |           |      |          |          |             |          |      |

|                          | <b>→</b>   | •    | •     | <b>←</b> | <b>1</b> | <i>&gt;</i> |      |      |                 |
|--------------------------|------------|------|-------|----------|----------|-------------|------|------|-----------------|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL      | NBR         |      |      |                 |
| Lane Configurations      | <b>↑</b> Ъ |      | ኻ     | <b>^</b> | ሻ        | 7           |      |      |                 |
| Sign Control             | Free       |      | ·     | Free     | Stop     | •           |      |      |                 |
| Grade                    | 0%         |      |       | 0%       | 0%       |             |      |      |                 |
| Volume (veh/h)           | 1290       | 40   | 110   | 820      | 70       | 250         |      |      |                 |
| Peak Hour Factor         | 0.97       | 0.97 | 0.97  | 0.97     | 0.97     | 0.97        |      |      |                 |
| Hourly flow rate (vph)   | 1330       | 41   | 113   | 845      | 72       | 258         |      |      |                 |
| Pedestrians              |            |      |       |          |          |             |      |      |                 |
| Lane Width (ft)          |            |      |       |          |          |             |      |      |                 |
| Walking Speed (ft/s)     |            |      |       |          |          |             |      |      |                 |
| Percent Blockage         |            |      |       |          |          |             |      |      |                 |
| Right turn flare (veh)   |            |      |       |          |          |             |      |      |                 |
| Median type              |            |      |       |          | None     |             |      |      |                 |
| Median storage veh)      |            |      |       |          |          |             |      |      |                 |
| Upstream signal (ft)     |            |      |       | 714      |          |             |      |      |                 |
| pX, platoon unblocked    |            |      |       |          | 0.88     |             |      |      |                 |
| vC, conflicting volume   |            |      | 1371  |          | 2000     | 686         |      |      |                 |
| vC1, stage 1 conf vol    |            |      |       |          |          |             |      |      |                 |
| vC2, stage 2 conf vol    |            |      |       |          |          |             |      |      |                 |
| vCu, unblocked vol       |            |      | 1371  |          | 2000     | 686         |      |      |                 |
| tC, single (s)           |            |      | 4.1   |          | 6.8      | 6.9         |      |      |                 |
| tC, 2 stage (s)          |            |      |       |          |          |             |      |      |                 |
| tF (s)                   |            |      | 2.2   |          | 3.5      | 3.3         |      |      |                 |
| p0 queue free %          |            |      | 77    |          | 0        | 34          |      |      |                 |
| cM capacity (veh/h)      |            |      | 496   |          | 35       | 390         |      |      |                 |
| Direction, Lane #        | EB 1       | EB 2 | WB 1  | WB2      | WB3      | NB 1        | NB 2 |      |                 |
| Volume Total             | 887        | 485  | 113   | 423      | 423      | 72          | 258  |      |                 |
| Volume Left              | 0          | 0    | 113   | 0        | 0        | 72          | 0    |      |                 |
| Volume Right             | 0          | 41   | 0     | 0        | 0        | 0           | 258  |      |                 |
| cSH                      | 1700       | 1700 | 496   | 1700     | 1700     | 35          | 390  |      |                 |
| Volume to Capacity       | 0.52       | 0.29 | 0.23  | 0.25     | 0.25     | 2.04        | 0.66 |      |                 |
| Queue Length 95th (ft)   | 0          | 0    | 22    | 0        | 0        | 200         | 114  |      |                 |
| Control Delay (s)        | 0.0        | 0.0  | 14.4  | 0.0      | 0.0      | 727.5       | 30.5 |      |                 |
| Lane LOS                 |            |      | В     |          |          | F           | D    |      |                 |
| Approach Delay (s)       | 0.0        |      | 1.7   |          |          | 182.9       |      |      |                 |
| Approach LOS             |            |      |       |          |          | F           |      |      |                 |
| Intersection Summary     |            |      |       |          |          |             |      |      |                 |
| Average Delay            |            |      | 23.3  |          |          |             |      | <br> | <br>· · · · · · |
| Intersection Capacity Ut | ilization  |      | 59.1% | Į.       | CU Leve  | el of Ser   | vice | В    |                 |
| Analysis Period (min)    |            |      | 15    |          |          |             |      |      |                 |
|                          |            |      |       |          |          |             |      |      |                 |

|                          | ۶         | <b>→</b> | <b>←</b>   | •    | <b>&gt;</b> | 4             |    |  |
|--------------------------|-----------|----------|------------|------|-------------|---------------|----|--|
| Movement                 | EBL       | EBT      | WBT        | WBR  | SBL         | SBR           |    |  |
| Lane Configurations      | ች         | <b>^</b> | <b>↑</b> ↑ |      | ች           | 7             |    |  |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900       | 1900 | 1900        | 1900          |    |  |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0        |      | 4.0         | 4.0           |    |  |
| Lane Util. Factor        | 1.00      | 0.95     | 0.95       |      | 1.00        | 1.00          |    |  |
| Frt                      | 1.00      | 1.00     | 0.99       |      | 1.00        | 0.85          |    |  |
| Flt Protected            | 0.95      | 1.00     | 1.00       |      | 0.95        | 1.00          |    |  |
| Satd. Flow (prot)        | 1770      | 3539     | 3503       |      | 1770        | 1583          |    |  |
| Flt Permitted            | 0.95      | 1.00     | 1.00       |      | 0.95        | 1.00          |    |  |
| Satd. Flow (perm)        | 1770      | 3539     | 3503       |      | 1770        | 1583          |    |  |
| Volume (vph)             | 350       | 1190     | 830        | 60   | 20          | 110           |    |  |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.97       | 0.97 | 0.97        | 0.97          |    |  |
| Adj. Flow (vph)          | 361       | 1227     | 856        | 62   | 21          | 113           |    |  |
| RTOR Reduction (vph)     | 0         | 0        | 5          | 0    | 0           | 100           |    |  |
| Lane Group Flow (vph)    | 361       | 1227     | 913        | 0    | 21          | 13            |    |  |
| Turn Type                | Prot      |          |            |      |             | Perm          |    |  |
| Protected Phases         | 7         | 4        | 8          |      | 6           |               |    |  |
| Permitted Phases         |           |          |            |      |             | 6             |    |  |
| Actuated Green, G (s)    | 12.6      | 39.4     | 22.8       |      | 6.3         | 6.3           |    |  |
| Effective Green, g (s)   | 12.6      | 39.4     | 22.8       |      | 6.3         | 6.3           |    |  |
| Actuated g/C Ratio       | 0.23      | 0.73     | 0.42       |      | 0.12        | 0.12          |    |  |
| Clearance Time (s)       | 4.0       | 4.0      | 4.0        |      | 4.0         | 4.0           |    |  |
| Vehicle Extension (s)    | 3.0       | 3.0      | 3.0        |      | 3.0         | 3.0           |    |  |
| Lane Grp Cap (vph)       | 415       | 2597     | 1487       |      | 208         | 186           |    |  |
| v/s Ratio Prot           | c0.20     | 0.35     | c0.26      |      | c0.01       |               |    |  |
| v/s Ratio Perm           |           |          |            |      |             | 0.01          |    |  |
| v/c Ratio                | 0.87      | 0.47     | 0.61       |      | 0.10        | 0.07          |    |  |
| Uniform Delay, d1        | 19.8      | 2.9      | 12.0       |      | 21.2        | 21.1          |    |  |
| Progression Factor       | 1.00      | 1.00     | 1.00       |      | 1.00        | 1.00          |    |  |
| Incremental Delay, d2    | 17.4      | 0.1      | 0.8        |      | 0.2         | 0.2           |    |  |
| Delay (s)                | 37.1      | 3.1      | 12.8       |      | 21.4        | 21.3          |    |  |
| Level of Service         | D         | Α        | В          |      | С           | С             |    |  |
| Approach Delay (s)       |           | 10.8     | 12.8       |      | 21.3        |               |    |  |
| Approach LOS             |           | В        | В          |      | С           |               |    |  |
| Intersection Summary     |           |          |            |      |             |               |    |  |
| HCM Average Control D    | •         |          | 12.0       |      | ICM Lev     | vel of Servi  | ce |  |
| HCM Volume to Capacit    |           |          | 0.61       |      |             |               |    |  |
| Actuated Cycle Length (  |           |          | 53.7       |      |             | ost time (s)  |    |  |
| Intersection Capacity Ut | ilization |          | 57.6%      | 10   | CU Leve     | el of Service | Э  |  |
| Analysis Period (min)    |           |          | 15         |      |             |               |    |  |
| c Critical Lane Group    |           |          |            |      |             |               |    |  |

| BT EBR   | WDI                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | WBL                                                                                                                                                 | WBT                                                                                                                                                                                                              | WBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NBT                                                                                                                                                                                                                                                 | NBR                                                                                                                                                                                                                                                                  | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SBT                            | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>₽</b> |                                                                                                                                                     | 4                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                     | Stop                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stop                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60       | 110                                                                                                                                                 | 70                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 410                                                                                                                                                                                                                                                 | 30                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 240                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.97     | 0.97                                                                                                                                                | 0.97                                                                                                                                                                                                             | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.97                                                                                                                                                                                                                                                | 0.97                                                                                                                                                                                                                                                                 | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.97                           | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 62       | 113                                                                                                                                                 | 72                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 423                                                                                                                                                                                                                                                 | 31                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 247                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 NB 1   | SB 1                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 96 577   | 268                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 124    | 10                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 31     | 10                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 0.04   | 0.02                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .0 5.8   | 6.3                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 38 0.93  | 0.47                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34 611   | 543                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .3 44.4  | 14.9                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .3 44.4  | 14.9                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| В Е      | В                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                                                                                                                                     |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28.7     |                                                                                                                                                     |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D        |                                                                                                                                                     |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70.9%    | 10                                                                                                                                                  | CU Leve                                                                                                                                                                                                          | el of Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     | С                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15       |                                                                                                                                                     |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | op<br>60 60<br>97 0.97<br>62 62<br>61 NB 1<br>96 577<br>13 124<br>10 31<br>12 0.04<br>7.0 5.8<br>38 0.93<br>84 611<br>1.3 44.4<br>1.3 44.4<br>1.8 E | op<br>60 60 110<br>97 0.97 0.97<br>62 62 113<br>61 NB 1 SB 1<br>96 577 268<br>13 124 10<br>10 31 10<br>12 0.04 0.02<br>7.0 5.8 6.3<br>38 0.93 0.47<br>84 611 543<br>1.3 44.4 14.9<br>B E B<br>28.7<br>D<br>70.9% | Stop         Stop           60         60         110         70           97         0.97         0.97         0.97           62         62         113         72           81         NB 1         SB 1           96         577         268           13         124         10           10         31         10           12         0.04         0.02           7.0         5.8         6.3           38         0.93         0.47           84         611         543           .3         44.4         14.9           .3         44.4         14.9           B         E         B           28.7         D           70.9%         ICU Leve | Stop         Stop           60         60         110         70         10           97         0.97         0.97         0.97         0.97           62         62         113         72         10           81         NB 1         SB 1         1           96         577         268         13         124         10           10         31         10         10         10         10         10         12         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0.04         0.02         0 | Stop  Stop  00 60 110 70 10 120  07 0.97 0.97 0.97 0.97 0.97  62 62 113 72 10 124  61 NB 1 SB 1  96 577 268  13 124 10  10 31 10  12 0.04 0.02  7.0 5.8 6.3  38 0.93 0.47  84 611 543  3.3 44.4 14.9  8 B E B   28.7  D  70.9% ICU Level of Service | Stop  Stop  Stop  60 60 110 70 10 120 410  97 0.97 0.97 0.97 0.97 0.97 0.97  62 62 113 72 10 124 423  61 NB 1 SB 1  96 577 268  13 124 10  10 31 10  12 0.04 0.02  7.0 5.8 6.3  38 0.93 0.47  84 611 543  3.3 44.4 14.9  B E B   28.7  D  70.9% ICU Level of Service | Stop Stop Stop Stop Stop    00 60 110 70 10 120 410 30    01 0.97 0.97 0.97 0.97 0.97 0.97 0.97    02 62 113 72 10 124 423 31    03 1 NB 1 SB 1    04 577 268    05 13 124 10    05 10 31 10    05 12 0.04 0.02    05 18 6.3    05 0.93 0.47    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 18 611 543    05 1 | Stop Stop Stop Stop Stop    97 | Stop Stop Stop Stop Stop Stop Stop   97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0 |

|                              | ۶        | <b>→</b> | •     | •                                     | +           | •         | •      | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>+</b> | 4    |
|------------------------------|----------|----------|-------|---------------------------------------|-------------|-----------|--------|----------|-------------|----------|----------|------|
| Movement                     | EBL      | EBT      | EBR   | WBL                                   | WBT         | WBR       | NBL    | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations          | 7        | ħβ       |       | 7                                     | <b>∱</b> î≽ |           | ሻ      | f)       |             | 7        | f)       |      |
| Ideal Flow (vphpl)           | 1900     | 1900     | 1900  | 1900                                  | 1900        | 1900      | 1900   | 1900     | 1900        | 1900     | 1900     | 1900 |
| Total Lost time (s)          | 4.0      | 4.0      |       | 4.0                                   | 4.0         |           | 4.0    | 4.0      |             | 4.0      | 4.0      |      |
| Lane Util. Factor            | 1.00     | 0.95     |       | 1.00                                  | 0.95        |           | 1.00   | 1.00     |             | 1.00     | 1.00     |      |
| Frt                          | 1.00     | 1.00     |       | 1.00                                  | 0.97        |           | 1.00   | 0.94     |             | 1.00     | 0.96     |      |
| Flt Protected                | 0.95     | 1.00     |       | 0.95                                  | 1.00        |           | 0.95   | 1.00     |             | 0.95     | 1.00     |      |
| Satd. Flow (prot)            | 1770     | 3535     |       | 1770                                  | 3442        |           | 1770   | 1742     |             | 1770     | 1780     |      |
| Flt Permitted                | 0.95     | 1.00     |       | 0.95                                  | 1.00        |           | 0.95   | 1.00     |             | 0.95     | 1.00     |      |
| Satd. Flow (perm)            | 1770     | 3535     |       | 1770                                  | 3442        |           | 1770   | 1742     |             | 1770     | 1780     |      |
| Volume (vph)                 | 90       | 1130     | 10    | 220                                   | 930         | 210       | 10     | 330      | 250         | 110      | 260      | 110  |
| Peak-hour factor, PHF        | 0.97     | 0.97     | 0.97  | 0.97                                  | 0.97        | 0.97      | 0.97   | 0.97     | 0.97        | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)              | 93       | 1165     | 10    | 227                                   | 959         | 216       | 10     | 340      | 258         | 113      | 268      | 113  |
| RTOR Reduction (vph)         | 0        | 1        | 0     | 0                                     | 22          | 0         | 0      | 29       | 0           | 0        | 16       | 0    |
| Lane Group Flow (vph)        | 93       | 1174     | 0     | 227                                   | 1153        | 0         | 10     | 569      | 0           | 113      | 365      | 0    |
| Turn Type                    | Prot     |          |       | Prot                                  |             |           | Prot   |          |             | Prot     |          |      |
| Protected Phases             | 7        | 4        |       | 3                                     | 8           |           | 5      | 2        |             | 1        | 6        |      |
| Permitted Phases             |          |          |       |                                       |             |           |        |          |             |          |          |      |
| Actuated Green, G (s)        | 5.6      | 30.8     |       | 11.0                                  | 36.2        |           | 0.8    | 30.2     |             | 6.0      | 35.4     |      |
| Effective Green, g (s)       | 5.6      | 30.8     |       | 11.0                                  | 36.2        |           | 8.0    | 30.2     |             | 6.0      | 35.4     |      |
| Actuated g/C Ratio           | 0.06     | 0.33     |       | 0.12                                  | 0.39        |           | 0.01   | 0.32     |             | 0.06     | 0.38     |      |
| Clearance Time (s)           | 4.0      | 4.0      |       | 4.0                                   | 4.0         |           | 4.0    | 4.0      |             | 4.0      | 4.0      |      |
| Vehicle Extension (s)        | 3.0      | 3.0      |       | 3.0                                   | 3.0         |           | 3.0    | 3.0      |             | 3.0      | 3.0      |      |
| Lane Grp Cap (vph)           | 105      | 1158     |       | 207                                   | 1326        |           | 15     | 560      |             | 113      | 670      |      |
| v/s Ratio Prot               | 0.05     | c0.33    |       | c0.13                                 | 0.34        |           | 0.01   | c0.33    |             | c0.06    | 0.21     |      |
| v/s Ratio Perm               |          |          |       |                                       |             |           |        |          |             |          |          |      |
| v/c Ratio                    | 0.89     | 1.01     |       | 1.10                                  | 0.87        |           | 0.67   | 1.02     |             | 1.00     | 0.55     |      |
| Uniform Delay, d1            | 43.9     | 31.6     |       | 41.5                                  | 26.7        |           | 46.5   | 31.9     |             | 44.0     | 23.0     |      |
| Progression Factor           | 1.00     | 1.00     |       | 1.00                                  | 1.00        |           | 1.00   | 1.00     |             | 1.00     | 1.00     |      |
| Incremental Delay, d2        | 52.9     | 30.0     |       | 90.8                                  | 6.4         |           | 75.9   | 42.0     |             | 84.7     | 0.9      |      |
| Delay (s)                    | 96.8     | 61.6     |       | 132.3                                 | 33.1        |           | 122.3  | 73.9     |             | 128.7    | 23.9     |      |
| Level of Service             | F        | Е        |       | F                                     | С           |           | F      | Е        |             | F        | С        |      |
| Approach Delay (s)           |          | 64.2     |       |                                       | 49.1        |           |        | 74.7     |             |          | 47.9     |      |
| Approach LOS                 |          | Е        |       |                                       | D           |           |        | Е        |             |          | D        |      |
| Intersection Summary         |          |          |       |                                       |             |           |        |          |             |          |          |      |
| HCM Average Control D        |          |          | 58.2  | H                                     | ICM Le      | vel of Se | ervice |          | Е           |          |          |      |
| <b>HCM Volume to Capacit</b> |          |          | 1.03  |                                       |             |           |        |          |             |          |          |      |
| Actuated Cycle Length (      |          |          | 94.0  | · · · · · · · · · · · · · · · · · · · |             |           |        |          | 16.0        |          |          |      |
| Intersection Capacity Uti    | lization |          | 95.8% | [(                                    | CU Leve     | el of Ser | vice   |          | F           |          |          |      |
| Analysis Period (min)        |          |          | 15    |                                       |             |           |        |          |             |          |          |      |
| c Critical Lane Group        |          |          |       |                                       |             |           |        |          |             |          |          |      |

|                           | ٠        | <b>→</b> | •     | •     | •       | •         | •    | <b>†</b> | <b>/</b> | <b>/</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|-------|---------|-----------|------|----------|----------|----------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT     | WBR       | NBL  | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |       | 4       |           |      | 4        |          |          | 4        |      |
| Sign Control              |          | Stop     |       |       | Stop    |           |      | Stop     |          |          | Stop     |      |
| Volume (vph)              | 120      | 10       | 10    | 20    | 10      | 10        | 50   | 520      | 30       | 30       | 190      | 160  |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97  | 0.97  | 0.97    | 0.97      | 0.97 | 0.97     | 0.97     | 0.97     | 0.97     | 0.97 |
| Hourly flow rate (vph)    | 124      | 10       | 10    | 21    | 10      | 10        | 52   | 536      | 31       | 31       | 196      | 165  |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |         |           |      |          |          |          |          |      |
| Volume Total (vph)        | 144      | 41       | 619   | 392   |         |           |      |          |          |          |          |      |
| Volume Left (vph)         | 124      | 21       | 52    | 31    |         |           |      |          |          |          |          |      |
| Volume Right (vph)        | 10       | 10       | 31    | 165   |         |           |      |          |          |          |          |      |
| Hadj (s)                  | 0.16     | -0.02    | 0.02  | -0.20 |         |           |      |          |          |          |          |      |
| Departure Headway (s)     | 6.7      | 6.9      | 5.1   | 5.2   |         |           |      |          |          |          |          |      |
| Degree Utilization, x     | 0.27     | 0.08     | 0.88  | 0.57  |         |           |      |          |          |          |          |      |
| Capacity (veh/h)          | 503      | 466      | 693   | 652   |         |           |      |          |          |          |          |      |
| Control Delay (s)         | 12.1     | 10.4     | 34.0  | 14.9  |         |           |      |          |          |          |          |      |
| Approach Delay (s)        | 12.1     | 10.4     | 34.0  | 14.9  |         |           |      |          |          |          |          |      |
| Approach LOS              | В        | В        | D     | В     |         |           |      |          |          |          |          |      |
| Intersection Summary      |          |          |       |       |         |           |      |          |          |          |          |      |
| Delay                     |          |          | 24.3  |       |         |           |      |          |          |          |          |      |
| HCM Level of Service      |          |          | С     |       |         |           |      |          |          |          |          |      |
| Intersection Capacity Uti | lization |          | 61.6% | ŀ     | CU Leve | el of Ser | vice |          | В        |          |          |      |
| Analysis Period (min)     |          |          | 15    |       |         |           |      |          |          |          |          |      |
|                           |          |          |       |       |         |           |      |          |          |          |          |      |

|                          | -          | •    | •     | <b>←</b> | 4      | /         |      |       |
|--------------------------|------------|------|-------|----------|--------|-----------|------|-------|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL    | NBR       |      |       |
| Lane Configurations      | <b>†</b> } |      | ሻ     | <b>^</b> | ሻ      | 7         |      |       |
| Sign Control             | Free       |      | ·     | Free     | Stop   |           |      |       |
| Grade                    | 0%         |      |       | 0%       | 0%     |           |      |       |
| Volume (veh/h)           | 670        | 50   | 340   | 1200     | 10     | 90        |      |       |
| Peak Hour Factor         | 0.97       | 0.97 | 0.97  | 0.97     | 0.97   | 0.97      |      |       |
| Hourly flow rate (vph)   | 691        | 52   | 351   | 1237     | 10     | 93        |      |       |
| Pedestrians              |            |      |       |          |        |           |      |       |
| Lane Width (ft)          |            |      |       |          |        |           |      |       |
| Walking Speed (ft/s)     |            |      |       |          |        |           |      |       |
| Percent Blockage         |            |      |       |          |        |           |      |       |
| Right turn flare (veh)   |            |      |       |          |        |           |      |       |
| Median type              |            |      |       |          | None   |           |      |       |
| Median storage veh)      |            |      |       |          |        |           |      |       |
| Upstream signal (ft)     |            |      |       | 714      |        |           |      |       |
| pX, platoon unblocked    |            |      |       |          | 0.81   |           |      |       |
| vC, conflicting volume   |            |      | 742   |          | 2036   | 371       |      |       |
| vC1, stage 1 conf vol    |            |      |       |          |        |           |      |       |
| vC2, stage 2 conf vol    |            |      |       |          |        |           |      |       |
| vCu, unblocked vol       |            |      | 742   |          | 2045   | 371       |      |       |
| tC, single (s)           |            |      | 4.1   |          | 6.8    | 6.9       |      |       |
| tC, 2 stage (s)          |            |      |       |          |        |           |      |       |
| tF (s)                   |            |      | 2.2   |          | 3.5    | 3.3       |      |       |
| p0 queue free %          |            |      | 59    |          | 56     | 85        |      |       |
| cM capacity (veh/h)      |            |      | 861   |          | 23     | 626       |      |       |
| Direction, Lane #        | EB 1       | EB 2 | WB 1  | WB 2     | WB3    | NB 1      | NB 2 |       |
| Volume Total             | 460        | 282  | 351   | 619      | 619    | 10        | 93   |       |
| Volume Left              | 0          | 0    | 351   | 0        | 0      | 10        | 0    |       |
| Volume Right             | 0          | 52   | 0     | 0        | 0      | 0         | 93   |       |
| cSH                      | 1700       | 1700 | 861   | 1700     | 1700   | 23        | 626  |       |
| Volume to Capacity       | 0.27       | 0.17 | 0.41  | 0.36     | 0.36   | 0.44      | 0.15 |       |
| Queue Length 95th (ft)   | 0          | 0    | 50    | 0        | 0      | 33        | 13   |       |
| Control Delay (s)        | 0.0        | 0.0  | 12.0  | 0.0      | 0.0    | 249.5     | 11.7 |       |
| Lane LOS                 |            |      | В     |          |        | F         | В    |       |
| Approach Delay (s)       | 0.0        |      | 2.7   |          |        | 35.5      |      |       |
| Approach LOS             |            |      |       |          |        | E         |      |       |
| Intersection Summary     |            |      |       |          |        |           |      |       |
| Average Delay            |            |      | 3.2   |          |        |           |      | <br>- |
| Intersection Capacity Ut | ilization  |      | 52.3% | I        | CU Lev | el of Ser | vice | Α     |
| Analysis Period (min)    |            |      | 15    |          |        |           |      |       |
|                          |            |      |       |          |        |           |      |       |

|                          | ۶         | <b>→</b> | <b>←</b>   | •    | -       | 4              |   |  |
|--------------------------|-----------|----------|------------|------|---------|----------------|---|--|
| Movement                 | EBL       | EBT      | WBT        | WBR  | SBL     | SBR            |   |  |
| Lane Configurations      | *         | <b>^</b> | <b>↑</b> ↑ |      | ሻ       | 7              |   |  |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900       | 1900 | 1900    | 1900           |   |  |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0        |      | 4.0     | 4.0            |   |  |
| Lane Util. Factor        | 1.00      | 0.95     | 0.95       |      | 1.00    | 1.00           |   |  |
| Frt                      | 1.00      | 1.00     | 1.00       |      | 1.00    | 0.85           |   |  |
| Flt Protected            | 0.95      | 1.00     | 1.00       |      | 0.95    | 1.00           |   |  |
| Satd. Flow (prot)        | 1770      | 3539     | 3530       |      | 1770    | 1583           |   |  |
| Flt Permitted            | 0.95      | 1.00     | 1.00       |      | 0.95    | 1.00           |   |  |
| Satd. Flow (perm)        | 1770      | 3539     | 3530       |      | 1770    | 1583           |   |  |
| Volume (vph)             | 70        | 690      | 1160       | 20   | 60      | 380            |   |  |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.97       | 0.97 | 0.97    | 0.97           |   |  |
| Adj. Flow (vph)          | 72        | 711      | 1196       | 21   | 62      | 392            |   |  |
| RTOR Reduction (vph)     | 0         | 0        | 2          | 0    | 0       | 142            |   |  |
| Lane Group Flow (vph)    | 72        | 711      | 1215       | 0    | 62      | 250            |   |  |
| Turn Type                | Prot      |          |            |      |         | Perm           |   |  |
| Protected Phases         | 7         | 4        | 8          |      | 6       |                |   |  |
| Permitted Phases         |           |          |            |      |         | 6              |   |  |
| Actuated Green, G (s)    | 2.8       | 31.2     | 24.4       |      | 13.3    | 13.3           |   |  |
| Effective Green, g (s)   | 2.8       | 31.2     | 24.4       |      | 13.3    | 13.3           |   |  |
| Actuated g/C Ratio       | 0.05      | 0.59     | 0.46       |      | 0.25    | 0.25           |   |  |
| Clearance Time (s)       | 4.0       | 4.0      | 4.0        |      | 4.0     | 4.0            |   |  |
| Vehicle Extension (s)    | 3.0       | 3.0      | 3.0        |      | 3.0     | 3.0            |   |  |
| Lane Grp Cap (vph)       | 94        | 2103     | 1641       |      | 448     | 401            |   |  |
| v/s Ratio Prot           | c0.04     | 0.20     | c0.34      |      | 0.04    |                |   |  |
| v/s Ratio Perm           |           |          |            |      |         | c0.16          |   |  |
| v/c Ratio                | 0.77      | 0.34     | 0.74       |      | 0.14    | 0.62           |   |  |
| Uniform Delay, d1        | 24.5      | 5.4      | 11.5       |      | 15.2    | 17.4           |   |  |
| Progression Factor       | 1.00      | 1.00     | 1.00       |      | 1.00    | 1.00           |   |  |
| Incremental Delay, d2    | 30.4      | 0.1      | 1.8        |      | 0.1     | 3.0            |   |  |
| Delay (s)                | 54.9      | 5.5      | 13.3       |      | 15.3    | 20.4           |   |  |
| Level of Service         | D         | Α        | В          |      | В       | С              |   |  |
| Approach Delay (s)       |           | 10.0     | 13.3       |      | 19.7    |                |   |  |
| Approach LOS             |           | В        | В          |      | В       |                |   |  |
| Intersection Summary     |           |          |            |      |         |                |   |  |
| HCM Average Control D    | )elay     |          | 13.4       | H    | ICM Lev | vel of Service | 9 |  |
| HCM Volume to Capacit    |           |          | 0.70       |      |         |                |   |  |
| Actuated Cycle Length (  | (s)       |          | 52.5       |      |         | ost time (s)   |   |  |
| Intersection Capacity Ut | ilization |          | 62.9%      | IC   | CU Leve | el of Service  |   |  |
| Analysis Period (min)    |           |          | 15         |      |         |                |   |  |
| c Critical Lane Group    |           |          |            |      |         |                |   |  |

|                           | ۶         | <b>→</b> | •     | •     | <b>←</b> | •         | 4    | <b>†</b> | /    | <b>&gt;</b> | <b>↓</b> | 4    |
|---------------------------|-----------|----------|-------|-------|----------|-----------|------|----------|------|-------------|----------|------|
| Movement                  | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations       |           | 4        |       |       | 4        |           |      | 4        |      |             | 4        |      |
| Sign Control              |           | Stop     |       |       | Stop     |           |      | Stop     |      |             | Stop     |      |
| Volume (vph)              | 10        | 50       | 80    | 20    | 50       | 10        | 20   | 180      | 120  | 10          | 440      | 40   |
| Peak Hour Factor          | 0.97      | 0.97     | 0.97  | 0.97  | 0.97     | 0.97      | 0.97 | 0.97     | 0.97 | 0.97        | 0.97     | 0.97 |
| Hourly flow rate (vph)    | 10        | 52       | 82    | 21    | 52       | 10        | 21   | 186      | 124  | 10          | 454      | 41   |
| Direction, Lane #         | EB 1      | WB 1     | NB 1  | SB 1  |          |           |      |          |      |             |          |      |
| Volume Total (vph)        | 144       | 82       | 330   | 505   |          |           |      |          |      |             |          |      |
| Volume Left (vph)         | 10        | 21       | 21    | 10    |          |           |      |          |      |             |          |      |
| Volume Right (vph)        | 82        | 10       | 124   | 41    |          |           |      |          |      |             |          |      |
| Hadj (s)                  | -0.29     | 0.01     | -0.18 | -0.01 |          |           |      |          |      |             |          |      |
| Departure Headway (s)     | 5.9       | 6.4      | 5.2   | 5.1   |          |           |      |          |      |             |          |      |
| Degree Utilization, x     | 0.24      | 0.15     | 0.47  | 0.71  |          |           |      |          |      |             |          |      |
| Capacity (veh/h)          | 521       | 483      | 653   | 688   |          |           |      |          |      |             |          |      |
| Control Delay (s)         | 10.7      | 10.4     | 12.7  | 19.7  |          |           |      |          |      |             |          |      |
| Approach Delay (s)        | 10.7      | 10.4     | 12.7  | 19.7  |          |           |      |          |      |             |          |      |
| Approach LOS              | В         | В        | В     | С     |          |           |      |          |      |             |          |      |
| Intersection Summary      |           |          |       |       |          |           |      |          |      |             |          |      |
| Delay                     |           |          | 15.6  |       |          |           |      |          |      |             |          |      |
| HCM Level of Service      |           |          | С     |       |          |           |      |          |      |             |          |      |
| Intersection Capacity Uti | ilization |          | 44.9% | ŀ     | CU Leve  | el of Ser | vice |          | Α    |             |          |      |
| Analysis Period (min)     |           |          | 15    |       |          |           |      |          |      |             |          |      |
|                           |           |          |       |       |          |           |      |          |      |             |          |      |

|                           | ۶        | <b>→</b>   | •     | •     | <b>←</b>   | •         | 4      | <b>†</b> | <i>&gt;</i> | <b>/</b> | ļ    | 4    |
|---------------------------|----------|------------|-------|-------|------------|-----------|--------|----------|-------------|----------|------|------|
| Movement                  | EBL      | EBT        | EBR   | WBL   | WBT        | WBR       | NBL    | NBT      | NBR         | SBL      | SBT  | SBR  |
| Lane Configurations       | J.       | <b>↑</b> ↑ |       | 7     | <b>↑</b> ↑ |           | ¥      | ĵ»       |             | 7        | f)   |      |
| Ideal Flow (vphpl)        | 1900     | 1900       | 1900  | 1900  | 1900       | 1900      | 1900   | 1900     | 1900        | 1900     | 1900 | 1900 |
| Total Lost time (s)       | 4.0      | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0      |             | 4.0      | 4.0  |      |
| Lane Util. Factor         | 1.00     | 0.95       |       | 1.00  | 0.95       |           | 1.00   | 1.00     |             | 1.00     | 1.00 |      |
| Frt                       | 1.00     | 1.00       |       | 1.00  | 0.99       |           | 1.00   | 0.93     |             | 1.00     | 0.96 |      |
| Flt Protected             | 0.95     | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00     |             | 0.95     | 1.00 |      |
| Satd. Flow (prot)         | 1770     | 3533       |       | 1770  | 3500       |           | 1770   | 1726     |             | 1770     | 1795 |      |
| Flt Permitted             | 0.95     | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00     |             | 0.95     | 1.00 |      |
| Satd. Flow (perm)         | 1770     | 3533       |       | 1770  | 3500       |           | 1770   | 1726     |             | 1770     | 1795 |      |
| Volume (vph)              | 100      | 870        | 10    | 210   | 1000       | 80        | 10     | 210      | 200         | 200      | 340  | 110  |
| Peak-hour factor, PHF     | 0.97     | 0.97       | 0.97  | 0.97  | 0.97       | 0.97      | 0.97   | 0.97     | 0.97        | 0.97     | 0.97 | 0.97 |
| Adj. Flow (vph)           | 103      | 897        | 10    | 216   | 1031       | 82        | 10     | 216      | 206         | 206      | 351  | 113  |
| RTOR Reduction (vph)      | 0        | 1          | 0     | 0     | 6          | 0         | 0      | 38       | 0           | 0        | 12   | 0    |
| Lane Group Flow (vph)     | 103      | 906        | 0     | 216   | 1107       | 0         | 10     | 384      | 0           | 206      | 452  | 0    |
| Turn Type                 | Prot     |            |       | Prot  |            |           | Prot   |          |             | Prot     |      |      |
| Protected Phases          | 7        | 4          |       | 3     | 8          |           | 5      | 2        |             | 1        | 6    |      |
| Permitted Phases          |          |            |       |       |            |           |        |          |             |          |      |      |
| Actuated Green, G (s)     | 6.1      | 24.5       |       | 12.3  | 30.7       |           | 0.7    | 25.1     |             | 9.1      | 33.5 |      |
| Effective Green, g (s)    | 6.1      | 24.5       |       | 12.3  | 30.7       |           | 0.7    | 25.1     |             | 9.1      | 33.5 |      |
| Actuated g/C Ratio        | 0.07     | 0.28       |       | 0.14  | 0.35       |           | 0.01   | 0.29     |             | 0.10     | 0.39 |      |
| Clearance Time (s)        | 4.0      | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0      |             | 4.0      | 4.0  |      |
| Vehicle Extension (s)     | 3.0      | 3.0        |       | 3.0   | 3.0        |           | 3.0    | 3.0      |             | 3.0      | 3.0  |      |
| Lane Grp Cap (vph)        | 124      | 995        |       | 250   | 1235       |           | 14     | 498      |             | 185      | 691  |      |
| v/s Ratio Prot            | 0.06     | 0.26       |       | c0.12 | c0.32      |           | 0.01   | c0.22    |             | c0.12    | 0.25 |      |
| v/s Ratio Perm            |          |            |       |       |            |           |        |          |             |          |      |      |
| v/c Ratio                 | 0.83     | 0.91       |       | 0.86  | 0.90       |           | 0.71   | 0.77     |             | 1.11     | 0.65 |      |
| Uniform Delay, d1         | 39.9     | 30.2       |       | 36.5  | 26.6       |           | 43.1   | 28.3     |             | 39.0     | 22.0 |      |
| Progression Factor        | 1.00     | 1.00       |       | 1.00  | 1.00       |           | 1.00   | 1.00     |             | 1.00     | 1.00 |      |
| Incremental Delay, d2     | 35.4     | 12.1       |       | 25.2  | 8.7        |           | 100.1  | 7.2      |             | 99.9     | 2.2  |      |
| Delay (s)                 | 75.3     | 42.3       |       | 61.7  | 35.4       |           | 143.2  | 35.5     |             | 138.8    | 24.2 |      |
| Level of Service          | Е        | D          |       | Е     | D          |           | F      | D        |             | F        | С    |      |
| Approach Delay (s)        |          | 45.7       |       |       | 39.6       |           |        | 38.0     |             |          | 59.5 |      |
| Approach LOS              |          | D          |       |       | D          |           |        | D        |             |          | Е    |      |
| Intersection Summary      |          |            |       |       |            |           |        |          |             |          |      |      |
| HCM Average Control D     |          |            | 45.1  | F     | HCM Le     | vel of Se | ervice |          | D           |          |      |      |
| HCM Volume to Capacit     |          |            | 0.86  |       |            |           |        |          |             |          |      |      |
| Actuated Cycle Length (   | ,        |            | 87.0  |       |            | ost time  |        |          | 12.0        |          |      |      |
| Intersection Capacity Uti | lization |            | 83.7% | ŀ     | CU Leve    | el of Ser | vice   |          | Е           |          |      |      |
| Analysis Period (min)     |          |            | 15    |       |            |           |        |          |             |          |      |      |
| c Critical Lane Group     |          |            |       |       |            |           |        |          |             |          |      |      |

|                           | •        | <b>→</b> | •     | •     | <b>←</b> | •          | 4    | <b>†</b> | <b>/</b> | <b>\</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|-------|----------|------------|------|----------|----------|----------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR        | NBL  | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |       | 4        |            |      | 4        |          |          | 4        |      |
| Sign Control              |          | Stop     |       |       | Stop     |            |      | Stop     |          |          | Stop     |      |
| Volume (vph)              | 160      | 10       | 40    | 30    | 10       | 10         | 10   | 70       | 10       | 10       | 560      | 90   |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97  | 0.97  | 0.97     | 0.97       | 0.97 | 0.97     | 0.97     | 0.97     | 0.97     | 0.97 |
| Hourly flow rate (vph)    | 165      | 10       | 41    | 31    | 10       | 10         | 10   | 72       | 10       | 10       | 577      | 93   |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |            |      |          |          |          |          |      |
| Volume Total (vph)        | 216      | 52       | 93    | 680   |          |            |      |          |          |          |          |      |
| Volume Left (vph)         | 165      | 31       | 10    | 10    |          |            |      |          |          |          |          |      |
| Volume Right (vph)        | 41       | 10       | 10    | 93    |          |            |      |          |          |          |          |      |
| Hadj (s)                  | 0.07     | 0.03     | -0.01 | -0.04 |          |            |      |          |          |          |          |      |
| Departure Headway (s)     | 6.1      | 6.4      | 5.7   | 4.9   |          |            |      |          |          |          |          |      |
| Degree Utilization, x     | 0.37     | 0.09     | 0.15  | 0.92  |          |            |      |          |          |          |          |      |
| Capacity (veh/h)          | 573      | 527      | 598   | 731   |          |            |      |          |          |          |          |      |
| Control Delay (s)         | 12.5     | 10.1     | 9.7   | 38.2  |          |            |      |          |          |          |          |      |
| Approach Delay (s)        | 12.5     | 10.1     | 9.7   | 38.2  |          |            |      |          |          |          |          |      |
| Approach LOS              | В        | В        | Α     | Е     |          |            |      |          |          |          |          |      |
| Intersection Summary      |          |          |       |       |          |            |      |          |          |          |          |      |
| Delay                     |          |          | 28.9  |       |          |            |      |          |          |          |          |      |
| HCM Level of Service      |          |          | D     |       |          |            |      |          |          |          |          |      |
| Intersection Capacity Uti | lization |          | 59.1% | - 10  | CU Leve  | el of Serv | /ice |          | В        |          |          |      |
| Analysis Period (min)     |          |          | 15    |       |          |            |      |          |          |          |          |      |
|                           |          |          |       |       |          |            |      |          |          |          |          |      |

|                          | <b>→</b>   | •    | •     | <b>←</b> | 4      | <i>&gt;</i> |      |   |  |
|--------------------------|------------|------|-------|----------|--------|-------------|------|---|--|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL    | NBR         |      |   |  |
| Lane Configurations      | <b>↑</b> ↑ |      | ሻ     | <b>^</b> | ሻ      | 7           |      |   |  |
| Sign Control             | Free       |      | •     | Free     | Stop   | •           |      |   |  |
| Grade                    | 0%         |      |       | 0%       | 0%     |             |      |   |  |
| Volume (veh/h)           | 1320       | 30   | 110   | 820      | 50     | 270         |      |   |  |
| Peak Hour Factor         | 0.97       | 0.97 | 0.97  | 0.97     | 0.97   | 0.97        |      |   |  |
| Hourly flow rate (vph)   | 1361       | 31   | 113   | 845      | 52     | 278         |      |   |  |
| Pedestrians              |            |      |       |          |        |             |      |   |  |
| Lane Width (ft)          |            |      |       |          |        |             |      |   |  |
| Walking Speed (ft/s)     |            |      |       |          |        |             |      |   |  |
| Percent Blockage         |            |      |       |          |        |             |      |   |  |
| Right turn flare (veh)   |            |      |       |          |        |             |      |   |  |
| Median type              |            |      |       |          | None   |             |      |   |  |
| Median storage veh)      |            |      |       |          |        |             |      |   |  |
| Upstream signal (ft)     |            |      |       | 714      |        |             |      |   |  |
| pX, platoon unblocked    |            |      |       |          | 0.85   |             |      |   |  |
| vC, conflicting volume   |            |      | 1392  |          | 2026   | 696         |      |   |  |
| vC1, stage 1 conf vol    |            |      |       |          |        |             |      |   |  |
| vC2, stage 2 conf vol    |            |      |       |          |        |             |      |   |  |
| vCu, unblocked vol       |            |      | 1392  |          | 2030   | 696         |      |   |  |
| tC, single (s)           |            |      | 4.1   |          | 6.8    | 6.9         |      |   |  |
| tC, 2 stage (s)          |            |      |       |          |        |             |      |   |  |
| tF (s)                   |            |      | 2.2   |          | 3.5    | 3.3         |      |   |  |
| p0 queue free %          |            |      | 77    |          | 0      | 28          |      |   |  |
| cM capacity (veh/h)      |            |      | 487   |          | 32     | 384         |      |   |  |
| Direction, Lane #        | EB 1       | EB 2 | WB 1  | WB 2     | WB3    | NB 1        | NB 2 |   |  |
| Volume Total             | 907        | 485  | 113   | 423      | 423    | 52          | 278  |   |  |
| Volume Left              | 0          | 0    | 113   | 0        | 0      | 52          | 0    |   |  |
| Volume Right             | 0          | 31   | 0     | 0        | 0      | 0           | 278  |   |  |
| cSH                      | 1700       | 1700 | 487   | 1700     | 1700   | 32          | 384  |   |  |
| Volume to Capacity       | 0.53       | 0.29 | 0.23  | 0.25     | 0.25   | 1.59        | 0.72 |   |  |
| Queue Length 95th (ft)   | 0          | 0    | 22    | 0        | 0      | 144         | 139  |   |  |
| Control Delay (s)        | 0.0        | 0.0  | 14.6  | 0.0      | 0.0    | 563.0       | 35.4 |   |  |
| Lane LOS                 |            |      | В     |          |        | F           | Е    |   |  |
| Approach Delay (s)       | 0.0        |      | 1.7   |          |        | 117.9       |      |   |  |
| Approach LOS             |            |      |       |          |        | F           |      |   |  |
| Intersection Summary     |            |      |       |          |        |             |      |   |  |
| Average Delay            |            |      | 15.1  |          |        |             |      |   |  |
| Intersection Capacity Ut | ilization  |      | 60.8% | 1        | CU Lev | el of Ser   | vice | В |  |
| Analysis Period (min)    |            |      | 15    |          |        |             |      |   |  |
|                          |            |      |       |          |        |             |      |   |  |
|                          |            |      |       |          |        |             |      |   |  |

|                          | ۶         | <b>→</b> | <b>←</b>   | •    | <b>&gt;</b> | 4             |    |  |
|--------------------------|-----------|----------|------------|------|-------------|---------------|----|--|
| Movement                 | EBL       | EBT      | WBT        | WBR  | SBL         | SBR           |    |  |
| Lane Configurations      | *         | <b>^</b> | <b>↑</b> ↑ |      | ች           | 7             |    |  |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900       | 1900 | 1900        | 1900          |    |  |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0        |      | 4.0         | 4.0           |    |  |
| Lane Util. Factor        | 1.00      | 0.95     | 0.95       |      | 1.00        | 1.00          |    |  |
| Frt                      | 1.00      | 1.00     | 0.99       |      | 1.00        | 0.85          |    |  |
| Flt Protected            | 0.95      | 1.00     | 1.00       |      | 0.95        | 1.00          |    |  |
| Satd. Flow (prot)        | 1770      | 3539     | 3508       |      | 1770        | 1583          |    |  |
| Flt Permitted            | 0.95      | 1.00     | 1.00       |      | 0.95        | 1.00          |    |  |
| Satd. Flow (perm)        | 1770      | 3539     | 3508       |      | 1770        | 1583          |    |  |
| Volume (vph)             | 370       | 1220     | 820        | 50   | 20          | 110           |    |  |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.97       | 0.97 | 0.97        | 0.97          |    |  |
| Adj. Flow (vph)          | 381       | 1258     | 845        | 52   | 21          | 113           |    |  |
| RTOR Reduction (vph)     | 0         | 0        | 5          | 0    | 0           | 99            |    |  |
| Lane Group Flow (vph)    | 381       | 1258     | 892        | 0    | 21          | 14            |    |  |
| Turn Type                | Prot      |          |            |      |             | Perm          |    |  |
| Protected Phases         | 7         | 4        | 8          |      | 6           |               |    |  |
| Permitted Phases         |           |          |            |      |             | 6             |    |  |
| Actuated Green, G (s)    | 16.5      | 39.7     | 19.2       |      | 6.8         | 6.8           |    |  |
| Effective Green, g (s)   | 16.5      | 39.7     | 19.2       |      | 6.8         | 6.8           |    |  |
| Actuated g/C Ratio       | 0.30      | 0.73     | 0.35       |      | 0.12        | 0.12          |    |  |
| Clearance Time (s)       | 4.0       | 4.0      | 4.0        |      | 4.0         | 4.0           |    |  |
| Vehicle Extension (s)    | 3.0       | 3.0      | 3.0        |      | 3.0         | 3.0           |    |  |
| Lane Grp Cap (vph)       | 536       | 2578     | 1236       |      | 221         | 198           |    |  |
| v/s Ratio Prot           | c0.22     | 0.36     | c0.25      |      | c0.01       |               |    |  |
| v/s Ratio Perm           |           |          |            |      |             | 0.01          |    |  |
| v/c Ratio                | 0.71      | 0.49     | 0.72       |      | 0.10        | 0.07          |    |  |
| Uniform Delay, d1        | 16.9      | 3.1      | 15.3       |      | 21.1        | 21.1          |    |  |
| Progression Factor       | 1.00      | 1.00     | 1.00       |      | 1.00        | 1.00          |    |  |
| Incremental Delay, d2    | 4.4       | 0.1      | 2.1        |      | 0.2         | 0.2           |    |  |
| Delay (s)                | 21.3      | 3.3      | 17.4       |      | 21.3        | 21.2          |    |  |
| Level of Service         | С         | Α        | В          |      | С           | С             |    |  |
| Approach Delay (s)       |           | 7.5      | 17.4       |      | 21.2        |               |    |  |
| Approach LOS             |           | Α        | В          |      | С           |               |    |  |
| Intersection Summary     |           |          |            |      |             |               |    |  |
| HCM Average Control D    | •         |          | 11.5       | F    | ICM Le      | vel of Servi  | ce |  |
| HCM Volume to Capaci     |           |          | 0.62       |      |             |               |    |  |
| Actuated Cycle Length (  |           |          | 54.5       |      |             | ost time (s)  |    |  |
| Intersection Capacity Ut | ilization |          | 58.1%      | 10   | CU Leve     | el of Service | Э  |  |
| Analysis Period (min)    |           |          | 15         |      |             |               |    |  |
| c Critical Lane Group    |           |          |            |      |             |               |    |  |

|                           | ၨ        | <b>→</b> | •     | •    | <b>←</b> | •         | •    | <b>†</b> | <b>/</b> | <b>\</b> | ļ    | 4    |
|---------------------------|----------|----------|-------|------|----------|-----------|------|----------|----------|----------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL  | WBT      | WBR       | NBL  | NBT      | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations       |          | 4        |       |      | 4        |           |      | 4        |          |          | 4    |      |
| Sign Control              |          | Stop     |       |      | Stop     |           |      | Stop     |          |          | Stop |      |
| Volume (vph)              | 30       | 50       | 40    | 100  | 70       | 10        | 90   | 400      | 40       | 10       | 240  | 10   |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97  | 0.97 | 0.97     | 0.97      | 0.97 | 0.97     | 0.97     | 0.97     | 0.97 | 0.97 |
| Hourly flow rate (vph)    | 31       | 52       | 41    | 103  | 72       | 10        | 93   | 412      | 41       | 10       | 247  | 10   |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1 |          |           |      |          |          |          |      |      |
| Volume Total (vph)        | 124      | 186      | 546   | 268  |          |           |      |          |          |          |      |      |
| Volume Left (vph)         | 31       | 103      | 93    | 10   |          |           |      |          |          |          |      |      |
| Volume Right (vph)        | 41       | 10       | 41    | 10   |          |           |      |          |          |          |      |      |
| Hadj (s)                  | -0.12    | 0.11     | 0.02  | 0.02 |          |           |      |          |          |          |      |      |
| Departure Headway (s)     | 6.6      | 6.6      | 5.5   | 5.9  |          |           |      |          |          |          |      |      |
| Degree Utilization, x     | 0.23     | 0.34     | 0.83  | 0.44 |          |           |      |          |          |          |      |      |
| Capacity (veh/h)          | 490      | 497      | 645   | 557  |          |           |      |          |          |          |      |      |
| Control Delay (s)         | 11.5     | 13.0     | 29.5  | 13.5 |          |           |      |          |          |          |      |      |
| Approach Delay (s)        | 11.5     | 13.0     | 29.5  | 13.5 |          |           |      |          |          |          |      |      |
| Approach LOS              | В        | В        | D     | В    |          |           |      |          |          |          |      |      |
| Intersection Summary      |          |          |       |      |          |           |      |          |          |          |      |      |
| Delay                     |          |          | 21.0  |      |          |           |      |          |          |          |      |      |
| HCM Level of Service      |          |          | С     |      |          |           |      |          |          |          |      |      |
| Intersection Capacity Uti | lization |          | 68.7% | 10   | CU Leve  | el of Ser | vice |          | С        |          |      |      |
| Analysis Period (min)     |          |          | 15    |      |          |           |      |          |          |          |      |      |
|                           |          |          |       |      |          |           |      |          |          |          |      |      |

|                              | ۶        | <b>→</b>   | •     | •     | <b>←</b>    | •         | •      | †     | ~    | <b>/</b> | <b>+</b> | 4    |
|------------------------------|----------|------------|-------|-------|-------------|-----------|--------|-------|------|----------|----------|------|
| Movement                     | EBL      | EBT        | EBR   | WBL   | WBT         | WBR       | NBL    | NBT   | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations          | J.       | <b>↑</b> ↑ |       | J.    | <b>↑</b> 1> |           | ¥      | ĵ»    |      | ¥        | f)       |      |
| Ideal Flow (vphpl)           | 1900     | 1900       | 1900  | 1900  | 1900        | 1900      | 1900   | 1900  | 1900 | 1900     | 1900     | 1900 |
| Total Lost time (s)          | 4.0      | 4.0        |       | 4.0   | 4.0         |           | 4.0    | 4.0   |      | 4.0      | 4.0      |      |
| Lane Util. Factor            | 1.00     | 0.95       |       | 1.00  | 0.95        |           | 1.00   | 1.00  |      | 1.00     | 1.00     |      |
| Frt                          | 1.00     | 1.00       |       | 1.00  | 0.97        |           | 1.00   | 0.93  |      | 1.00     | 0.95     |      |
| Flt Protected                | 0.95     | 1.00       |       | 0.95  | 1.00        |           | 0.95   | 1.00  |      | 0.95     | 1.00     |      |
| Satd. Flow (prot)            | 1770     | 3535       |       | 1770  | 3449        |           | 1770   | 1741  |      | 1770     | 1769     |      |
| Flt Permitted                | 0.95     | 1.00       |       | 0.95  | 1.00        |           | 0.95   | 1.00  |      | 0.95     | 1.00     |      |
| Satd. Flow (perm)            | 1770     | 3535       |       | 1770  | 3449        |           | 1770   | 1741  |      | 1770     | 1769     |      |
| Volume (vph)                 | 110      | 1120       | 10    | 200   | 930         | 190       | 10     | 310   | 240  | 100      | 240      | 120  |
| Peak-hour factor, PHF        | 0.97     | 0.97       | 0.97  | 0.97  | 0.97        | 0.97      | 0.97   | 0.97  | 0.97 | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)              | 113      | 1155       | 10    | 206   | 959         | 196       | 10     | 320   | 247  | 103      | 247      | 124  |
| RTOR Reduction (vph)         | 0        | 1          | 0     | 0     | 20          | 0         | 0      | 30    | 0    | 0        | 19       | 0    |
| Lane Group Flow (vph)        | 113      | 1164       | 0     | 206   | 1135        | 0         | 10     | 537   | 0    | 103      | 352      | 0    |
| Turn Type                    | Prot     |            |       | Prot  |             |           | Prot   |       |      | Prot     |          |      |
| Protected Phases             | 7        | 4          |       | 3     | 8           |           | 5      | 2     |      | 1        | 6        |      |
| Permitted Phases             |          |            |       |       |             |           |        |       |      |          |          |      |
| Actuated Green, G (s)        | 7.0      | 30.0       |       | 11.0  | 34.0        |           | 0.8    | 30.2  |      | 6.0      | 35.4     |      |
| Effective Green, g (s)       | 7.0      | 30.0       |       | 11.0  | 34.0        |           | 8.0    | 30.2  |      | 6.0      | 35.4     |      |
| Actuated g/C Ratio           | 0.08     | 0.32       |       | 0.12  | 0.36        |           | 0.01   | 0.32  |      | 0.06     | 0.38     |      |
| Clearance Time (s)           | 4.0      | 4.0        |       | 4.0   | 4.0         |           | 4.0    | 4.0   |      | 4.0      | 4.0      |      |
| Vehicle Extension (s)        | 3.0      | 3.0        |       | 3.0   | 3.0         |           | 3.0    | 3.0   |      | 3.0      | 3.0      |      |
| Lane Grp Cap (vph)           | 133      | 1138       |       | 209   | 1258        |           | 15     | 564   |      | 114      | 672      |      |
| v/s Ratio Prot               | 0.06     | c0.33      |       | c0.12 | c0.33       |           | 0.01   | c0.31 |      | c0.06    | 0.20     |      |
| v/s Ratio Perm               |          |            |       |       |             |           |        |       |      |          |          |      |
| v/c Ratio                    | 0.85     | 1.02       |       | 0.99  | 0.90        |           | 0.67   | 0.95  |      | 0.90     | 0.52     |      |
| Uniform Delay, d1            | 42.6     | 31.6       |       | 41.0  | 28.0        |           | 46.1   | 30.8  |      | 43.3     | 22.4     |      |
| Progression Factor           | 1.00     | 1.00       |       | 1.00  | 1.00        |           | 1.00   | 1.00  |      | 1.00     | 1.00     |      |
| Incremental Delay, d2        | 36.8     | 32.7       |       | 57.7  | 9.2         |           | 75.9   | 26.4  |      | 54.9     | 0.7      |      |
| Delay (s)                    | 79.4     | 64.3       |       | 98.7  | 37.2        |           | 121.9  | 57.2  |      | 98.2     | 23.1     |      |
| Level of Service             | Е        | Е          |       | F     | D           |           | F      | Е     |      | F        | С        |      |
| Approach Delay (s)           |          | 65.6       |       |       | 46.5        |           |        | 58.3  |      |          | 39.4     |      |
| Approach LOS                 |          | Е          |       |       | D           |           |        | Е     |      |          | D        |      |
| Intersection Summary         |          |            |       |       |             |           |        |       |      |          |          |      |
| HCM Average Control D        |          |            | 54.1  | H     | ICM Le      | vel of Se | ervice |       | D    |          |          |      |
| <b>HCM Volume to Capacit</b> |          |            | 1.02  |       |             |           |        |       |      |          |          |      |
| Actuated Cycle Length (      |          |            | 93.2  |       |             | ost time  |        |       | 20.0 |          |          |      |
| Intersection Capacity Uti    | lization |            | 92.2% | l l   | CU Leve     | el of Ser | vice   |       | F    |          |          |      |
| Analysis Period (min)        |          |            | 15    |       |             |           |        |       |      |          |          |      |
| c Critical Lane Group        |          |            |       |       |             |           |        |       |      |          |          |      |

|                           | ٠        | <b>→</b> | •     | •     | <b>←</b> | •          | 4    | <b>†</b> | <b>/</b> | <b>/</b> | ļ    | 4    |
|---------------------------|----------|----------|-------|-------|----------|------------|------|----------|----------|----------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR        | NBL  | NBT      | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations       |          | 4        |       |       | 4        |            |      | 4        |          |          | 4    |      |
| Sign Control              |          | Stop     |       |       | Stop     |            |      | Stop     |          |          | Stop |      |
| Volume (vph)              | 140      | 10       | 10    | 20    | 10       | 10         | 50   | 480      | 30       | 30       | 190  | 160  |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97  | 0.97  | 0.97     | 0.97       | 0.97 | 0.97     | 0.97     | 0.97     | 0.97 | 0.97 |
| Hourly flow rate (vph)    | 144      | 10       | 10    | 21    | 10       | 10         | 52   | 495      | 31       | 31       | 196  | 165  |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |            |      |          |          |          |      |      |
| Volume Total (vph)        | 165      | 41       | 577   | 392   |          |            |      |          |          |          |      |      |
| Volume Left (vph)         | 144      | 21       | 52    | 31    |          |            |      |          |          |          |      |      |
| Volume Right (vph)        | 10       | 10       | 31    | 165   |          |            |      |          |          |          |      |      |
| Hadj (s)                  | 0.17     | -0.02    | 0.02  | -0.20 |          |            |      |          |          |          |      |      |
| Departure Headway (s)     | 6.6      | 6.9      | 5.2   | 5.3   |          |            |      |          |          |          |      |      |
| Degree Utilization, x     | 0.30     | 0.08     | 0.84  | 0.57  |          |            |      |          |          |          |      |      |
| Capacity (veh/h)          | 503      | 457      | 677   | 657   |          |            |      |          |          |          |      |      |
| Control Delay (s)         | 12.5     | 10.4     | 28.9  | 15.0  |          |            |      |          |          |          |      |      |
| Approach Delay (s)        | 12.5     | 10.4     | 28.9  | 15.0  |          |            |      |          |          |          |      |      |
| Approach LOS              | В        | В        | D     | С     |          |            |      |          |          |          |      |      |
| Intersection Summary      |          |          |       |       |          |            |      |          |          |          |      |      |
| Delay                     |          |          | 21.3  |       |          |            |      |          |          |          |      |      |
| HCM Level of Service      |          |          | С     |       |          |            |      |          |          |          |      |      |
| Intersection Capacity Uti | lization |          | 61.5% | 10    | CU Leve  | el of Serv | /ice |          | В        |          |      |      |
| Analysis Period (min)     |          |          | 15    |       |          |            |      |          |          |          |      |      |
|                           |          |          |       |       |          |            |      |          |          |          |      |      |

|                          | <b>→</b>   | $\rightarrow$ | •     | <b>←</b> | 4       | <b>/</b>  |      |   |  |
|--------------------------|------------|---------------|-------|----------|---------|-----------|------|---|--|
| Movement                 | EBT        | EBR           | WBL   | WBT      | NBL     | NBR       |      |   |  |
| Lane Configurations      | <b>↑</b> ↑ |               | ሻ     | <b>^</b> | ሻ       | 7         |      |   |  |
| Sign Control             | Free       |               |       | Free     | Stop    |           |      |   |  |
| Grade                    | 0%         |               |       | 0%       | 0%      |           |      |   |  |
| Volume (veh/h)           | 690        | 10            | 240   | 1190     | 10      | 70        |      |   |  |
| Peak Hour Factor         | 0.97       | 0.97          | 0.97  | 0.97     | 0.97    | 0.97      |      |   |  |
| Hourly flow rate (vph)   | 711        | 10            | 247   | 1227     | 10      | 72        |      |   |  |
| Pedestrians              |            |               |       |          |         |           |      |   |  |
| Lane Width (ft)          |            |               |       |          |         |           |      |   |  |
| Walking Speed (ft/s)     |            |               |       |          |         |           |      |   |  |
| Percent Blockage         |            |               |       |          |         |           |      |   |  |
| Right turn flare (veh)   |            |               |       |          |         |           |      |   |  |
| Median type              |            |               |       |          | None    |           |      |   |  |
| Median storage veh)      |            |               |       |          |         |           |      |   |  |
| Upstream signal (ft)     |            |               |       | 714      |         |           |      |   |  |
| pX, platoon unblocked    |            |               |       |          | 0.80    |           |      |   |  |
| vC, conflicting volume   |            |               | 722   |          | 1825    | 361       |      |   |  |
| vC1, stage 1 conf vol    |            |               |       |          |         |           |      |   |  |
| vC2, stage 2 conf vol    |            |               |       |          |         |           |      |   |  |
| vCu, unblocked vol       |            |               | 722   |          | 1782    | 361       |      |   |  |
| tC, single (s)           |            |               | 4.1   |          | 6.8     | 6.9       |      |   |  |
| tC, 2 stage (s)          |            |               |       |          |         |           |      |   |  |
| tF (s)                   |            |               | 2.2   |          | 3.5     | 3.3       |      |   |  |
| p0 queue free %          |            |               | 72    |          | 76      | 89        |      |   |  |
| cM capacity (veh/h)      |            |               | 876   |          | 42      | 636       |      |   |  |
| Direction, Lane #        | EB 1       | EB 2          | WB 1  | WB 2     | WB3     | NB 1      | NB 2 |   |  |
| Volume Total             | 474        | 247           | 247   | 613      | 613     | 10        | 72   |   |  |
| Volume Left              | 0          | 0             | 247   | 0        | 0       | 10        | 0    |   |  |
| Volume Right             | 0          | 10            | 0     | 0        | 0       | 0         | 72   |   |  |
| cSH                      | 1700       | 1700          | 876   | 1700     | 1700    | 42        | 636  |   |  |
| Volume to Capacity       | 0.28       | 0.15          | 0.28  | 0.36     | 0.36    | 0.24      | 0.11 |   |  |
| Queue Length 95th (ft)   | 0          | 0             | 29    | 0        | 0       | 20        | 10   |   |  |
| Control Delay (s)        | 0.0        | 0.0           | 10.7  | 0.0      | 0.0     | 115.9     | 11.4 |   |  |
| Lane LOS                 |            |               | В     |          |         | F         | В    |   |  |
| Approach Delay (s)       | 0.0        |               | 1.8   |          |         | 24.5      |      |   |  |
| Approach LOS             |            |               |       |          |         | С         |      |   |  |
| Intersection Summary     |            |               |       |          |         |           |      |   |  |
| Average Delay            |            |               | 2.0   |          |         |           |      |   |  |
| Intersection Capacity Ut | ilization  |               | 46.0% | Į.       | CU Leve | el of Ser | vice | Α |  |
| Analysis Period (min)    |            |               | 15    |          |         |           |      |   |  |
|                          |            |               |       |          |         |           |      |   |  |

|                              | ۶         | <b>→</b> | <b>←</b>   | •    | <b>&gt;</b> | 4           |      |
|------------------------------|-----------|----------|------------|------|-------------|-------------|------|
| Movement                     | EBL       | EBT      | WBT        | WBR  | SBL         | SBR         |      |
| Lane Configurations          | ች         | <b>^</b> | <b>↑</b> ↑ |      | ች           | 7           |      |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900       | 1900 | 1900        | 1900        |      |
| Total Lost time (s)          | 4.0       | 4.0      | 4.0        |      | 4.0         | 4.0         |      |
| Lane Util. Factor            | 1.00      | 0.95     | 0.95       |      | 1.00        | 1.00        |      |
| Frt                          | 1.00      | 1.00     | 1.00       |      | 1.00        | 0.85        |      |
| Flt Protected                | 0.95      | 1.00     | 1.00       |      | 0.95        | 1.00        |      |
| Satd. Flow (prot)            | 1770      | 3539     | 3536       |      | 1770        | 1583        |      |
| Flt Permitted                | 0.95      | 1.00     | 1.00       |      | 0.95        | 1.00        |      |
| Satd. Flow (perm)            | 1770      | 3539     | 3536       |      | 1770        | 1583        |      |
| Volume (vph)                 | 10        | 750      | 1400       | 10   | 20          | 30          |      |
| Peak-hour factor, PHF        | 0.97      | 0.97     | 0.97       | 0.97 | 0.97        | 0.97        |      |
| Adj. Flow (vph)              | 10        | 773      | 1443       | 10   | 21          | 31          |      |
| RTOR Reduction (vph)         | 0         | 0        | 0          | 0    | 0           | 29          |      |
| Lane Group Flow (vph)        | 10        | 773      | 1453       | 0    | 21          | 2           |      |
| Turn Type                    | Prot      |          |            |      |             | Perm        |      |
| Protected Phases             | 7         | 4        | 8          |      | 6           |             |      |
| Permitted Phases             |           |          |            |      |             | 6           |      |
| Actuated Green, G (s)        | 0.6       | 29.0     | 24.4       |      | 3.1         | 3.1         |      |
| Effective Green, g (s)       | 0.6       | 29.0     | 24.4       |      | 3.1         | 3.1         |      |
| Actuated g/C Ratio           | 0.01      | 0.72     | 0.61       |      | 0.08        | 0.08        |      |
| Clearance Time (s)           | 4.0       | 4.0      | 4.0        |      | 4.0         | 4.0         |      |
| Vehicle Extension (s)        | 3.0       | 3.0      | 3.0        |      | 3.0         | 3.0         |      |
| Lane Grp Cap (vph)           | 26        | 2559     | 2152       |      | 137         | 122         |      |
| v/s Ratio Prot               | 0.01      | c0.22    | c0.41      |      | c0.01       |             |      |
| v/s Ratio Perm               |           |          |            |      |             | 0.00        |      |
| v/c Ratio                    | 0.38      | 0.30     | 0.68       |      | 0.15        | 0.02        |      |
| Uniform Delay, d1            | 19.6      | 2.0      | 5.2        |      | 17.3        | 17.1        |      |
| Progression Factor           | 1.00      | 1.00     | 1.00       |      | 1.00        | 1.00        |      |
| Incremental Delay, d2        | 9.2       | 0.1      | 8.0        |      | 0.5         | 0.1         |      |
| Delay (s)                    | 28.8      | 2.0      | 6.1        |      | 17.8        | 17.2        |      |
| Level of Service             | С         | Α        | Α          |      | В           | В           |      |
| Approach Delay (s)           |           | 2.4      | 6.1        |      | 17.4        |             |      |
| Approach LOS                 |           | Α        | Α          |      | В           |             |      |
| Intersection Summary         |           |          |            |      |             |             |      |
| HCM Average Control D        |           |          | 5.1        | H    | ICM Le      | vel of Serv | /ice |
| <b>HCM Volume to Capacit</b> |           |          | 0.63       |      |             |             |      |
| Actuated Cycle Length (      |           |          | 40.1       |      |             | ost time (s |      |
| Intersection Capacity Ut     | ilization |          | 49.0%      | 10   | CU Leve     | el of Servi | ce   |
| Analysis Period (min)        |           |          | 15         |      |             |             |      |
| c Critical Lane Group        |           |          |            |      |             |             |      |

|                           | ٠        | <b>→</b> | •     | •     | •       | •          | 4    | <b>†</b> | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|-------|---------|------------|------|----------|----------|-------------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT     | WBR        | NBL  | NBT      | NBR      | SBL         | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |       | 4       |            |      | 4        |          |             | 4        |      |
| Sign Control              |          | Stop     |       |       | Stop    |            |      | Stop     |          |             | Stop     |      |
| Volume (vph)              | 10       | 60       | 90    | 260   | 30      | 10         | 20   | 10       | 180      | 10          | 10       | 10   |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97  | 0.97  | 0.97    | 0.97       | 0.97 | 0.97     | 0.97     | 0.97        | 0.97     | 0.97 |
| Hourly flow rate (vph)    | 10       | 62       | 93    | 268   | 31      | 10         | 21   | 10       | 186      | 10          | 10       | 10   |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |         |            |      |          |          |             |          |      |
| Volume Total (vph)        | 165      | 309      | 216   | 31    |         |            |      |          |          |             |          |      |
| Volume Left (vph)         | 10       | 268      | 21    | 10    |         |            |      |          |          |             |          |      |
| Volume Right (vph)        | 93       | 10       | 186   | 10    |         |            |      |          |          |             |          |      |
| Hadj (s)                  | -0.29    | 0.19     | -0.46 | -0.10 |         |            |      |          |          |             |          |      |
| Departure Headway (s)     | 4.6      | 4.9      | 4.6   | 5.3   |         |            |      |          |          |             |          |      |
| Degree Utilization, x     | 0.21     | 0.42     | 0.28  | 0.05  |         |            |      |          |          |             |          |      |
| Capacity (veh/h)          | 717      | 699      | 712   | 595   |         |            |      |          |          |             |          |      |
| Control Delay (s)         | 8.9      | 11.4     | 9.4   | 8.5   |         |            |      |          |          |             |          |      |
| Approach Delay (s)        | 8.9      | 11.4     | 9.4   | 8.5   |         |            |      |          |          |             |          |      |
| Approach LOS              | Α        | В        | Α     | Α     |         |            |      |          |          |             |          |      |
| Intersection Summary      |          |          |       |       |         |            |      |          |          |             |          |      |
| Delay                     |          |          | 10.1  |       |         |            |      |          |          |             |          |      |
| HCM Level of Service      |          |          | В     |       |         |            |      |          |          |             |          |      |
| Intersection Capacity Uti | lization |          | 49.2% | 10    | CU Leve | el of Serv | /ice |          | Α        |             |          |      |
| Analysis Period (min)     |          |          | 15    |       |         |            |      |          |          |             |          |      |
|                           |          |          |       |       |         |            |      |          |          |             |          |      |

|                              | ۶     | <b>→</b>   | •     | •       | +          | •         | •      | <b>†</b> | ~    | <b>/</b> | <b>+</b> | 4    |
|------------------------------|-------|------------|-------|---------|------------|-----------|--------|----------|------|----------|----------|------|
| Movement                     | EBL   | EBT        | EBR   | WBL     | WBT        | WBR       | NBL    | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations          | ň     | <b>↑</b> ↑ |       | 7       | <b>↑</b> ↑ |           | , J    | f)       |      | J.       | ĵ»       |      |
| Ideal Flow (vphpl)           | 1900  | 1900       | 1900  | 1900    | 1900       | 1900      | 1900   | 1900     | 1900 | 1900     | 1900     | 1900 |
| Total Lost time (s)          | 4.0   | 4.0        |       | 4.0     | 4.0        |           | 4.0    | 4.0      |      | 4.0      | 4.0      |      |
| Lane Util. Factor            | 1.00  | 0.95       |       | 1.00    | 0.95       |           | 1.00   | 1.00     |      | 1.00     | 1.00     |      |
| Frt                          | 1.00  | 0.99       |       | 1.00    | 0.96       |           | 1.00   | 0.95     |      | 1.00     | 0.93     |      |
| Flt Protected                | 0.95  | 1.00       |       | 0.95    | 1.00       |           | 0.95   | 1.00     |      | 0.95     | 1.00     |      |
| Satd. Flow (prot)            | 1770  | 3495       |       | 1770    | 3405       |           | 1770   | 1776     |      | 1770     | 1728     |      |
| Flt Permitted                | 0.95  | 1.00       |       | 0.95    | 1.00       |           | 0.95   | 1.00     |      | 0.95     | 1.00     |      |
| Satd. Flow (perm)            | 1770  | 3495       |       | 1770    | 3405       |           | 1770   | 1776     |      | 1770     | 1728     |      |
| Volume (vph)                 | 190   | 660        | 60    | 160     | 860        | 290       | 40     | 220      | 100  | 520      | 480      | 450  |
| Peak-hour factor, PHF        | 0.97  | 0.97       | 0.97  | 0.97    | 0.97       | 0.97      | 0.97   | 0.97     | 0.97 | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)              | 196   | 680        | 62    | 165     | 887        | 299       | 41     | 227      | 103  | 536      | 495      | 464  |
| RTOR Reduction (vph)         | 0     | 8          | 0     | 0       | 37         | 0         | 0      | 19       | 0    | 0        | 37       | 0    |
| Lane Group Flow (vph)        | 196   | 734        | 0     | 165     | 1149       | 0         | 41     | 311      | 0    | 536      | 922      | 0    |
| Turn Type                    | Prot  |            |       | Prot    |            |           | Prot   |          |      | Prot     |          |      |
| Protected Phases             | 7     | 4          |       | 3       | 8          |           | 5      | 2        |      | 1        | 6        |      |
| Permitted Phases             |       |            |       |         |            |           |        |          |      |          |          |      |
| Actuated Green, G (s)        | 6.0   | 26.3       |       | 11.5    | 31.8       |           | 2.3    | 24.5     |      | 9.0      | 31.2     |      |
| Effective Green, g (s)       | 6.0   | 26.3       |       | 11.5    | 31.8       |           | 2.3    | 24.5     |      | 9.0      | 31.2     |      |
| Actuated g/C Ratio           | 0.07  | 0.30       |       | 0.13    | 0.36       |           | 0.03   | 0.28     |      | 0.10     | 0.36     |      |
| Clearance Time (s)           | 4.0   | 4.0        |       | 4.0     | 4.0        |           | 4.0    | 4.0      |      | 4.0      | 4.0      |      |
| Vehicle Extension (s)        | 3.0   | 3.0        |       | 3.0     | 3.0        |           | 3.0    | 3.0      |      | 3.0      | 3.0      |      |
| Lane Grp Cap (vph)           | 122   | 1053       |       | 233     | 1240       |           | 47     | 498      |      | 182      | 618      |      |
| v/s Ratio Prot               | c0.11 | 0.21       |       | c0.09   | c0.34      |           | 0.02   | 0.18     |      | c0.30    | c0.53    |      |
| v/s Ratio Perm               |       |            |       |         |            |           |        |          |      |          |          |      |
| v/c Ratio                    | 1.61  | 0.70       |       | 0.71    | 0.93       |           | 0.87   | 0.63     |      | 2.95     | 1.49     |      |
| Uniform Delay, d1            | 40.6  | 27.0       |       | 36.3    | 26.6       |           | 42.4   | 27.4     |      | 39.1     | 28.1     |      |
| Progression Factor           | 1.00  | 1.00       |       | 1.00    | 1.00       |           | 1.00   | 1.00     |      | 1.00     | 1.00     |      |
| Incremental Delay, d2        | 307.6 | 2.0        |       | 9.4     | 11.8       |           | 84.1   | 2.4      |      | 890.0    | 230.1    |      |
| Delay (s)                    | 348.3 | 29.0       |       | 45.7    | 38.4       |           | 126.5  | 29.8     |      | 929.2    | 258.2    |      |
| Level of Service             | F     | С          |       | D       | D          |           | F      | С        |      | F        | F        |      |
| Approach Delay (s)           |       | 95.7       |       |         | 39.3       |           |        | 40.5     |      |          | 498.7    |      |
| Approach LOS                 |       | F          |       |         | D          |           |        | D        |      |          | F        |      |
| Intersection Summary         |       |            |       |         |            |           |        |          |      |          |          |      |
| HCM Average Control D        |       |            | 217.5 | H       | ICM Le     | vel of Se | ervice |          | F    |          |          |      |
| <b>HCM Volume to Capacit</b> |       | 1.34       |       |         |            |           |        |          |      |          |          |      |
| Actuated Cycle Length (      |       | 87.3       |       |         | ost time   |           |        | 8.0      |      |          |          |      |
| Intersection Capacity Ut     | 1     | 13.0%      | ŀ     | CU Leve | el of Ser  | vice      |        | Н        |      |          |          |      |
| Analysis Period (min)        |       | 15         |       |         |            |           |        |          |      |          |          |      |
| c Critical Lane Group        |       |            |       |         |            |           |        |          |      |          |          |      |

|                           | ٠        | <b>→</b> | •     | •     | •       | •          | 4    | <b>†</b> | /    | <b>&gt;</b> | <b>↓</b> | 1    |
|---------------------------|----------|----------|-------|-------|---------|------------|------|----------|------|-------------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT     | WBR        | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |       | 4       |            |      | 4        |      |             | 4        |      |
| Sign Control              |          | Stop     |       |       | Stop    |            |      | Stop     |      |             | Stop     |      |
| Volume (vph)              | 230      | 10       | 40    | 30    | 10      | 10         | 10   | 70       | 10   | 10          | 390      | 350  |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97  | 0.97  | 0.97    | 0.97       | 0.97 | 0.97     | 0.97 | 0.97        | 0.97     | 0.97 |
| Hourly flow rate (vph)    | 237      | 10       | 41    | 31    | 10      | 10         | 10   | 72       | 10   | 10          | 402      | 361  |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |         |            |      |          |      |             |          |      |
| Volume Total (vph)        | 289      | 52       | 93    | 773   |         |            |      |          |      |             |          |      |
| Volume Left (vph)         | 237      | 31       | 10    | 10    |         |            |      |          |      |             |          |      |
| Volume Right (vph)        | 41       | 10       | 10    | 361   |         |            |      |          |      |             |          |      |
| Hadj (s)                  | 0.11     | 0.03     | -0.01 | -0.24 |         |            |      |          |      |             |          |      |
| Departure Headway (s)     | 6.2      | 6.7      | 6.1   | 4.9   |         |            |      |          |      |             |          |      |
| Degree Utilization, x     | 0.50     | 0.10     | 0.16  | 1.06  |         |            |      |          |      |             |          |      |
| Capacity (veh/h)          | 571      | 508      | 563   | 724   |         |            |      |          |      |             |          |      |
| Control Delay (s)         | 15.2     | 10.4     | 10.2  | 72.7  |         |            |      |          |      |             |          |      |
| Approach Delay (s)        | 15.2     | 10.4     | 10.2  | 72.7  |         |            |      |          |      |             |          |      |
| Approach LOS              | С        | В        | В     | F     |         |            |      |          |      |             |          |      |
| Intersection Summary      |          |          |       |       |         |            |      |          |      |             |          |      |
| Delay                     |          |          | 51.5  |       |         |            |      |          |      |             |          |      |
| HCM Level of Service      |          |          | F     |       |         |            |      |          |      |             |          |      |
| Intersection Capacity Uti | lization |          | 72.0% | - 10  | CU Leve | el of Serv | vice |          | С    |             |          |      |
| Analysis Period (min)     |          |          | 15    |       |         |            |      |          |      |             |          |      |

| Movement  Lane Configurations Sign Control Grade  Volume (veh/h) Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s) tF (s) p0 queue free %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Free<br>0%<br>0 830<br>7 0.97 | NBL<br>Stop<br>0%<br>10 | NBR       |      |   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|-----------|------|---|--|
| Sign Control Grade  Volume (veh/h) Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s) tF (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Free<br>0%<br>0 830<br>7 0.97 | Stop<br>0%<br>10        | 7         |      |   |  |
| Sign Control Grade  Volume (veh/h) Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s) tF (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Free<br>0%<br>0 830<br>7 0.97 | Stop<br>0%<br>10        |           |      |   |  |
| Volume (veh/h) 1210 10 80 Peak Hour Factor 0.97 0.97 0.97 Hourly flow rate (vph) 1247 10 80 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s) tF (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 830<br>7 0.97               | 10                      |           |      |   |  |
| Peak Hour Factor 0.97 0.97 0.97 Hourly flow rate (vph) 1247 10 87 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s) tF (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 0.97                        |                         |           |      |   |  |
| Peak Hour Factor 0.97 0.97 0.97 Hourly flow rate (vph) 1247 10 87 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s) tF (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | 0.07                    | 260       |      |   |  |
| Pedestrians  Lane Width (ft)  Walking Speed (ft/s)  Percent Blockage  Right turn flare (veh)  Median type  Median storage veh)  Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s) tF (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.50                          | 0.97                    | 0.97      |      |   |  |
| Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s) tF (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 856                         | 10                      | 268       |      |   |  |
| Walking Speed (ft/s)  Percent Blockage  Right turn flare (veh)  Median type  Median storage veh)  Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s) tF (s)  2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                         |           |      |   |  |
| Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s) tF (s)  2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                         |           |      |   |  |
| Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s) tF (s)  2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                         |           |      |   |  |
| Median type  Median storage veh)  Upstream signal (ft)  pX, platoon unblocked  vC, conflicting volume  vC1, stage 1 conf vol  vC2, stage 2 conf vol  vCu, unblocked vol  tC, single (s)  tC, 2 stage (s)  tF (s)  2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                         |           |      |   |  |
| Median type  Median storage veh)  Upstream signal (ft)  DX, platoon unblocked  VC, conflicting volume  VC1, stage 1 conf vol  VC2, stage 2 conf vol  VCu, unblocked vol  CC, single (s)  CC, 2 stage (s)  EF (s)  2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                         |           |      |   |  |
| Median storage veh)  Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s) tF (s)  2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | None                    |           |      |   |  |
| Upstream signal (ft) bX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol cC, single (s) cC, 2 stage (s) cF (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                         |           |      |   |  |
| oX, platoon unblocked  vC, conflicting volume  vC1, stage 1 conf vol  vC2, stage 2 conf vol  vCu, unblocked vol  cC, single (s)  cC, 2 stage (s)  EF (s)  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  1256  12 | 714                           |                         |           |      |   |  |
| vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol tC, single (s) tC, 2 stage (s) tF (s) tC 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 0.97                    |           |      |   |  |
| vC1, stage 1 conf vol<br>vC2, stage 2 conf vol<br>vCu, unblocked vol 125<br>cC, single (s) 4.<br>cC, 2 stage (s)<br>cF (s) 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                             | 1845                    | 629       |      |   |  |
| vC2, stage 2 conf vol<br>vCu, unblocked vol 1256<br>cC, single (s) 4.<br>cC, 2 stage (s)<br>F(s) 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                         |           |      |   |  |
| vCu, unblocked vol 1256<br>CC, single (s) 4.<br>cC, 2 stage (s)<br>F (s) 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                         |           |      |   |  |
| C, 2 stage (s)<br>F (s) 2.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                             | 1841                    | 629       |      |   |  |
| tC, 2 stage (s)<br>tF (s) 2.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                             | 6.8                     | 6.9       |      |   |  |
| tF (s) 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                         |           |      |   |  |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                             | 3.5                     | 3.3       |      |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                             | 81                      | 37        |      |   |  |
| cM capacity (veh/h) 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                             | 55                      | 425       |      |   |  |
| Direction, Lane # EB 1 EB 2 WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 WB 2                        | WB3                     | NB 1      | NB 2 |   |  |
| Volume Total 832 426 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 428                         | 428                     | 10        | 268  |   |  |
| Volume Left 0 0 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | 0                       | 10        | 0    |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0                           | 0                       | 0         | 268  |   |  |
| cSH 1700 1700 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 1700                    | 55        | 425  |   |  |
| Volume to Capacity 0.49 0.25 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | 0.25                    | 0.19      | 0.63 |   |  |
| Queue Length 95th (ft) 0 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 0                       | 15        | 105  |   |  |
| Control Delay (s) 0.0 0.0 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | 0.0                     | 84.5      | 26.8 |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                             |                         | F         | D    |   |  |
| Approach Delay (s) 0.0 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                         | 29.0      |      |   |  |
| Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                         | D         |      |   |  |
| ntersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                         |           |      |   |  |
| Average Delay 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                             |                         |           |      |   |  |
| Intersection Capacity Utilization 56.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                             | CU Leve                 | el of Ser | vice | В |  |
| Analysis Period (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                         |           |      |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                         |           |      |   |  |

|                          | ۶         | <b>→</b> | <b>←</b> | •    | <b>&gt;</b> | 4           |      |
|--------------------------|-----------|----------|----------|------|-------------|-------------|------|
| Movement                 | EBL       | EBT      | WBT      | WBR  | SBL         | SBR         |      |
| Lane Configurations      | ሻ         | <b>^</b> | ħβ       |      | ኻ           | 7           |      |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900     | 1900 | 1900        | 1900        |      |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0      |      | 4.0         | 4.0         |      |
| Lane Util. Factor        | 1.00      | 0.95     | 0.95     |      | 1.00        | 1.00        |      |
| Frt                      | 1.00      | 1.00     | 1.00     |      | 1.00        | 0.85        |      |
| Flt Protected            | 0.95      | 1.00     | 1.00     |      | 0.95        | 1.00        |      |
| Satd. Flow (prot)        | 1770      | 3539     | 3522     |      | 1770        | 1583        |      |
| Flt Permitted            | 0.95      | 1.00     | 1.00     |      | 0.95        | 1.00        |      |
| Satd. Flow (perm)        | 1770      | 3539     | 3522     |      | 1770        | 1583        |      |
| Volume (vph)             | 30        | 1440     | 900      | 30   | 10          | 20          |      |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.97     | 0.97 | 0.97        | 0.97        |      |
| Adj. Flow (vph)          | 31        | 1485     | 928      | 31   | 10          | 21          |      |
| RTOR Reduction (vph)     | 0         | 0        | 2        | 0    | 0           | 19          |      |
| Lane Group Flow (vph)    | 31        | 1485     | 957      | 0    | 10          | 2           |      |
| Turn Type                | Prot      |          |          |      |             | Perm        |      |
| Protected Phases         | 7         | 4        | 8        |      | 6           |             |      |
| Permitted Phases         |           |          |          |      |             | 6           |      |
| Actuated Green, G (s)    | 0.8       | 27.7     | 22.9     |      | 3.0         | 3.0         |      |
| Effective Green, g (s)   | 8.0       | 27.7     | 22.9     |      | 3.0         | 3.0         |      |
| Actuated g/C Ratio       | 0.02      | 0.72     | 0.59     |      | 0.08        | 0.08        |      |
| Clearance Time (s)       | 4.0       | 4.0      | 4.0      |      | 4.0         | 4.0         |      |
| Vehicle Extension (s)    | 3.0       | 3.0      | 3.0      |      | 3.0         | 3.0         |      |
| Lane Grp Cap (vph)       | 37        | 2533     | 2084     |      | 137         | 123         |      |
| v/s Ratio Prot           | 0.02      | c0.42    | 0.27     |      | c0.01       |             |      |
| v/s Ratio Perm           |           |          |          |      |             | 0.00        |      |
| v/c Ratio                | 0.84      | 0.59     | 0.46     |      | 0.07        | 0.01        |      |
| Uniform Delay, d1        | 18.9      | 2.7      | 4.4      |      | 16.6        | 16.5        |      |
| Progression Factor       | 1.00      | 1.00     | 1.00     |      | 1.00        | 1.00        |      |
| Incremental Delay, d2    | 84.7      | 0.3      | 0.2      |      | 0.2         | 0.0         |      |
| Delay (s)                | 103.6     | 3.0      | 4.6      |      | 16.8        | 16.5        |      |
| Level of Service         | F         | Α        | Α        |      | В           | В           |      |
| Approach Delay (s)       |           | 5.1      | 4.6      |      | 16.6        |             |      |
| Approach LOS             |           | Α        | Α        |      | В           |             |      |
| Intersection Summary     |           |          |          |      |             |             |      |
| HCM Average Control D    | •         |          | 5.0      | H    | ICM Le      | vel of Serv | /ice |
| HCM Volume to Capacit    |           |          | 0.54     |      |             |             |      |
| Actuated Cycle Length (  |           |          | 38.7     |      |             | ost time (s |      |
| Intersection Capacity Ut | ilization |          | 49.8%    | 10   | CU Leve     | el of Servi | се   |
| Analysis Period (min)    |           |          | 15       |      |             |             |      |
| c Critical Lane Group    |           |          |          |      |             |             |      |

|                           | ۶        | <b>→</b> | •     | •     | <b>←</b> | •          | •    | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ    | 4    |
|---------------------------|----------|----------|-------|-------|----------|------------|------|----------|----------|-------------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR        | NBL  | NBT      | NBR      | SBL         | SBT  | SBR  |
| Lane Configurations       |          | 4        |       |       | 4        |            |      | 4        |          |             | 4    |      |
| Sign Control              |          | Stop     |       |       | Stop     |            |      | Stop     |          |             | Stop |      |
| Volume (vph)              | 10       | 40       | 40    | 230   | 60       | 10         | 80   | 10       | 220      | 10          | 10   | 10   |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97  | 0.97  | 0.97     | 0.97       | 0.97 | 0.97     | 0.97     | 0.97        | 0.97 | 0.97 |
| Hourly flow rate (vph)    | 10       | 41       | 41    | 237   | 62       | 10         | 82   | 10       | 227      | 10          | 10   | 10   |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |            |      |          |          |             |      |      |
| Volume Total (vph)        | 93       | 309      | 320   | 31    |          |            |      |          |          |             |      |      |
| Volume Left (vph)         | 10       | 237      | 82    | 10    |          |            |      |          |          |             |      |      |
| Volume Right (vph)        | 41       | 10       | 227   | 10    |          |            |      |          |          |             |      |      |
| Hadj (s)                  | -0.21    | 0.17     | -0.34 | -0.10 |          |            |      |          |          |             |      |      |
| Departure Headway (s)     | 5.0      | 5.1      | 4.6   | 5.3   |          |            |      |          |          |             |      |      |
| Degree Utilization, x     | 0.13     | 0.44     | 0.41  | 0.05  |          |            |      |          |          |             |      |      |
| Capacity (veh/h)          | 648      | 672      | 730   | 596   |          |            |      |          |          |             |      |      |
| Control Delay (s)         | 8.7      | 11.9     | 10.9  | 8.6   |          |            |      |          |          |             |      |      |
| Approach Delay (s)        | 8.7      | 11.9     | 10.9  | 8.6   |          |            |      |          |          |             |      |      |
| Approach LOS              | Α        | В        | В     | Α     |          |            |      |          |          |             |      |      |
| Intersection Summary      |          |          |       |       |          |            |      |          |          |             |      |      |
| Delay                     |          |          | 10.9  |       |          |            |      |          |          |             |      |      |
| HCM Level of Service      |          |          | В     |       |          |            |      |          |          |             |      |      |
| Intersection Capacity Uti | lization |          | 52.3% | - 10  | CU Leve  | el of Serv | vice |          | Α        |             |      |      |
| Analysis Period (min)     |          |          | 15    |       |          |            |      |          |          |             |      |      |
|                           |          |          |       |       |          |            |      |          |          |             |      |      |

|                            | ۶      | <b>→</b>    | •     | •       | +          | •         | •      | <b>†</b> | <i>&gt;</i> | <b>/</b> | ţ     | 4    |
|----------------------------|--------|-------------|-------|---------|------------|-----------|--------|----------|-------------|----------|-------|------|
| Movement                   | EBL    | EBT         | EBR   | WBL     | WBT        | WBR       | NBL    | NBT      | NBR         | SBL      | SBT   | SBR  |
| Lane Configurations        | *      | <b>∱</b> î≽ |       | 7       | <b>∱</b> } |           | ሻ      | f)       |             | 7        | f)    |      |
| Ideal Flow (vphpl)         | 1900   | 1900        | 1900  | 1900    | 1900       | 1900      | 1900   | 1900     | 1900        | 1900     | 1900  | 1900 |
| Total Lost time (s)        | 4.0    | 4.0         |       | 4.0     | 4.0        |           | 4.0    | 4.0      |             | 4.0      | 4.0   |      |
| Lane Util. Factor          | 1.00   | 0.95        |       | 1.00    | 0.95       |           | 1.00   | 1.00     |             | 1.00     | 1.00  |      |
| Frt                        | 1.00   | 0.99        |       | 1.00    | 0.94       |           | 1.00   | 0.95     |             | 1.00     | 0.94  |      |
| Flt Protected              | 0.95   | 1.00        |       | 0.95    | 1.00       |           | 0.95   | 1.00     |             | 0.95     | 1.00  |      |
| Satd. Flow (prot)          | 1770   | 3513        |       | 1770    | 3312       |           | 1770   | 1771     |             | 1770     | 1743  |      |
| Flt Permitted              | 0.95   | 1.00        |       | 0.95    | 1.00       |           | 0.95   | 1.00     |             | 0.95     | 1.00  |      |
| Satd. Flow (perm)          | 1770   | 3513        |       | 1770    | 3312       |           | 1770   | 1771     |             | 1770     | 1743  |      |
| Volume (vph)               | 420    | 980         | 50    | 120     | 720        | 540       | 60     | 390      | 190         | 380      | 320   | 240  |
| Peak-hour factor, PHF      | 0.97   | 0.97        | 0.97  | 0.97    | 0.97       | 0.97      | 0.97   | 0.97     | 0.97        | 0.97     | 0.97  | 0.97 |
| Adj. Flow (vph)            | 433    | 1010        | 52    | 124     | 742        | 557       | 62     | 402      | 196         | 392      | 330   | 247  |
| RTOR Reduction (vph)       | 0      | 4           | 0     | 0       | 152        | 0         | 0      | 19       | 0           | 0        | 29    | 0    |
| Lane Group Flow (vph)      | 433    | 1058        | 0     | 124     | 1147       | 0         | 62     | 579      | 0           | 392      | 548   | 0    |
| Turn Type                  | Prot   |             |       | Prot    |            |           | Prot   |          |             | Prot     |       |      |
| Protected Phases           | 7      | 4           |       | 3       | 8          |           | 5      | 2        |             | 1        | 6     |      |
| Permitted Phases           |        |             |       |         |            |           |        |          |             |          |       |      |
| Actuated Green, G (s)      | 7.0    | 32.4        |       | 8.5     | 33.9       |           | 3.2    | 27.9     |             | 6.0      | 30.7  |      |
| Effective Green, g (s)     | 7.0    | 32.4        |       | 8.5     | 33.9       |           | 3.2    | 27.9     |             | 6.0      | 30.7  |      |
| Actuated g/C Ratio         | 0.08   | 0.36        |       | 0.09    | 0.37       |           | 0.04   | 0.31     |             | 0.07     | 0.34  |      |
| Clearance Time (s)         | 4.0    | 4.0         |       | 4.0     | 4.0        |           | 4.0    | 4.0      |             | 4.0      | 4.0   |      |
| Vehicle Extension (s)      | 3.0    | 3.0         |       | 3.0     | 3.0        |           | 3.0    | 3.0      |             | 3.0      | 3.0   |      |
| Lane Grp Cap (vph)         | 136    | 1254        |       | 166     | 1237       |           | 62     | 544      |             | 117      | 589   |      |
| v/s Ratio Prot             | c0.24  | 0.30        |       | 0.07    | c0.35      |           | 0.04   | c0.33    |             | c0.22    | c0.31 |      |
| v/s Ratio Perm             |        |             |       |         |            |           |        |          |             |          |       |      |
| v/c Ratio                  | 3.18   | 0.84        |       | 0.75    | 0.93       |           | 1.00   | 1.06     |             | 3.35     | 0.93  |      |
| Uniform Delay, d1          | 41.9   | 26.9        |       | 40.1    | 27.3       |           | 43.8   | 31.4     |             | 42.4     | 29.0  |      |
| Progression Factor         | 1.00   | 1.00        |       | 1.00    | 1.00       |           | 1.00   | 1.00     |             | 1.00     | 1.00  |      |
| Incremental Delay, d2      | 1001.7 | 5.4         |       | 16.6    | 11.9       |           | 114.3  | 56.6     | •           | 1079.2   | 21.5  |      |
| Delay (s)                  | 1043.6 | 32.2        |       | 56.7    | 39.2       |           | 158.1  | 88.1     |             | 1121.6   | 50.5  |      |
| Level of Service           | F      | С           |       | Е       | D          |           | F      | F        |             | F        | D     |      |
| Approach Delay (s)         |        | 325.1       |       |         | 40.7       |           |        | 94.6     |             |          | 483.8 |      |
| Approach LOS               |        | F           |       |         | D          |           |        | F        |             |          | F     |      |
| Intersection Summary       |        |             |       |         |            |           |        |          |             |          |       |      |
| HCM Average Control I      |        |             | 236.5 | H       | ICM Le     | vel of Se | ervice |          | F           |          |       |      |
| <b>HCM Volume to Capac</b> |        |             | 1.33  |         |            |           |        |          |             |          |       |      |
| Actuated Cycle Length      |        |             | 90.8  |         |            | ost time  |        |          | 16.0        |          |       |      |
| Intersection Capacity U    | 1      | 27.0%       | I     | CU Leve | el of Ser  | vice      |        | Н        |             |          |       |      |
| Analysis Period (min)      |        | 15          |       |         |            |           |        |          |             |          |       |      |
| c Critical Lane Group      |        |             |       |         |            |           |        |          |             |          |       |      |

|                           | •        | <b>→</b> | •     | •     | <b>←</b> | •          | •      | <b>†</b> | <b>/</b> | <b>/</b> | ļ    | 4    |
|---------------------------|----------|----------|-------|-------|----------|------------|--------|----------|----------|----------|------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL   | WBT      | WBR        | NBL    | NBT      | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations       |          | 4        |       |       | 44       |            |        | 4        |          |          | 4    |      |
| Sign Control              |          | Stop     |       |       | Stop     |            |        | Stop     |          |          | Stop |      |
| Volume (vph)              | 320      | 10       | 10    | 10    | 10       | 10         | 40     | 350      | 30       | 10       | 160  | 300  |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97  | 0.97  | 0.97     | 0.97       | 0.97   | 0.97     | 0.97     | 0.97     | 0.97 | 0.97 |
| Hourly flow rate (vph)    | 330      | 10       | 10    | 10    | 10       | 10         | 41     | 361      | 31       | 10       | 165  | 309  |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1  |          |            |        |          |          |          |      |      |
| Volume Total (vph)        | 351      | 31       | 433   | 485   |          |            |        |          |          |          |      |      |
| Volume Left (vph)         | 330      | 10       | 41    | 10    |          |            |        |          |          |          |      |      |
| Volume Right (vph)        | 10       | 10       | 31    | 309   |          |            |        |          |          |          |      |      |
| Hadj (s)                  | 0.20     | -0.10    | 0.01  | -0.34 |          |            |        |          |          |          |      |      |
| Departure Headway (s)     | 6.8      | 7.7      | 6.2   | 5.8   |          |            |        |          |          |          |      |      |
| Degree Utilization, x     | 0.66     | 0.07     | 0.75  | 0.78  |          |            |        |          |          |          |      |      |
| Capacity (veh/h)          | 496      | 383      | 558   | 595   |          |            |        |          |          |          |      |      |
| Control Delay (s)         | 22.2     | 11.3     | 25.3  | 26.4  |          |            |        |          |          |          |      |      |
| Approach Delay (s)        | 22.2     | 11.3     | 25.3  | 26.4  |          |            |        |          |          |          |      |      |
| Approach LOS              | С        | В        | D     | D     |          |            |        |          |          |          |      |      |
| Intersection Summary      |          |          |       |       |          |            |        |          |          |          |      |      |
| Delay                     |          |          | 24.5  |       |          |            |        |          |          |          |      |      |
| HCM Level of Service      |          |          | С     |       |          |            |        |          |          |          |      |      |
| Intersection Capacity Uti | lization |          | 73.7% | - 10  | CU Leve  | el of Serv | vice . |          | D        |          |      |      |
| Analysis Period (min)     |          |          | 15    |       |          |            |        |          |          |          |      |      |
|                           |          |          |       |       |          |            |        |          |          |          |      |      |

## **Appendix C-2: Freeway Operations**

Cumulative No Project Conditions

Cumulative Plus Preferred Alternative Conditions

HCM 2000 Basic Freeway Segments Capacity Analysis Jurisdiction Sacramento Co.

Analysis Year Cumulative No Project

Analyst F&P

Agency or Company Caltrans

Date 10/4/2010

Project Description Elverta Specific Plan

| Genera | l Information | 1                            | i           | Flow Rate C | alculatio | n     |           |          |         |        |      |                |     |          |                |                         | Speed Calcul | lation | Results    |          |
|--------|---------------|------------------------------|-------------|-------------|-----------|-------|-----------|----------|---------|--------|------|----------------|-----|----------|----------------|-------------------------|--------------|--------|------------|----------|
|        | Freeway/      |                              | Analysis    | Volume      |           |       |           | HOV Lane |         | Truck/ |      |                |     |          |                | Flow Rate               | Measured     | S      | Density, D | Level of |
|        | Direction     | From/To                      | Time Period | (vph)       | PHF       | Lanes | HOV Lane? | Volume   | Terrain | Bus %  | RV % | E <sub>T</sub> | ER  | $f_{HV}$ | f <sub>P</sub> | v <sub>p</sub> (pcphpl) | FFS (mph)    | (mph)  | (pcplpm)   | Service  |
| 1      | SR-99 SB      | Sankey Road to Riego Road    | AM          | 4,670       | 0.97      | 2     | No        |          | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 2,491                   | 65.0         | -      | -          | F        |
| 2      | SR 99 SB      | Riego Road to Elverta Road   | AM          | 4,990       | 0.97      | 2     | No        |          | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 2,662                   | 65.0         | -      | -          | F        |
| 3      | SR 99 SB      | Elverta Road to Elkhorn Blvd | AM          | 4,740       | 0.97      | 2     | No        |          | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 2,529                   | 65.0         | -      | -          | F        |
| 4      | SR 99 SB      | Elkhorn Blvd to I-5          | AM          | 5,650       | 0.97      | 3     | Yes       | 904      | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 2,532                   | 65.0         | -      | -          | F        |
| 5      | SR 99 NB      | I-5 to Elkhorn Blvd          | AM          | 3,200       | 0.97      | 3     | Yes       | 864      | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 1,343                   | 65.0         | 60.5   | 22.2       | С        |
| 6      | SR 99 NB      | Elkhorn Blvd to Elverta Road | AM          | 2,800       | 0.97      | 2     | No        |          | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 1,609                   | 65.0         | 60.5   | 26.6       | D        |
| 7      | SR 99 NB      | Elverta Road to Riego Road   | AM          | 2,370       | 0.97      | 2     | No        |          | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 1,362                   | 65.0         | 60.5   | 22.5       | С        |
| 8      | SR 99 NB      | Riego Road to Sankey Road    | AM          | 1,730       | 0.97      | 2     | No        |          | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 994                     | 65.0         | 60.5   | 16.4       | В        |
| 1      | SR-99 SB      | Sankey Road to Riego Road    | PM          | 2,440       | 0.97      | 2     | No        |          | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 1,289                   | 65.0         | 60.5   | 21.3       | С        |
| 2      | SR 99 SB      | Riego Road to Elverta Road   | PM          | 3,190       | 0.97      | 2     | No        |          | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 1,685                   | 65.0         | 60.4   | 27.9       | D        |
| 3      | SR 99 SB      | Elverta Road to Elkhorn Blvd | PM          | 3,320       | 0.97      | 2     | No        |          | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 1,754                   | 65.0         | 60.3   | 29.1       | D        |
| 4      | SR 99 SB      | Elkhorn Blvd to I-5          | PM          | 3,940       | 0.97      | 3     | Yes       | 630      | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 1,749                   | 65.0         | 60.3   | 29.0       | D        |
| 5      | SR 99 NB      | I-5 to Elkhorn Blvd          | PM          | 5,940       | 0.97      | 3     | Yes       | 1604     | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 2,380                   | 65.0         | -      | -          | F        |
| 6      | SR 99 NB      | Elkhorn Blvd to Elverta Road | PM          | 4,880       | 0.97      | 2     | No        |          | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 2,679                   | 65.0         | -      | -          | F        |
| 7      | SR 99 NB      | Elverta Road to Riego Road   | PM          | 5,130       | 0.97      | 2     | No        |          | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 2,816                   | 65.0         | -      | -          | F        |
| 8      | SR 99 NB      | Riego Road to Sankey Road    | PM          | 4,390       | 0.97      | 2     | No        |          | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 2,410                   | 65.0         | -      | -          | F        |
|        |               |                              |             |             |           |       |           |          |         |        |      |                |     |          |                |                         |              |        |            |          |

Page 1 of 13
Fehr & Peers 11/23/2010

HCM 2000 Merge Ramp Junctions Capacity Analysis 
 Jurisdiction
 Sacramento Co.
 Agency or Company
 Caltrans

 Analysis Year
 Cumulative No Project
 Date
 40455.00

 Analyst
 F&P
 Project Description
 Elverta Specific Plan

| Gener | al Information | 1                    |             | Freeway | Data            |       | Freeway \ | Volume Adju | ıstment |      |       |       |          |       |                       | Effective             |
|-------|----------------|----------------------|-------------|---------|-----------------|-------|-----------|-------------|---------|------|-------|-------|----------|-------|-----------------------|-----------------------|
|       | Freeway/       |                      | Analysis    |         | S <sub>FF</sub> | V     |           |             | Truck/  |      |       |       |          |       | Flow Rate             | Flow Rate             |
|       | Direction      | On-ramp              | Time Period | Lanes   | (mph)           | (vph) | PHF       | Terrain     | Bus %   | RV % | $E_T$ | $E_R$ | $f_{HV}$ | $f_P$ | v <sub>p</sub> (pcph) | v <sub>p</sub> (pcph) |
| M-1   | SR-99 SB       | Elverta Road Loop On | AM          | 2       | 65.0            | 4,340 | 0.97      | Level       | 7%      | 0%   | 1.5   | 1.20  | 0.966    | 1.00  | 4,631                 | 4,631                 |
| M-2   | SR 99 SB       | Elverta Road Slip On | AM          | 2       | 65.0            | 4,710 | 0.97      | Level       | 7%      | 0%   | 1.5   | 1.20  | 0.966    | 1.00  | 5,026                 | 5,026                 |
| M-3   | SR 99 NB       | Elverta Road Loop On | AM          | 2       | 65.0            | 2,140 | 0.97      | Level       | 23.0%   | 0.0% | 1.5   | 1.20  | 0.90     | 1.00  | 2,460                 | 2,460                 |
| M-4   | SR 99 NB       | Elverta Road Slip On | AM          | 2       | 65.0            | 2,290 | 0.97      | Level       | 23.0%   | 0.0% | 1.5   | 1.20  | 0.90     | 1.00  | 2,632                 | 2,632                 |
| M-1   | SR-99 SB       | Elverta Road Loop On | PM          | 2       | 65.0            | 2,900 | 0.97      | Level       | 5.0%    | 0.0% | 1.5   | 1.20  | 0.98     | 1.00  | 3,064                 | 3,064                 |
| M-2   | SR 99 SB       | Elverta Road Slip On | PM          | 2       | 65.0            | 3,170 | 0.97      | Level       | 5.0%    | 0.0% | 1.5   | 1.20  | 0.98     | 1.00  | 3,350                 | 3,350                 |
| M-3   | SR 99 NB       | Elverta Road Loop On | PM          | 2       | 65.0            | 4,410 | 0.97      | Level       | 13.0%   | 0.0% | 1.5   | 1.20  | 0.94     | 1.00  | 4,842                 | 4,842                 |
| M-4   | SR 99 NB       | Elverta Road Slip On | PM          | 2       | 65.0            | 5,080 | 0.97      | Level       | 13.0%   | 0.0% | 1.5   | 1.20  | 0.94     | 1.00  | 5,578                 | 5,578                 |

HCM 2000 Merge Ramp Junctions Capacity Analysis

General Information On-Ramp Data On-Ramp Volume Adjustment Freeway/  $S_{\text{FR}}$  $V_R$ Accel Lane (ft) Truck/ Flow Rate  $\mathsf{E}_\mathsf{R}$  $\mathsf{L}_{\mathsf{Aeff}}$ v<sub>p</sub> (pcph) Direction On-ramp Type Lanes (mph) (vph)  $L_{A1}$  $L_{A2}$ PHF Terrain Bus % RV % Eτ  $f_{HV}$ 250 SR-99 SB Elverta Road Loop On Right 25.0 370 250 0.97 Level 7% 0% 1.5 1.2 0.966 1.00 395 M-2 SR 99 SB Elverta Road Slip On Right 1 45.0 30 250 250 0.97 Level 7% 0% 1.5 1.2 0.966 1.00 32 SR 99 NB Elverta Road Loop On Right 25.0 250 250 1.5 1.2 172 1 150 0.97 Level 23.0% 0.0% 0.90 1.00 SR 99 NB Elverta Road Slip On Right 1 45.0 80 250 250 0.97 Level 23.0% 0.0% 1.5 1.2 0.90 1.00 92 SR-99 SB Elverta Road Loop On 250 250 1.5 1.2 Right 1 25.0 270 0.97 Level 5.0% 0.0% 0.98 1.00 285 SR 99 SB Elverta Road Slip On Right 45.0 150 250 250 5.0% 0.0% 1.5 1.2 0.98 1.00 159 0.97 Level SR 99 NB Elverta Road Loop On M-3 Right 1 25.0 670 250 250 0.97 Level 13.0% 0.0% 1.5 1.2 0.94 1.00 736 13.0% M-4 SR 99 NB Elverta Road Slip On Right 45.0 50 250 250 0.97 Level 0.0% 1.5 1.2 0.94 1.00 55

## HCM 2000 Merge Ramp Junctions Capacity Analysis

General Information

v 12 Estimation

|     | Freeway/  |                      | L    | ΞQ   | $P_{FM}$ | Equatio | ns |          | V <sub>12</sub> |
|-----|-----------|----------------------|------|------|----------|---------|----|----------|-----------------|
|     | Direction | On-ramp              | 25-2 | 25-3 | 1        | 2       | 3  | $P_{FM}$ | (pcph)          |
| M-1 | SR-99 SB  | Elverta Road Loop On |      |      | 0.585    |         |    | 1.000    | 4,631           |
| M-2 | SR 99 SB  | Elverta Road Slip On |      |      | 0.585    |         |    | 1.000    | 5,026           |
| M-3 | SR 99 NB  | Elverta Road Loop On |      |      | 0.585    |         |    | 1.000    | 2,460           |
| M-4 | SR 99 NB  | Elverta Road Slip On |      |      | 0.585    |         |    | 1.000    | 2,632           |
| M-1 | SR-99 SB  | Elverta Road Loop On |      |      | 0.585    |         |    | 1.000    | 3,064           |
| M-2 | SR 99 SB  | Elverta Road Slip On |      |      | 0.585    |         |    | 1.000    | 3,350           |
| M-3 | SR 99 NB  | Elverta Road Loop On |      |      | 0.585    |         |    | 1.000    | 4,842           |
| M-4 | SR 99 NB  | Elverta Road Slip On |      |      | 0.585    |         |    | 1.000    | 5,578           |

HCM 2000 Merge Ramp Junctions Capacity Analysis

Capacity Checks General Information

|     | Freeway/                      | V <sub>Fi</sub> | Max v <sub>Fi</sub> |        | v <sub>FO</sub> | Max v <sub>FO</sub> |        | V <sub>3</sub> , V <sub>av34</sub> | $v_3, v_{av34}$ | v <sub>3</sub> , v <sub>av34</sub> | V <sub>12a</sub> | V <sub>R12a</sub> | Max v <sub>R12a</sub> |        |
|-----|-------------------------------|-----------------|---------------------|--------|-----------------|---------------------|--------|------------------------------------|-----------------|------------------------------------|------------------|-------------------|-----------------------|--------|
|     | Direction On-ramp             | (pcph)          | (pcph)              | LOS F? | (pcph)          | (pcph)              | LOS F? | (pcphpl)                           | > 2,700?        | >1.5*v <sub>12</sub> /2?           | (pcph)           | (pcph)            | (pcph)                | LOS F? |
| M-1 | SR-99 SB Elverta Road Loop On | 4,631           | 4,700               | No     | 5,026           | 4,700               | Yes    | 0                                  | No              | No                                 | 4,631            | 5,026             | 4,600                 | Yes    |
| M-2 | SR 99 SB Elverta Road Slip On | 5,026           | 4,700               | Yes    | 5,058           | 4,700               | Yes    | 0                                  | No              | No                                 | 5,026            | 5,058             | 4,600                 | Yes    |
| M-3 | SR 99 NB Elverta Road Loop On | 2,460           | 4,800               | No     | 2,632           | 4,800               | No     | 0                                  | No              | No                                 | 2,460            | 2,632             | 4,600                 | No     |
| M-4 | SR 99 NB Elverta Road Slip On | 2,632           | 4,800               | No     | 2,724           | 4,800               | No     | 0                                  | No              | No                                 | 2,632            | 2,724             | 4,600                 | No     |
| M-1 | SR-99 SB Elverta Road Loop On | 3,064           | 4,800               | No     | 3,350           | 4,800               | No     | 0                                  | No              | No                                 | 3,064            | 3,350             | 4,600                 | No     |
| M-2 | SR 99 SB Elverta Road Slip On | 3,350           | 4,800               | No     | 3,508           | 4,800               | No     | 0                                  | No              | No                                 | 3,350            | 3,508             | 4,600                 | No     |
| M-3 | SR 99 NB Elverta Road Loop On | 4,842           | 4,800               | Yes    | 5,578           | 4,800               | Yes    | 0                                  | No              | No                                 | 4,842            | 5,578             | 4,600                 | Yes    |
| M-4 | SR 99 NB Elverta Road Slip On | 5,578           | 4,800               | Yes    | 5,632           | 4,800               | Yes    | 0                                  | No              | No                                 | 5,578            | 5,632             | 4,600                 | Yes    |

HCM 2000 Merge Ramp Junctions Capacity Analysis

| Gener | ral Informatio | n                    |                |                    |        | Results    |          | Speed Est | timation             |             |           |
|-------|----------------|----------------------|----------------|--------------------|--------|------------|----------|-----------|----------------------|-------------|-----------|
|       | Freeway/       |                      | v <sub>R</sub> | Max v <sub>R</sub> |        | Density, D | Level of | Int. Var. | Inf. Area            | Out Lns.    | All vehs. |
|       | Direction      | On-ramp              | (pcph)         | (pcph)             | LOS F? | (pcplpm)   | Service  | $M_S$     | S <sub>R</sub> (mph) | $S_O$ (mph) | S (mph)   |
| M-1   | SR-99 SB       | Elverta Road Loop On | 395            | 1,900              | No     | -          | F        | -         | -                    | -           | -         |
| M-2   | SR 99 SB       | Elverta Road Slip On | 32             | 2,100              | No     | -          | F        | -         | -                    | -           | -         |
| M-3   | SR 99 NB       | Elverta Road Loop On | 172            | 1,900              | No     | 24.4       | С        | 0.363     | 56.7                 | 0.0         | 56.7      |
| M-4   | SR 99 NB       | Elverta Road Slip On | 92             | 2,100              | No     | 25.1       | С        | 0.358     | 56.8                 | 0.0         | 56.8      |
| M-1   | SR-99 SB       | Elverta Road Loop On | 285            | 1,900              | No     | 29.9       | D        | 0.420     | 55.3                 | 0.0         | 55.3      |
| M-2   | SR 99 SB       | Elverta Road Slip On | 159            | 2,100              | No     | 31.2       | D        | 0.429     | 55.1                 | 0.0         | 55.1      |
| M-3   | SR 99 NB       | Elverta Road Loop On | 736            | 1,900              | No     | -          | F        | 1.340     | 34.2                 | 0.0         | 34.2      |
| M-4   | SR 99 NB       | Elverta Road Slip On | 55             | 2,100              | No     | =          | F        | 1.388     | 33.1                 | 0.0         | 33.1      |

HCM 2000 Diverge Ramp Junctions Capacity Analysis Jurisdiction Sacramento Co.

Analysis Year Cumulative No Project
Analyst F&P

Agency or Company Caltrans

Date 10/4/2010

Project Description Elverta Specific Plan

| Gene | ral Informatio | n                     |             | Freeway | Data            |       | Freeway | Volume Adju | ustment |      |                |       |          |       |                       | Effective             |
|------|----------------|-----------------------|-------------|---------|-----------------|-------|---------|-------------|---------|------|----------------|-------|----------|-------|-----------------------|-----------------------|
|      | Freeway/       |                       | Analysis    |         | S <sub>FF</sub> | V     |         |             | Truck/  |      |                |       |          |       | Flow Rate             | Flow Rate             |
|      | Direction      | Off-ramp              | Time Period | Lanes   | (mph)           | (vph) | PHF     | Terrain     | Bus %   | RV % | E <sub>T</sub> | $E_R$ | $f_{HV}$ | $f_P$ | v <sub>p</sub> (pcph) | v <sub>p</sub> (pcph) |
| D-1  | SR 99 SB       | Elverta Road Off Ramp | AM          | 2       | 65.0            | 4,990 | 0.97    | Level       | 7%      | 0%   | 1.5            | 1.20  | 0.966    | 1.00  | 5,324                 | 5,324                 |
| D-2  | SR 99 NB       | Elverta Road Off Ramp | AM          | 2       | 65.0            | 2,800 | 0.97    | Level       | 23.0%   | 0.0% | 1.5            | 1.200 | 0.897    | 1.00  | 3,219                 | 3,219                 |
| D-3  | SR 99 SB       | Elverta Road Off Ramp | PM          | 2       | 65.0            | 3,190 | 0.97    | Level       | 5.0%    | 0.0% | 1.5            | 1.200 | 0.976    | 1.00  | 3,371                 | 3,371                 |
| D-4  | SR 99 NB       | Elverta Road Off Ramp | PM          | 2       | 65.0            | 4,880 | 0.97    | Level       | 13.0%   | 0.0% | 1.5            | 1.200 | 0.939    | 1.00  | 5,358                 | 5,358                 |

HCM 2000 Diverge Ramp Junctions Capacity Analysis

General Information Off-Ramp Data Off-Ramp Volume Adjustment Freeway/ Decel Lane (ft) Flow Bate

|     | i ieeway/ |                       |       |       | $\sigma_{FR}$ | ٧R    | Dec      | ei Laile | (11)       |      |         | TTUCK/ |      |                |       |          |       | 1 low male            |
|-----|-----------|-----------------------|-------|-------|---------------|-------|----------|----------|------------|------|---------|--------|------|----------------|-------|----------|-------|-----------------------|
|     | Direction | Off-ramp              | Туре  | Lanes | (mph)         | (vph) | $L_{D1}$ | $L_{D2}$ | $L_{Deff}$ | PHF  | Terrain | Bus %  | RV % | E <sub>T</sub> | $E_R$ | $f_{HV}$ | $f_P$ | v <sub>p</sub> (pcph) |
| D-1 | SR 99 SB  | Elverta Road Off Ramp | Right | 1     | 45.0          | 650   | 150      |          | 150        | 0.97 | Level   | 7%     | 0%   | 1.5            | 1.2   | 0.966    | 1.00  | 694                   |
| D-2 | SR 99 NB  | Elverta Road Off Ramp | Right | 1     | 45.0          | 660   | 150      |          | 150        | 0.97 | Level   | 23.0%  | 0.0% | 1.5            | 1.2   | 0.897    | 1.00  | 759                   |
| D-3 | SR 99 SB  | Elverta Road Off Ramp | Right | 1     | 45.0          | 290   | 150      |          | 150        | 0.97 | Level   | 5.0%   | 0.0% | 1.5            | 1.2   | 0.976    | 1.00  | 306                   |
| D-4 | SR 99 NB  | Elverta Road Off Ramp | Right | 1     | 45.0          | 470   | 150      |          | 150        | 0.97 | Level   | 13.0%  | 0.0% | 1.5            | 1.2   | 0.939    | 1.00  | 516                   |

HCM 2000 Diverge Ramp Junctions Capacity Analysis

General Information

v 12 Estimation

|     | Freeway/  |                       | L     | EQ    | $P_{FD}$ | Equation | ons | •        | V <sub>12</sub> |
|-----|-----------|-----------------------|-------|-------|----------|----------|-----|----------|-----------------|
|     | Direction | Off-ramp              | 25-13 | 25-14 | 5        | 6        | 7   | $P_{FD}$ | (pcph)          |
| D-1 | SR 99 SB  | Elverta Road Off Ramp |       |       | 0.595    |          |     | 1.000    | 5,324           |
| D-2 | SR 99 NB  | Elverta Road Off Ramp |       |       | 0.645    |          |     | 1.000    | 3,219           |
| D-3 | SR 99 SB  | Elverta Road Off Ramp |       |       | 0.662    |          |     | 1.000    | 3,371           |
| D-4 | SR 99 NB  | Elverta Road Off Ramp |       |       | 0.602    |          |     | 1.000    | 5,358           |

HCM 2000 Diverge Ramp Junctions Capacity Analysis

General Information

Capacity Checks

|     | Freeway/  |                       | $v_{Fi}$ | Max v <sub>Fi</sub> |        | V <sub>3</sub> , V <sub>av34</sub> | V <sub>3</sub> , V <sub>av34</sub> | V <sub>3</sub> , V <sub>av34</sub> | V <sub>12a</sub> | Max v <sub>12</sub> |        | v <sub>FO</sub> | Max v <sub>FO</sub> |        |
|-----|-----------|-----------------------|----------|---------------------|--------|------------------------------------|------------------------------------|------------------------------------|------------------|---------------------|--------|-----------------|---------------------|--------|
|     | Direction | Off-ramp              | (pcph)   | (pcph)              | LOS F? | (pcphpl)                           | > 2,700?                           | >1.5*v <sub>12</sub> /2?           | (pcph)           | (pcph)              | LOS F? | (pcph)          | (pcph)              | LOS F? |
| D-1 | SR 99 SB  | Elverta Road Off Ramp | 5,324    | 4,700               | Yes    | 0                                  | No                                 | No                                 | 5,324            | 4,400               | Yes    | 4,631           | 4,700               | No     |
| D-2 | SR 99 NB  | Elverta Road Off Ramp | 3,219    | 4,800               | No     | 0                                  | No                                 | No                                 | 3,219            | 4,400               | No     | 2,460           | 4,800               | No     |
| D-3 | SR 99 SB  | Elverta Road Off Ramp | 3,371    | 4,800               | No     | 0                                  | No                                 | No                                 | 3,371            | 4,400               | No     | 3,064           | 4,800               | No     |
| D-4 | SR 99 NB  | Elverta Road Off Ramp | 5.358    | 4.800               | Yes    | 0                                  | No                                 | No                                 | 5.358            | 4.400               | Yes    | 4.842           | 4.800               | Yes    |

HCM 2000 Diverge Ramp Junctions Capacity Analysis

| Gener | al Informatio | n                     |        |                    |        | Results    |          | Speed Es  | timation             |                      |           |
|-------|---------------|-----------------------|--------|--------------------|--------|------------|----------|-----------|----------------------|----------------------|-----------|
|       | Freeway/      |                       | $v_R$  | Max v <sub>R</sub> |        | Density, D | Level of | Int. Var. | Inf. Area            | Out Lns.             | All vehs. |
|       | Direction     | Off-ramp              | (pcph) | (pcph)             | LOS F? | (pcplpm)   | Service  | Ds        | S <sub>R</sub> (mph) | S <sub>O</sub> (mph) | S (mph)   |
| D-1   | SR 99 SB      | Elverta Road Off Ramp | 694    | 2,100              | No     | -          | F        | -         | -                    | -                    | -         |
| D-2   | SR 99 NB      | Elverta Road Off Ramp | 759    | 2,100              | No     | 30.6       | D        | 0.366     | 56.6                 | 0.0                  | 56.6      |
| D-3   | SR 99 SB      | Elverta Road Off Ramp | 306    | 2,100              | No     | 31.9       | D        | 0.326     | 57.5                 | 0.0                  | 57.5      |
| D-4   | SR 99 NB      | Elverta Road Off Ramp | 516    | 2,100              | No     | -          | F        | 0.344     | 57.1                 | 0.0                  | 57.1      |

HCM 2000 Basic Freeway Segments Capacity Analysis Jurisdiction Sacramento County
Analysis Year Cumulative Plus Pref. Alt.
Analyst F&P Agency or Company Caltrans
Date 10/4/2010
Project Description Elverta Specific Plan

| Genera | l Information | 1                            |             | Flow Rate Co | alculatio | n     |           |          |         |        |      |                |     |          |                |                         | Speed Calcu | lation | Results    |          |
|--------|---------------|------------------------------|-------------|--------------|-----------|-------|-----------|----------|---------|--------|------|----------------|-----|----------|----------------|-------------------------|-------------|--------|------------|----------|
|        | Freeway/      |                              | Analysis    | Volume       |           |       |           | HOV Lane |         | Truck/ |      |                |     |          |                | Flow Rate               | Measured    | S      | Density, D | Level of |
|        | Direction     | From/To                      | Time Period | (vph)        | PHF       | Lanes | HOV Lane? | Volume   | Terrain | Bus %  | RV % | E <sub>T</sub> | ER  | $f_{HV}$ | f <sub>P</sub> | v <sub>p</sub> (pcphpl) | FFS (mph)   | (mph)  | (pcplpm)   | Service  |
| 1      |               | Sankey Road to Riego Road    | AM          | 4,630        | 0.97      | 2     | No        |          | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 2,470                   | 65.0        | -      | -          | F        |
| 2      | SR 99 SB      | Riego Road to Elverta Road   | AM          | 5,010        | 0.97      | 2     | No        |          | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 2,673                   | 65.0        | -      | -          | F        |
| 3      | SR 99 SB      | Elverta Road to Elkhorn Blvd | AM          | 4,550        | 0.97      | 2     | No        |          | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 2,427                   | 65.0        | -      | -          | F        |
| 4      | SR 99 SB      | Elkhorn Blvd to I-5          | AM          | 5,460        | 0.97      | 3     | Yes       | 874      | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 2,447                   | 65.0        | -      | -          | F        |
| 5      | SR 99 NB      | I-5 to Elkhorn Blvd          | AM          | 2,930        | 0.97      | 3     | Yes       | 791      | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 1,229                   | 65.0        | 60.5   | 20.3       | С        |
| 6      |               | Elkhorn Blvd to Elverta Road | AM          | 2,530        | 0.97      | 2     | No        |          | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 1,454                   | 65.0        | 60.5   | 24.0       | С        |
| 7      | SR 99 NB      | Elverta Road to Riego Road   | AM          | 2,320        | 0.97      | 2     | No        |          | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 1,333                   | 65.0        | 60.5   | 22.0       | С        |
| 8      | SR 99 NB      | Riego Road to Sankey Road    | AM          | 1,720        | 0.97      | 2     | No        |          | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 989                     | 65.0        | 60.5   | 16.3       | В        |
| 1      | SR-99 SB      | Sankey Road to Riego Road    | PM          | 2,410        | 0.97      | 2     | No        |          | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 1,273                   | 65.0        | 60.5   | 21.0       | С        |
| 2      | SR 99 SB      | Riego Road to Elverta Road   | PM          | 3,170        | 0.97      | 2     | No        |          | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 1,675                   | 65.0        | 60.5   | 27.7       | D        |
| 3      | SR 99 SB      | Elverta Road to Elkhorn Blvd | PM          | 3,360        | 0.97      | 2     | No        |          | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 1,775                   | 65.0        | 60.2   | 29.5       | D        |
| 4      | SR 99 SB      | Elkhorn Blvd to I-5          | PM          | 3,970        | 0.97      | 3     | Yes       | 635      | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 1,762                   | 65.0        | 60.3   | 29.2       | D        |
| 5      | SR 99 NB      | I-5 to Elkhorn Blvd          | PM          | 6,100        | 0.97      | 3     | Yes       | 1647     | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 2,445                   | 65.0        | -      | -          | F        |
| 6      | SR 99 NB      | Elkhorn Blvd to Elverta Road | PM          | 4,980        | 0.97      | 2     | No        |          | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 2,734                   | 65.0        | -      | -          | F        |
| 7      | SR 99 NB      | Elverta Road to Riego Road   | PM          | 5,160        | 0.97      | 2     | No        |          | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 2,833                   | 65.0        | -      | -          | F        |
| 8      | SR 99 NB      | Riego Road to Sankey Road    | PM          | 4,320        | 0.97      | 2     | No        |          | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 2,372                   | 65.0        | -      | -          | F        |
|        |               |                              |             |              |           |       |           |          |         |        |      |                |     |          |                |                         |             |        |            |          |

Page 1 of 13 11/23/2010 Fehr & Peers

HCM 2000 Merge Ramp Junctions Capacity Analysis Jurisdiction Sacramento County
Analysis Year Cumulative Plus Pref. Alt.
Analyst F&P
Agency or Company Care 40
Project Description Elements

Agency or Company Caltrans
Date 40455.00
Project Description Elverta Specific Plan

| Gener | al Information | n                    |             | Freeway | Data            |       | Freeway \ | √olume Adju | ıstment |      |       |       |          |       |                       | Effective             |
|-------|----------------|----------------------|-------------|---------|-----------------|-------|-----------|-------------|---------|------|-------|-------|----------|-------|-----------------------|-----------------------|
|       | Freeway/       |                      | Analysis    |         | S <sub>FF</sub> | V     |           |             | Truck/  |      |       |       |          |       | Flow Rate             | Flow Rate             |
|       | Direction      | On-ramp              | Time Period | Lanes   | (mph)           | (vph) | PHF       | Terrain     | Bus %   | RV % | $E_T$ | $E_R$ | $f_{HV}$ | $f_P$ | v <sub>p</sub> (pcph) | v <sub>p</sub> (pcph) |
| M-1   | SR-99 SB       | Elverta Road Loop On | AM          | 2       | 65.0            | 4,150 | 0.97      | Level       | 7%      | 0%   | 1.5   | 1.20  | 0.966    | 1.00  | 4,428                 | 4,428                 |
| M-2   | SR 99 SB       | Elverta Road Slip On | AM          | 2       | 65.0            | 4,520 | 0.97      | Level       | 7%      | 0%   | 1.5   | 1.20  | 0.966    | 1.00  | 4,823                 | 4,823                 |
| M-3   | SR 99 NB       | Elverta Road Loop On | AM          | 2       | 65.0            | 1,930 | 0.97      | Level       | 23.0%   | 0.0% | 1.5   | 1.20  | 0.90     | 1.00  | 2,219                 | 2,219                 |
| M-4   | SR 99 NB       | Elverta Road Slip On | AM          | 2       | 65.0            | 2,080 | 0.97      | Level       | 23.0%   | 0.0% | 1.5   | 1.20  | 0.90     | 1.00  | 2,391                 | 2,391                 |
| M-1   | SR-99 SB       | Elverta Road Loop On | PM          | 2       | 65.0            | 2,890 | 0.97      | Level       | 5.0%    | 0.0% | 1.5   | 1.20  | 0.98     | 1.00  | 3,054                 | 3,054                 |
| M-2   | SR 99 SB       | Elverta Road Slip On | PM          | 2       | 65.0            | 3,230 | 0.97      | Level       | 5.0%    | 0.0% | 1.5   | 1.20  | 0.98     | 1.00  | 3,413                 | 3,413                 |
| M-3   | SR 99 NB       | Elverta Road Loop On | PM          | 2       | 65.0            | 4,440 | 0.97      | Level       | 13.0%   | 0.0% | 1.5   | 1.20  | 0.94     | 1.00  | 4,875                 | 4,875                 |
| M-4   | SR 99 NB       | Elverta Road Slip On | PM          | 2       | 65.0            | 5,110 | 0.97      | Level       | 13.0%   | 0.0% | 1.5   | 1.20  | 0.94     | 1.00  | 5,610                 | 5,610                 |

HCM 2000 Merge Ramp Junctions Capacity Analysis

General Information On-Ramp Data On-Ramp Volume Adjustment Freeway/  $S_{\text{FR}}$  $V_R$ Accel Lane (ft) Truck/ Flow Rate  $\mathsf{L}_{\mathsf{Aeff}}$ v<sub>p</sub> (pcph)  $E_R$ Direction On-ramp Type Lanes (mph) (vph)  $L_{A1}$  $L_{A2}$ PHF Terrain Bus % RV % Eτ  $f_{HV}$ 250 SR-99 SB Elverta Road Loop On Right 25.0 370 250 0.97 Level 7% 0% 1.5 1.2 0.966 1.00 395 M-2 SR 99 SB Elverta Road Slip On Right 1 45.0 30 250 250 0.97 Level 7% 0% 1.5 1.2 0.966 1.00 32 SR 99 NB Elverta Road Loop On Right 25.0 150 250 250 1.5 1.2 172 1 0.97 Level 23.0% 0.0% 0.90 1.00 SR 99 NB Elverta Road Slip On 1.5 1.2 Right 1 45.0 240 250 250 0.97 Level 23.0% 0.0% 0.90 1.00 276 250 1.5 1.2 SR-99 SB Elverta Road Loop On Right 1 25.0 340 250 0.97 Level 5.0% 0.0% 0.98 1.00 359 SR 99 SB Elverta Road Slip On Right 45.0 130 250 250 0.97 5.0% 0.0% 1.5 1.2 0.98 1.00 137 Level SR 99 NB Elverta Road Loop On M-3 Right 1 25.0 670 250 250 0.97 Level 13.0% 0.0% 1.5 1.2 0.94 1.00 736 13.0% SR 99 NB Elverta Road Slip On Right 45.0 50 250 250 0.97 Level 0.0% 1.5 1.2 0.94 1.00 55

HCM 2000 Merge Ramp Junctions Capacity Analysis

General Information

v 12 Estimation

|     | Freeway/  |                      | L    | EQ   | $P_{FM}$ | Equation | ns |          | V <sub>12</sub> |
|-----|-----------|----------------------|------|------|----------|----------|----|----------|-----------------|
|     | Direction | On-ramp              | 25-2 | 25-3 | 1        | 2        | 3  | $P_{FM}$ | (pcph)          |
| M-1 | SR-99 SB  | Elverta Road Loop On |      |      | 0.585    |          |    | 1.000    | 4,428           |
| M-2 | SR 99 SB  | Elverta Road Slip On |      |      | 0.585    |          |    | 1.000    | 4,823           |
| M-3 | SR 99 NB  | Elverta Road Loop On |      |      | 0.585    |          |    | 1.000    | 2,219           |
| M-4 | SR 99 NB  | Elverta Road Slip On |      |      | 0.585    |          |    | 1.000    | 2,391           |
| M-1 | SR-99 SB  | Elverta Road Loop On |      |      | 0.585    |          |    | 1.000    | 3,054           |
| M-2 | SR 99 SB  | Elverta Road Slip On |      |      | 0.585    |          |    | 1.000    | 3,413           |
| M-3 | SR 99 NB  | Elverta Road Loop On |      |      | 0.585    |          |    | 1.000    | 4,875           |
| M-4 | SR 99 NB  | Elverta Road Slip On |      |      | 0.585    |          |    | 1.000    | 5,610           |

HCM 2000 Merge Ramp Junctions Capacity Analysis

General Information Capacity Checks

| acrici | ai iiiioiiiialioi | "                    | Capacity ( | Oncons              |        |                 |                     |        |                                    |                                    |                                    |                  |                   |                       |        |
|--------|-------------------|----------------------|------------|---------------------|--------|-----------------|---------------------|--------|------------------------------------|------------------------------------|------------------------------------|------------------|-------------------|-----------------------|--------|
|        | Freeway/          |                      | $v_{Fi}$   | Max v <sub>Fi</sub> |        | V <sub>FO</sub> | Max v <sub>FO</sub> |        | V <sub>3</sub> , V <sub>av34</sub> | V <sub>3</sub> , V <sub>av34</sub> | V <sub>3</sub> , V <sub>av34</sub> | V <sub>12a</sub> | V <sub>R12a</sub> | Max v <sub>R12a</sub> |        |
|        | Direction         | On-ramp              | (pcph)     | (pcph)              | LOS F? | (pcph)          | (pcph)              | LOS F? | (pcphpl)                           | > 2,700?                           | >1.5*v <sub>12</sub> /2?           | (pcph)           | (pcph)            | (pcph)                | LOS F? |
| M-1    | SR-99 SB          | Elverta Road Loop On | 4,428      | 4,700               | No     | 4,823           | 4,700               | Yes    | 0                                  | No                                 | No                                 | 4,428            | 4,823             | 4,600                 | Yes    |
| M-2    | SR 99 SB          | Elverta Road Slip On | 4,823      | 4,700               | Yes    | 4,855           | 4,700               | Yes    | 0                                  | No                                 | No                                 | 4,823            | 4,855             | 4,600                 | Yes    |
| M-3    | SR 99 NB          | Elverta Road Loop On | 2,219      | 4,800               | No     | 2,391           | 4,800               | No     | 0                                  | No                                 | No                                 | 2,219            | 2,391             | 4,600                 | No     |
| M-4    | SR 99 NB          | Elverta Road Slip On | 2,391      | 4,800               | No     | 2,667           | 4,800               | No     | 0                                  | No                                 | No                                 | 2,391            | 2,667             | 4,600                 | No     |
| M-1    | SR-99 SB          | Elverta Road Loop On | 3,054      | 4,800               | No     | 3,413           | 4,800               | No     | 0                                  | No                                 | No                                 | 3,054            | 3,413             | 4,600                 | No     |
| M-2    | SR 99 SB          | Elverta Road Slip On | 3,413      | 4,800               | No     | 3,551           | 4,800               | No     | 0                                  | No                                 | No                                 | 3,413            | 3,551             | 4,600                 | No     |
| M-3    | SR 99 NB          | Elverta Road Loop On | 4,875      | 4,800               | Yes    | 5,610           | 4,800               | Yes    | 0                                  | No                                 | No                                 | 4,875            | 5,610             | 4,600                 | Yes    |
| M-4    | SR 99 NB          | Flyerta Road Slip On | 5 610      | 4 800               | Yes    | 5 665           | 4 800               | Yes    | 0                                  | No                                 | No                                 | 5 610            | 5 665             | 4 600                 | Yes    |

HCM 2000 Merge Ramp Junctions Capacity Analysis

| Gener | al Informatio | n                    |        |                    |        | Results    |          | Speed Est | timation             |             |           |
|-------|---------------|----------------------|--------|--------------------|--------|------------|----------|-----------|----------------------|-------------|-----------|
|       | Freeway/      |                      | $v_R$  | Max v <sub>R</sub> |        | Density, D | Level of | Int. Var. | Inf. Area            | Out Lns.    | All vehs. |
|       | Direction     | On-ramp              | (pcph) | (pcph)             | LOS F? | (pcplpm)   | Service  | Ms        | S <sub>R</sub> (mph) | $S_O$ (mph) | S (mph)   |
| M-1   | SR-99 SB      | Elverta Road Loop On | 395    | 1,900              | No     | -          | F        | -         | -                    | -           | -         |
| M-2   | SR 99 SB      | Elverta Road Slip On | 32     | 2,100              | No     | -          | F        | -         | -                    | -           | -         |
| M-3   | SR 99 NB      | Elverta Road Loop On | 172    | 1,900              | No     | 22.5       | С        | 0.351     | 56.9                 | 0.0         | 56.9      |
| M-4   | SR 99 NB      | Elverta Road Slip On | 276    | 2,100              | No     | 24.6       | С        | 0.355     | 56.8                 | 0.0         | 56.8      |
| M-1   | SR-99 SB      | Elverta Road Loop On | 359    | 1,900              | No     | 30.4       | D        | 0.427     | 55.2                 | 0.0         | 55.2      |
| M-2   | SR 99 SB      | Elverta Road Slip On | 137    | 2,100              | No     | 31.5       | D        | 0.434     | 55.0                 | 0.0         | 55.0      |
| M-3   | SR 99 NB      | Elverta Road Loop On | 736    | 1,900              | No     | -          | F        | 1.374     | 33.4                 | 0.0         | 33.4      |
| M-4   | SR 99 NB      | Elverta Road Slip On | 55     | 2,100              | No     | -          | F        | 1.424     | 32.2                 | 0.0         | 32.2      |

HCM 2000 Diverge Ramp Junctions Capacity Analysis Jurisdiction Sacramento County
Analysis Year Cumulative Plus Pref. Alt.
Analyst F&P
Agency or Company Caltrans
Date 10/4/2010
Project Description Elverta Specific Plan

| Genei | ral Informatioi | 7                     |             | Freeway | Data            |       | Freeway | Volume Adju | ustment |      |       |       |          |       |                       | Effective             |
|-------|-----------------|-----------------------|-------------|---------|-----------------|-------|---------|-------------|---------|------|-------|-------|----------|-------|-----------------------|-----------------------|
|       | Freeway/        |                       | Analysis    |         | S <sub>FF</sub> | ٧     |         |             | Truck/  |      |       |       |          |       | Flow Rate             | Flow Rate             |
|       | Direction       | Off-ramp              | Time Period | Lanes   | (mph)           | (vph) | PHF     | Terrain     | Bus %   | RV % | $E_T$ | $E_R$ | $f_{HV}$ | $f_P$ | v <sub>p</sub> (pcph) | v <sub>p</sub> (pcph) |
| D-1   | SR 99 SB        | Elverta Road Off Ramp | AM          | 2       | 65.0            | 5,010 | 0.97    | Level       | 7%      | 0%   | 1.5   | 1.20  | 0.966    | 1.00  | 5,346                 | 5,346                 |
| D-2   | SR 99 NB        | Elverta Road Off Ramp | AM          | 2       | 65.0            | 2,530 | 0.97    | Level       | 23.0%   | 0.0% | 1.5   | 1.200 | 0.897    | 1.00  | 2,908                 | 2,908                 |
| D-3   | SR 99 SB        | Elverta Road Off Ramp | PM          | 2       | 65.0            | 3,170 | 0.97    | Level       | 5.0%    | 0.0% | 1.5   | 1.200 | 0.976    | 1.00  | 3,350                 | 3,350                 |
| D-4   | SR 99 NB        | Elverta Road Off Ramp | PM          | 2       | 65.0            | 4,980 | 0.97    | Level       | 13.0%   | 0.0% | 1.5   | 1.200 | 0.939    | 1.00  | 5,468                 | 5,468                 |

HCM 2000 Diverge Ramp Junctions Capacity Analysis

D-4 SR 99 NB Elverta Road Off Ramp

Right

1

45.0

540

150

General Information Off-Ramp Data Off-Ramp Volume Adjustment Freeway/  $S_{\text{FR}}$  $V_R$ Decel Lane (ft) Truck/ Flow Rate  $L_{D2}$  $E_T$   $E_R$ v<sub>p</sub> (pcph) Off-ramp  $L_{\mathsf{Deff}}$ PHF RV %  $f_{HV}$ Direction Type Lanes (mph) (vph)  $L_{D1}$ Terrain Bus % SR 99 SB Elverta Road Off Ramp 1.5 1.2 45.0 860 150 150 0.97 7% 0% 0.966 1.00 918 Right Level D-2 SR 99 NB Elverta Road Off Ramp Right 1 45.0 600 150 150 0.97 Level 23.0% 0.0% **1.5 1.2 0.897 1.00** 690 D-3 SR 99 SB Elverta Road Off Ramp Right 1 45.0 280 150 150 0.97 5.0% 0.0% **1.5 1.2 0.976 1.00** 296 Level

150

0.97

Level

13.0%

0.0%

**1.5 1.2 0.939 1.00** 

593

HCM 2000 Diverge Ramp Junctions Capacity Analysis

General Information

v 12 Estimation

|     | Freeway/  |                       | L     | EQ    | $P_{FD}$ | Equation | ons |          | V <sub>12</sub> |
|-----|-----------|-----------------------|-------|-------|----------|----------|-----|----------|-----------------|
|     | Direction | Off-ramp              | 25-13 | 25-14 | 5        | 6        | 7   | $P_{FD}$ | (pcph)          |
| D-1 | SR 99 SB  | Elverta Road Off Ramp |       |       | 0.584    |          |     | 1.000    | 5,346           |
| D-2 | SR 99 NB  | Elverta Road Off Ramp |       |       | 0.656    |          |     | 1.000    | 2,908           |
| D-3 | SR 99 SB  | Elverta Road Off Ramp |       |       | 0.663    |          |     | 1.000    | 3,350           |
| D-4 | SR 99 NB  | Elverta Road Off Ramp |       |       | 0.596    |          |     | 1.000    | 5,468           |

HCM 2000 Diverge Ramp Junctions Capacity Analysis

General Information

Capacity Checks

|     | Freeway/  |                       | $v_{Fi}$ | Max v <sub>Fi</sub> |        | V <sub>3</sub> , V <sub>av34</sub> | V <sub>3</sub> , V <sub>av34</sub> | V <sub>3</sub> , V <sub>av34</sub> | V <sub>12a</sub> | Max v <sub>12</sub> |        | v <sub>FO</sub> | Max v <sub>FO</sub> |        |
|-----|-----------|-----------------------|----------|---------------------|--------|------------------------------------|------------------------------------|------------------------------------|------------------|---------------------|--------|-----------------|---------------------|--------|
|     | Direction | Off-ramp              | (pcph)   | (pcph)              | LOS F? | (pcphpl)                           | > 2,700?                           | >1.5*v <sub>12</sub> /2?           | (pcph)           | (pcph)              | LOS F? | (pcph)          | (pcph)              | LOS F? |
| D-1 | SR 99 SB  | Elverta Road Off Ramp | 5,346    | 4,700               | Yes    | 0                                  | No                                 | No                                 | 5,346            | 4,400               | Yes    | 4,428           | 4,700               | No     |
| D-2 | SR 99 NB  | Elverta Road Off Ramp | 2,908    | 4,800               | No     | 0                                  | No                                 | No                                 | 2,908            | 4,400               | No     | 2,219           | 4,800               | No     |
| D-3 | SR 99 SB  | Elverta Road Off Ramp | 3,350    | 4,800               | No     | 0                                  | No                                 | No                                 | 3,350            | 4,400               | No     | 3,054           | 4,800               | No     |
| D-4 | SR 99 NB  | Elverta Road Off Ramp | 5,468    | 4,800               | Yes    | 0                                  | No                                 | No                                 | 5,468            | 4,400               | Yes    | 4,875           | 4,800               | Yes    |

HCM 2000 Diverge Ramp Junctions Capacity Analysis

| Gener | al Informatio | n                     | Results |                    |        |            | Speed Estimation |                |                      |             |           |
|-------|---------------|-----------------------|---------|--------------------|--------|------------|------------------|----------------|----------------------|-------------|-----------|
|       | Freeway/      |                       | $v_R$   | Max v <sub>R</sub> |        | Density, D | Level of         | Int. Var.      | Inf. Area            | Out Lns.    | All vehs. |
|       | Direction     | Off-ramp              | (pcph)  | (pcph)             | LOS F? | (pcplpm)   | Service          | D <sub>S</sub> | S <sub>R</sub> (mph) | $S_O$ (mph) | S (mph)   |
| D-1   | SR 99 SB      | Elverta Road Off Ramp | 918     | 2,100              | No     | -          | F                | -              | -                    | -           | -         |
| D-2   | SR 99 NB      | Elverta Road Off Ramp | 690     | 2,100              | No     | 27.9       | С                | 0.360          | 56.7                 | 0.0         | 56.7      |
| D-3   | SR 99 SB      | Elverta Road Off Ramp | 296     | 2,100              | No     | 31.7       | D                | 0.325          | 57.5                 | 0.0         | 57.5      |
| D-4   | SR 99 NB      | Elverta Road Off Ramp | 593     | 2,100              | No     | -          | F                | 0.351          | 56.9                 | 0.0         | 56.9      |

## **Appendix C-3: Peak Hour Signal Warrant Analysis**

Cumulative No Project Conditions

Cumulative Plus Preferred Alternative Conditions

Cumulative Plus Approved Specific Plan Conditions

Cumulative Plus Minimal Impact Conditions

Cumulative Plus No Federal Action Conditions



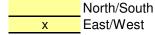
Elverta Road
E. Levee Road

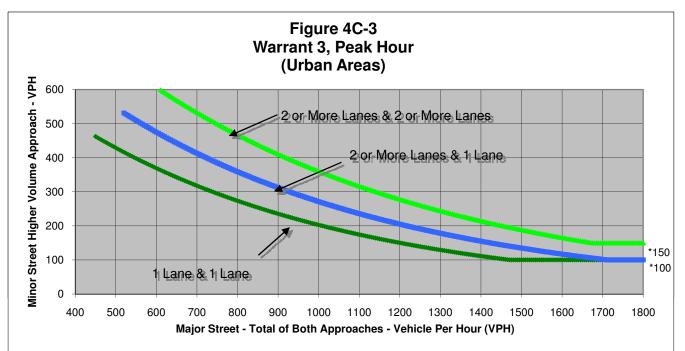
Sheet No

2

of

2


Project Scenario Elverta Specific Plan EIS Cumualtive No Project


Peak Hour PM

**Turn Movement Volumes** 

|         | NB  | SB | EB    | WB  |
|---------|-----|----|-------|-----|
| Left    | 10  | 10 | 50    | 120 |
| Through | 140 | 40 | 1,230 | 580 |
| Right   | 120 | 10 | 20    | 170 |
| Total   | 270 | 60 | 1,300 | 870 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street  | Warrant Met       |
|--------------------------|--------------|---------------|-------------------|
|                          | Elverta Road | E. Levee Road | <u>wanani wet</u> |
| Number of Approach Lanes | 2            | 1             | YES               |
| Traffic Volume (VPH) *   | 2,170        | 270           | <u>. 20</u>       |

<sup>\*</sup> Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

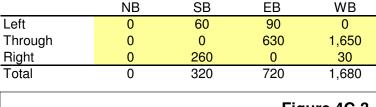


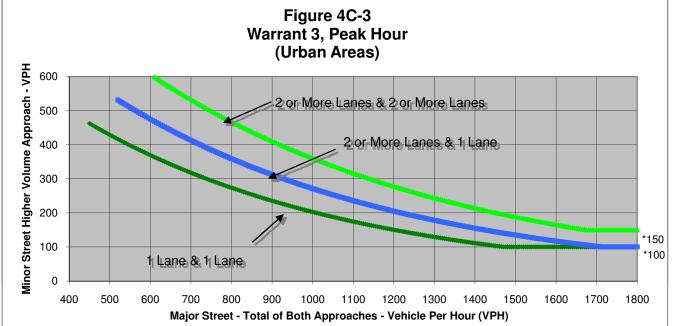
**Turn Movement Volumes** 

Elkhorn Boulevard
E. Levee Road

Sheet No 1

of


2


Project Scenario Elverta Specific Plan EIS
Cumualtive No Project

Peak Hour AM

Major Street Direction

|   | North/South |
|---|-------------|
| X | East/West   |





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street      | Minor Street  | Warrant Met        |
|--------------------------|-------------------|---------------|--------------------|
|                          | Elkhorn Boulevard | E. Levee Road | <u>wairant wet</u> |
| Number of Approach Lanes | 3                 | 1             | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,400             | 320           | . 20               |

<sup>\*</sup> Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.



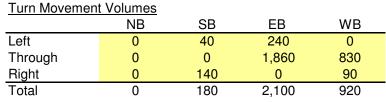
Elkhorn Boulevard
E. Levee Road

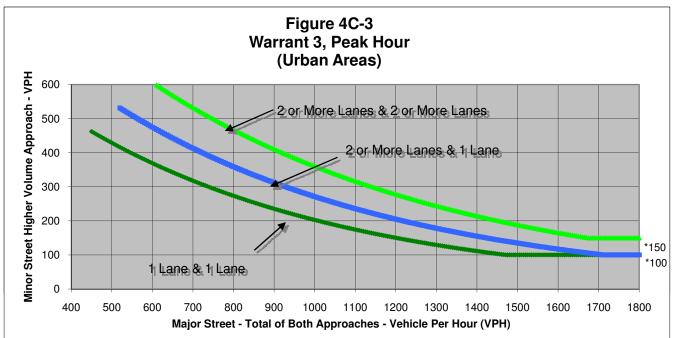
Sheet No

2

of

2


Project Scenario Elverta Specific Plan EIS Cumualtive No Project


Peak Hour PM

Major Street Direction

North/South

x East/West



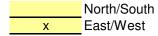


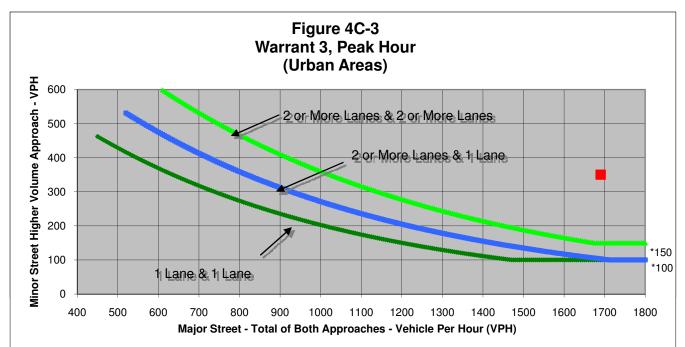
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street      | Minor Street  | Warrant Met        |
|--------------------------|-------------------|---------------|--------------------|
|                          | Elkhorn Boulevard | E. Levee Road | <u>wairant wet</u> |
| Number of Approach Lanes | 3                 | 1             | <u>YES</u>         |
| Traffic Volume (VPH) *   | 3,020             | 180           | <u> </u>           |




Elverta Road Sorento Road Sheet No 1 of 2


Project Elverta Specific Plan EIS
Scenario Cumualtive No Project
Peak Hour AM

**Turn Movement Volumes** 

|         | NB | SB  | EB  | WB  |
|---------|----|-----|-----|-----|
| Left    | 10 | 10  | 170 | 10  |
| Through | 10 | 10  | 590 | 900 |
| Right   | 10 | 330 | 10  | 10  |
| Total   | 30 | 350 | 770 | 920 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | Sorento Road | <u>warrant wet</u> |
| Number of Approach Lanes | 2            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 1,690        | 350          | <u> </u>           |



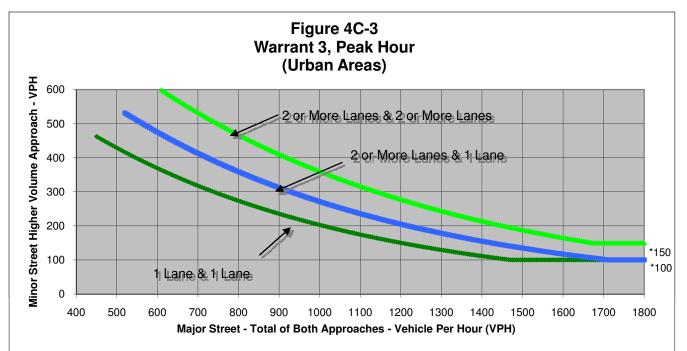
Elverta Road Sorento Road Sheet No

2

of

2

Project Scenario Elverta Specific Plan EIS Cumualtive No Project


Peak Hour PM

**Turn Movement Volumes** 

|         | NB | SB  | EB    | WB  |
|---------|----|-----|-------|-----|
| Left    | 10 | 10  | 310   | 10  |
| Through | 10 | 10  | 1,040 | 900 |
| Right   | 10 | 260 | 10    | 10  |
| Total   | 30 | 280 | 1,360 | 920 |

Major Street Direction

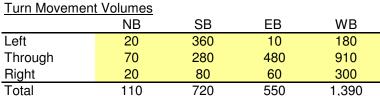


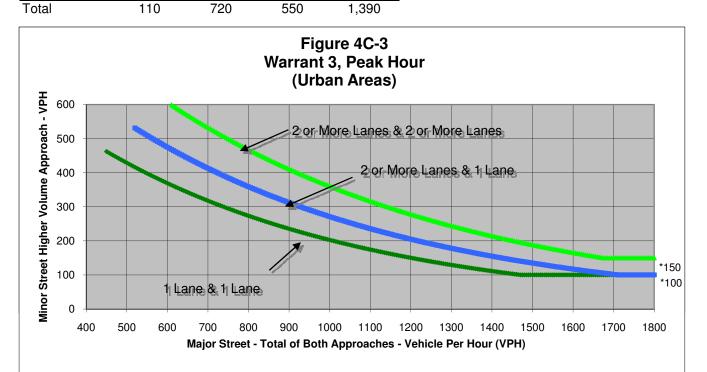


\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | Sorento Road | <u>wairant wet</u> |
| Number of Approach Lanes | 2            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,280        | 280          | . 20               |





Elverta Road Elwyn Road Sheet No 1 of 2

Project Elverta Specific Plan EIS
Scenario Cumualtive No Project
Peak Hour
AM

**Major Street Direction** 

North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

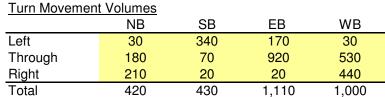
|                          | Major Street | Minor Street | Warrant Met                                   |
|--------------------------|--------------|--------------|-----------------------------------------------|
|                          | Elverta Road | Elwyn Road   | <u>wairant wet</u>                            |
| Number of Approach Lanes | 2            | 1            | <u>YES</u>                                    |
| Traffic Volume (VPH) *   | 1,940        | 720          | <u>. =                                   </u> |

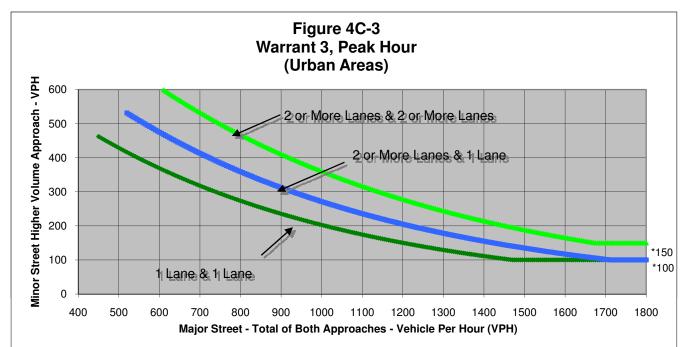


Elverta Road Elwyn Road Sheet No

2

of


2


Project Scenario Elverta Specific Plan EIS Cumualtive No Project

Peak Hour PM

Major Street Direction

North/South
x East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

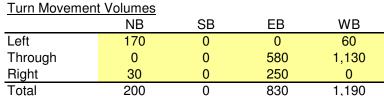
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

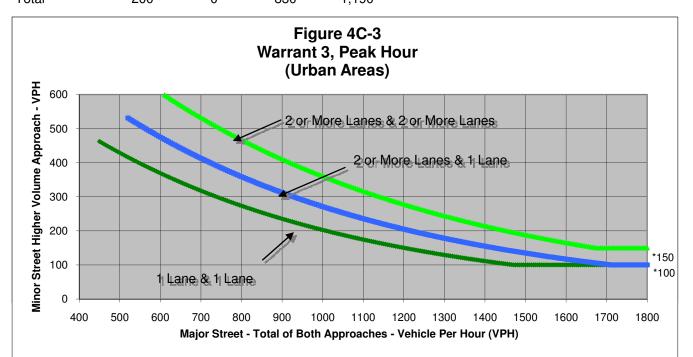
|                          | Major Street | Minor Street | Warrant Met                                   |
|--------------------------|--------------|--------------|-----------------------------------------------|
|                          | Elverta Road | Elwyn Road   | <u>wairant wet</u>                            |
| Number of Approach Lanes | 1            | 1            | <u>YES</u>                                    |
| Traffic Volume (VPH) *   | 2,110        | 430          | <u>. =                                   </u> |

<sup>\*</sup> Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.




Elverta Road Rio Linda Blvd Sheet No of


Project Scenario

Elverta Specific Plan EIS **Cumualtive No Project** Peak Hour AM

Major Street Direction

|   | North/South |
|---|-------------|
| X | East/West   |





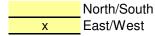
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

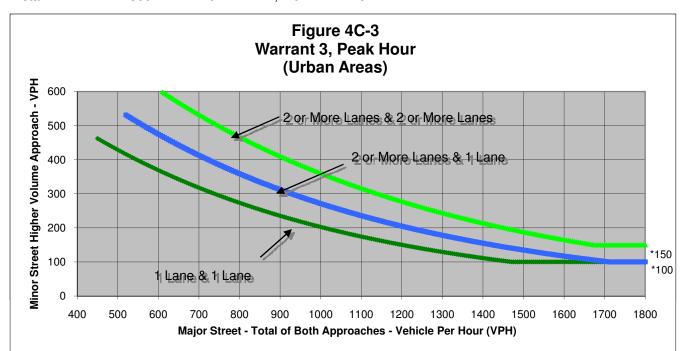
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street   | Warrant Met                                   |
|--------------------------|--------------|----------------|-----------------------------------------------|
|                          | Elverta Road | Rio Linda Blvd | <u>wairant wet</u>                            |
| Number of Approach Lanes | 2            | 1              | <u>YES</u>                                    |
| Traffic Volume (VPH) *   | 2,020        | 200            | <u>. =                                   </u> |



Elverta Road Rio Linda Blvd Sheet No of


Elverta Specific Plan EIS Project Scenario


Cumualtive No Project Peak Hour PM

**Turn Movement Volumes** 

|         | NB  | SB | EB    | WB  |
|---------|-----|----|-------|-----|
| Left    | 300 | 0  | 0     | 60  |
| Through | 0   | 0  | 1,170 | 650 |
| Right   | 60  | 0  | 240   | 0   |
| Total   | 360 | 0  | 1.410 | 710 |

Major Street Direction



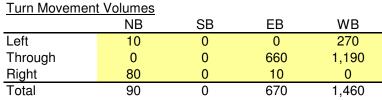


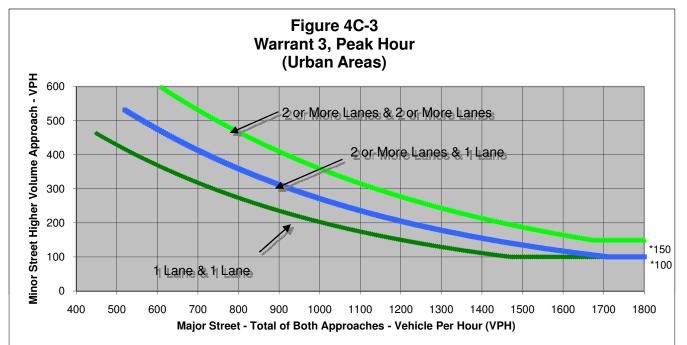
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street   | Warrant Met        |
|--------------------------|--------------|----------------|--------------------|
|                          | Elverta Road | Rio Linda Blvd | <u>warrant wet</u> |
| Number of Approach Lanes | 2            | 1              | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,120        | 360            | . 20               |




Elverta Road 9th Street Sheet No 1 of 2


Project Elverta Specific Plan EIS
Scenario Cumualtive No Project

Peak Hour AM

Major Street Direction

|   | North/South |
|---|-------------|
| X | East/West   |





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

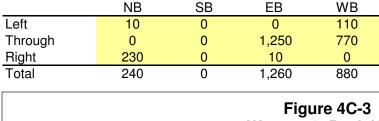
|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>wairant wet</u> |
| Number of Approach Lanes | 2            | 1            | NO                 |
| Traffic Volume (VPH) *   | 2,130        | 90           |                    |

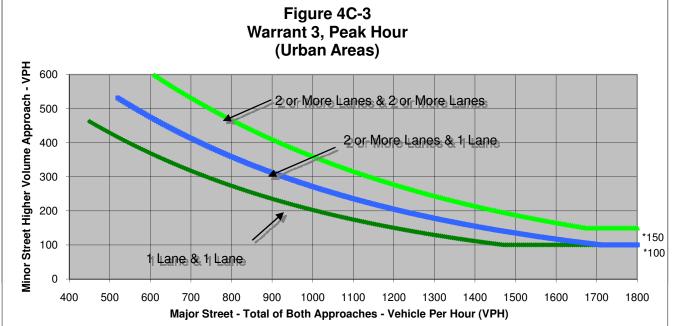


**Turn Movement Volumes** 

Elverta Road 9th Street

Sheet No


of


**Project** Scenario Elverta Specific Plan EIS Cumualtive No Project

Peak Hour PM

Major Street Direction

North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

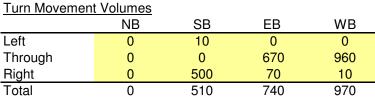
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

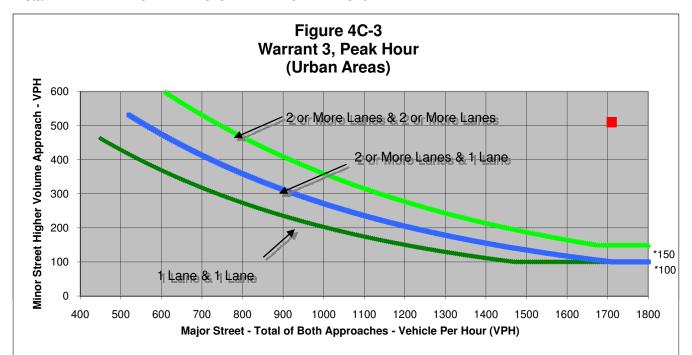
|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>wairant wet</u> |
| Number of Approach Lanes | 2            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,140        | 240          | <u> </u>           |

Note: Traffic Volume for Major Street is Total Volume of Both Approaches. Traffic Volume for Minor Street is the Volume of High Volume Approach.



Elverta Road Palladay Road Sheet No


of


Project Scenario Elverta Specific Plan EIS **Cumualtive No Project** 

Peak Hour AM

Major Street Direction

North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street  | Warrant Met                                   |
|--------------------------|--------------|---------------|-----------------------------------------------|
|                          | Elverta Road | Palladay Road | <u>wairant wet</u>                            |
| Number of Approach Lanes | 2            | 1             | <u>YES</u>                                    |
| Traffic Volume (VPH) *   | 1,710        | 510           | <u>. =                                   </u> |

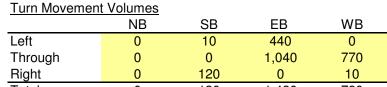


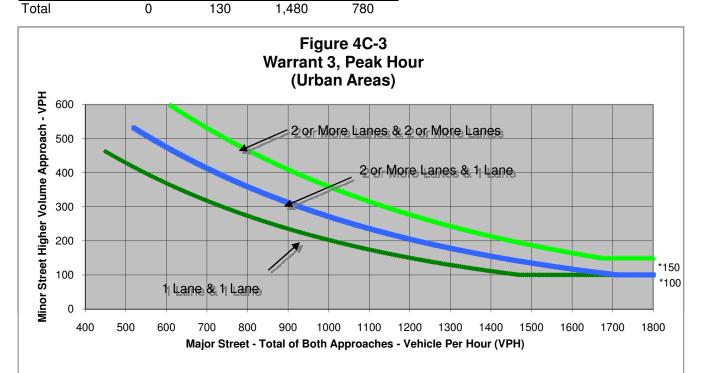
Elverta Road
Palladay Road

Sheet No

2

of


2


Project Scenario Elverta Specific Plan EIS Cumualtive No Project

Peak Hour PM

Major Street Direction

North/South
x East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

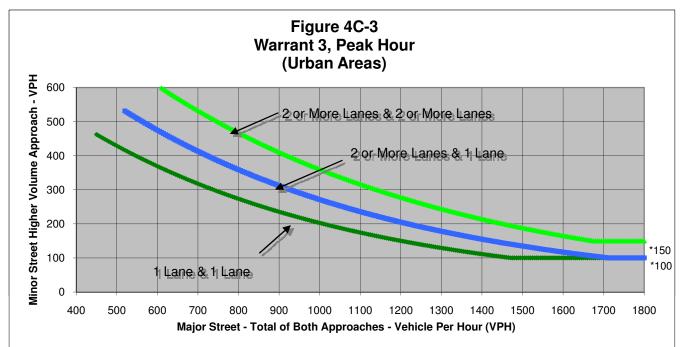
|                          | Major Street | Minor Street  | Warrant Met        |
|--------------------------|--------------|---------------|--------------------|
|                          | Elverta Road | Palladay Road | <u>wairant wet</u> |
| Number of Approach Lanes | 2            | 1             | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,260        | 130           | . 20               |



Dry Creek Road U Street Sheet No 1 of

Project E Scenario C

Elverta Specific Plan EIS
Cumualtive No Project


Peak Hour AM

**Turn Movement Volumes** 

|         | NB  | SB | EB  | WB  |
|---------|-----|----|-----|-----|
| Left    | 20  | 10 | 10  | 230 |
| Through | 10  | 10 | 50  | 30  |
| Right   | 190 | 10 | 110 | 10  |
| Total   | 220 | 30 | 170 | 270 |

Major Street Direction

x North/South East/West



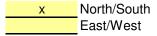
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

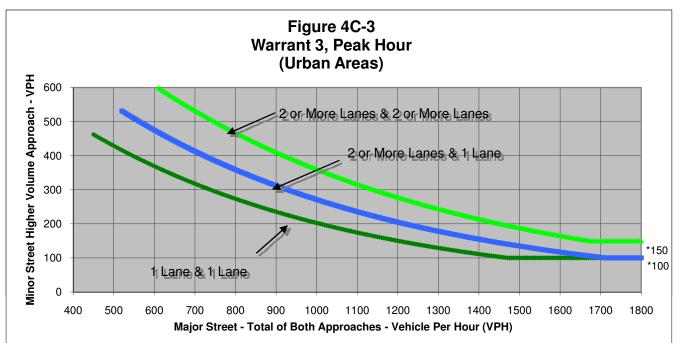
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1              | 1            | <u>NO</u>          |
| Traffic Volume (VPH) *   | 250            | 270          | <u> </u>           |



Dry Creek Road U Street Sheet No 2 of


Project Elverta Specific Plan EIS
Scenario Cumualtive No Project


Peak Hour PM

**Turn Movement Volumes** 

|         | NB  | SB | EB  | WB  |
|---------|-----|----|-----|-----|
| Left    | 110 | 10 | 10  | 200 |
| Through | 10  | 10 | 40  | 50  |
| Right   | 210 | 10 | 50  | 10  |
| Total   | 330 | 30 | 100 | 260 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 360            | 260          | <u> </u>           |



50

180

30

Major Street Minor Street

Left

Right

Through

**Turn Movement Volumes** 

Dry Creek Road Q Street

SB

20

280

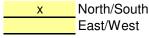
50

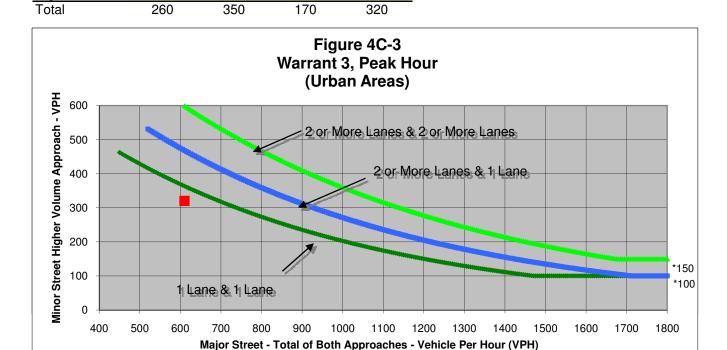
EB

20

90

60


Sheet No


of

Project Scenario Elverta Specific Plan EIS **Cumualtive No Project** 

Peak Hour AM

Major Street Direction





WB

210

100

10

\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

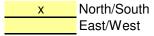
|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | Q Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1              | 1            | <u>NO</u>          |
| Traffic Volume (VPH) *   | 610            | 320          | <u></u>            |

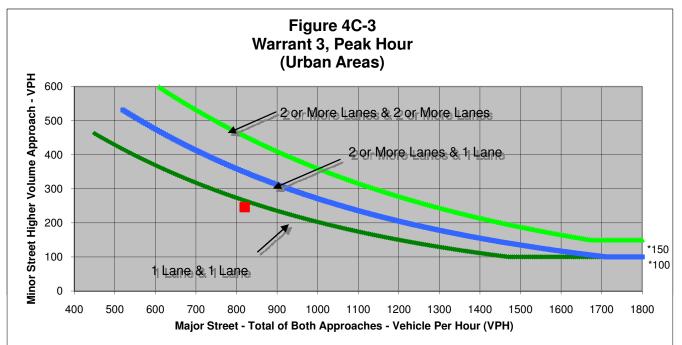


Dry Creek Road Q Street

Sheet No

of


Project Scenario Elverta Specific Plan EIS Cumualtive No Project


Peak Hour PM

**Turn Movement Volumes** 

|         | NB  | SB  | EB  | WB  |
|---------|-----|-----|-----|-----|
| Left    | 70  | 10  | 30  | 80  |
| Through | 280 | 240 | 110 | 120 |
| Right   | 210 | 10  | 50  | 46  |
| Total   | 560 | 260 | 190 | 246 |

Major Street Direction





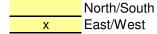
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

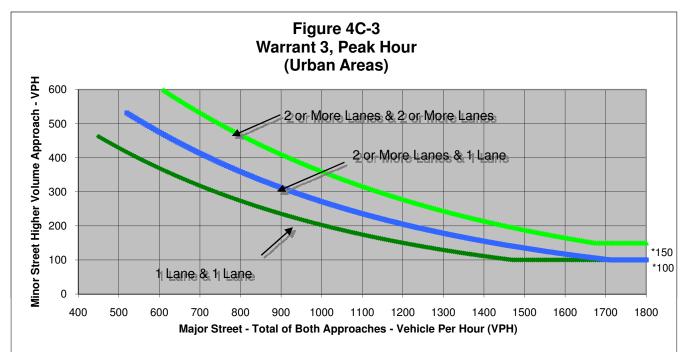
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | Q Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 820            | 246          |                    |



Elverta Road 16th Street Sheet No 1 of


Project Scenario Elverta Specific Plan EIS
Cumualtive No Project


Peak Hour AM

**Turn Movement Volumes** 

|         | NB  | SB  | EB  | WB    |
|---------|-----|-----|-----|-------|
| Left    | 20  | 330 | 70  | 150   |
| Through | 210 | 420 | 590 | 840   |
| Right   | 60  | 90  | 30  | 90    |
| Total   | 290 | 840 | 690 | 1,080 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

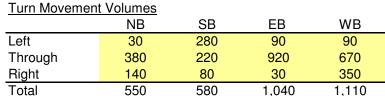
|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 16th Street  | <u>wairant wet</u> |
| Number of Approach Lanes | 2            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 1,770        | 840          | <u> </u>           |

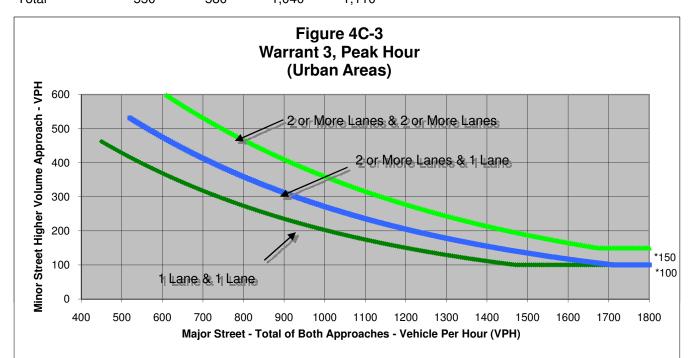


Elverta Road 16th Street Sheet No

2

of


2


Project Scenario Elverta Specific Plan EIS Cumualtive No Project

Peak Hour PM

Major Street Direction

North/South
x East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 16th Street  | <u>wairant wet</u> |
| Number of Approach Lanes | 2            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,150        | 580          | <u> </u>           |



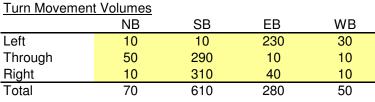
16th Street
U Street

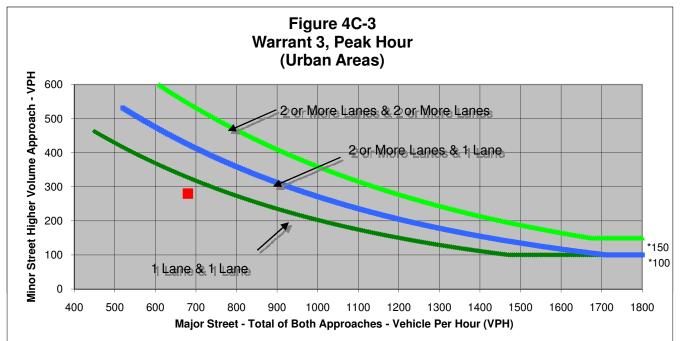
Sheet No

1

of

2


Project Scenario Elverta Specific Plan EIS
Cumualtive No Project


Peak Hour AM

Major Street Direction

\_\_\_\_

x North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | U Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 680          | 280          | <u> </u>           |



**Turn Movement Volumes** 

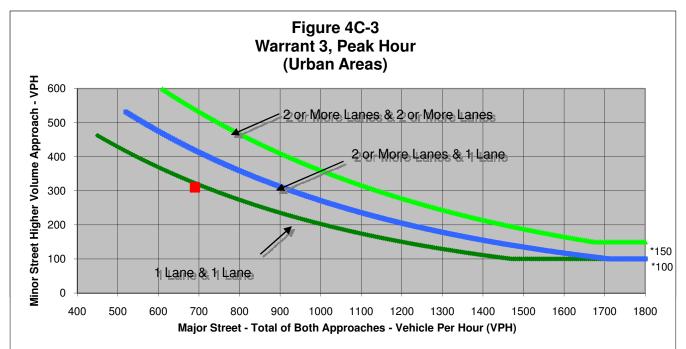
16th Street
U Street

Sheet No

2

of

2


Project Scenario Elverta Specific Plan EIS Cumualtive No Project

Peak Hour PM

**Major Street Direction** 

|         | NB  | SB  | EB  | WB |
|---------|-----|-----|-----|----|
| Left    | 30  | 10  | 290 | 10 |
| Through | 270 | 110 | 10  | 10 |
| Right   | 30  | 240 | 10  | 10 |
| Total   | 330 | 360 | 310 | 30 |

x North/South East/West



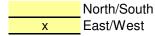
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

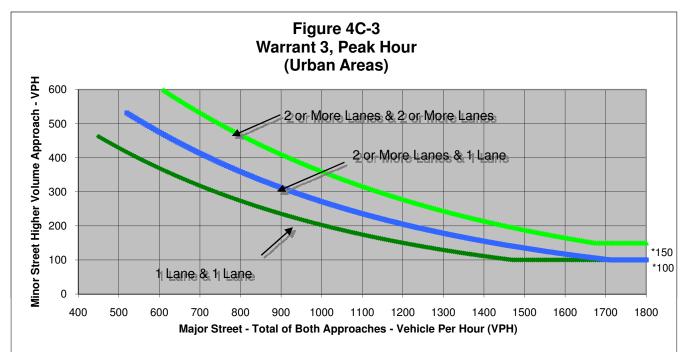
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1            | 1            | <u>NO</u>          |
| Traffic Volume (VPH) *   | 690          | 310          | <u></u>            |



16th Street Q Street Sheet No 1 of


Project Scenario Elverta Specific Plan EIS
Cumualtive No Project


Peak Hour AM

**Turn Movement Volumes** 

|         | NB | SB  | EB  | WB  |
|---------|----|-----|-----|-----|
| Left    | 0  | 100 | 20  | 0   |
| Through | 0  | 0   | 140 | 70  |
| Right   | 0  | 260 | 0   | 40  |
| Total   | 0  | 360 | 160 | 110 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | Q Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 270          | 360          | <u></u>            |



0

0

Major Street Minor Street

Left

Right

Through

**Turn Movement Volumes** 

16th Street Q Street

SB

60

0

70

EB

230

130

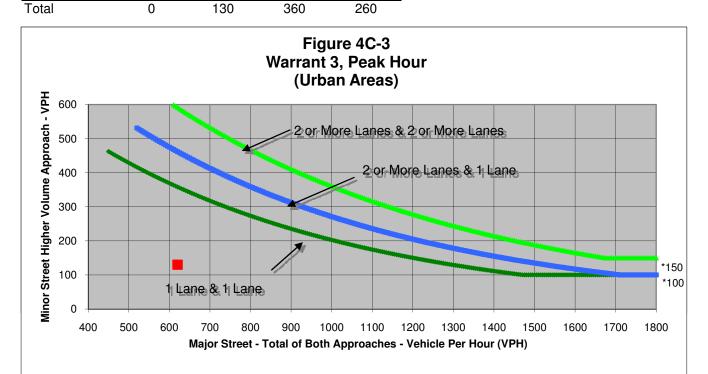
0

Sheet No

2

of

2


Project Scenario Elverta Specific Plan EIS Cumualtive No Project

Peak Hour PM

Major Street Direction

| WB  |  |
|-----|--|
| 0   |  |
| 160 |  |
| 100 |  |

North/South
x East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | Q Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 620          | 130          | <u></u>            |



**Turn Movement Volumes** 

Elverta Road E. Levee Road Sheet No

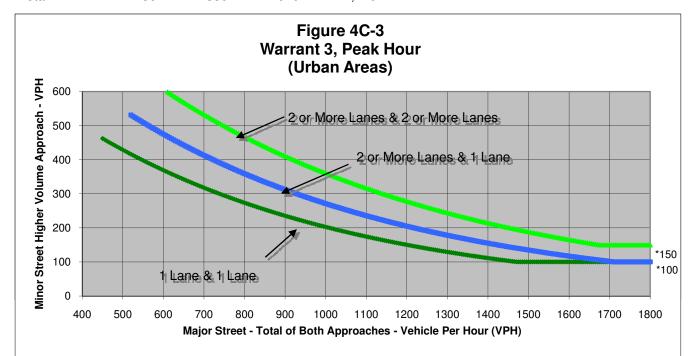
1

2

Project Scenario Elverta Specific Plan EIS
Cumualtive Plus Preferred Alt

of

Peak Hour AM


oumuan AM

**Major Street Direction** 

|         | NB  | SB  | EB  | WB    |
|---------|-----|-----|-----|-------|
| Left    | 20  | 140 | 10  | 120   |
| Through | 20  | 150 | 550 | 1,280 |
| Right   | 90  | 40  | 10  | 10    |
| Total   | 130 | 330 | 570 | 1,410 |

North/South

East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street  | Warrant Met        |
|--------------------------|--------------|---------------|--------------------|
|                          | Elverta Road | E. Levee Road | <u>warrant wet</u> |
| Number of Approach Lanes | 2            | 1             | <u>YES</u>         |
| Traffic Volume (VPH) *   | 1,980        | 330           | <u> </u>           |

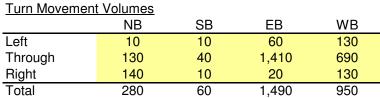


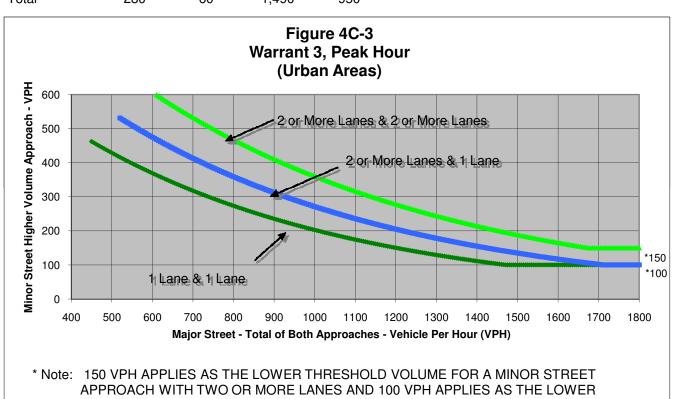
Elverta Road E. Levee Road Sheet No

2

Project Scenario

Elverta Specific Plan EIS Cumualtive Plus Preferred Alt


of


Peak Hour PM

**Major Street Direction** 

|  |  | N |
|--|--|---|

lorth/South East/West





THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

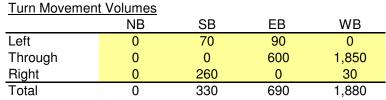


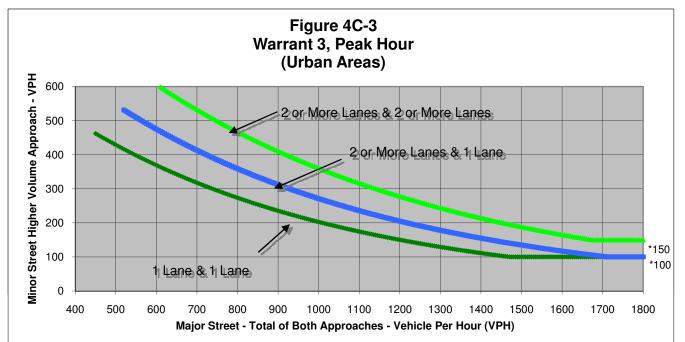
Elkhorn Boulevard
E. Levee Road

Sheet No

1

of


2


Project Scenario Elverta Specific Plan EIS
Cumualtive No Project

Peak Hour AM

Major Street Direction

North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street      | Minor Street  | Warrant Met        |
|--------------------------|-------------------|---------------|--------------------|
|                          | Elkhorn Boulevard | E. Levee Road | <u>warrant wet</u> |
| Number of Approach Lanes | 3                 | 1             | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,570             | 330           | <u>. 10</u>        |



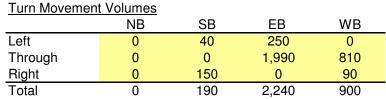
Elkhorn Boulevard

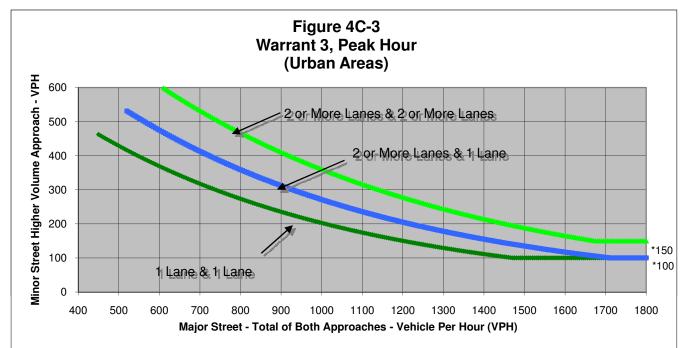
E. Levee Road

Sheet No

2

of


2


Project Scenario Elverta Specific Plan EIS Cumualtive No Project

Peak Hour PM

Major Street Direction

North/South
x East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street      | Minor Street  | Warrant Met        |
|--------------------------|-------------------|---------------|--------------------|
|                          | Elkhorn Boulevard | E. Levee Road | <u>wairant wet</u> |
| Number of Approach Lanes | 3                 | 1             | <u>YES</u>         |
| Traffic Volume (VPH) *   | 3,140             | 190           | . 20               |

<sup>\*</sup> Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.



10

10

30

Major Street Minor Street

Left

Right

Total

Through

**Turn Movement Volumes** 

Elverta Road Sorento Road

SB

20

10

300

330

EB

170

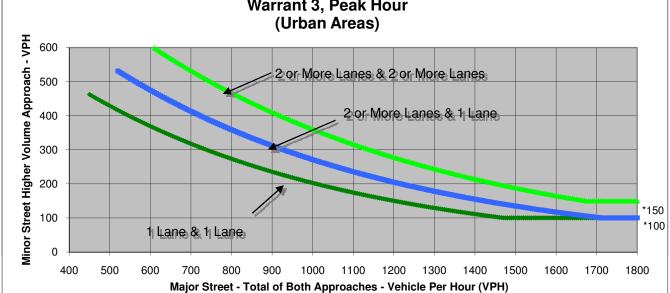
600

10

780

Sheet No 1 of

Project Scenario Elverta Specific Plan EIS
Cumualtive Plus Preferred Alt


2

Peak Hour AM

Major Street Direction

|   | North/South |
|---|-------------|
| X | East/West   |





WB

10

1,100

10

1,120

\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met       |
|--------------------------|--------------|--------------|-------------------|
|                          | Elverta Road | Sorento Road | <u>wanani wet</u> |
| Number of Approach Lanes | 2            | 1            | YES               |
| Traffic Volume (VPH) *   | 1,900        | 330          | <u>. 20</u>       |



10

10

Major Street Minor Street

Left

Right

Through

**Turn Movement Volumes** 

Elverta Road Sorento Road

SB

10

10

250

EB

330

1,220

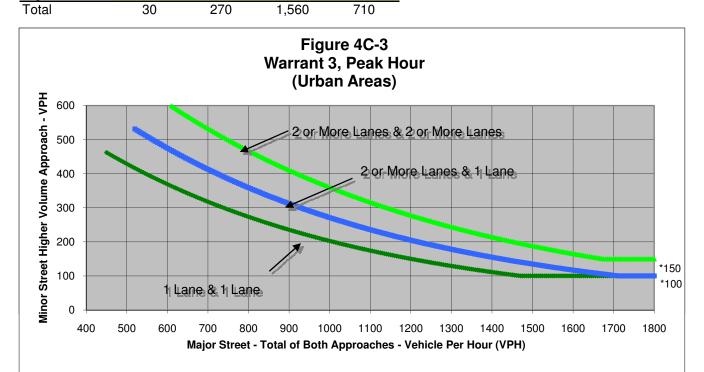
10

Sheet No

2

of

2


Project Scenario Elverta Specific Plan EIS
Cumualtive Plus Preferred Alt

Peak Hour PM

Major Street Direction

| VΒ |  |
|----|--|
| 10 |  |
| 90 |  |
| 10 |  |

North/South
x East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met       |
|--------------------------|--------------|--------------|-------------------|
|                          | Elverta Road | Sorento Road | <u>wanani wet</u> |
| Number of Approach Lanes | 2            | 1            | YES               |
| Traffic Volume (VPH) *   | 2,270        | 270          | <u>. 20</u>       |



70

20

Major Street Minor Street

Left

Right

Through

**Turn Movement Volumes** 

Elverta Road Elwyn Road

SB

330

270

70

ΕB

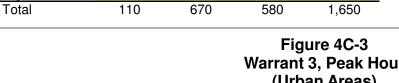
10

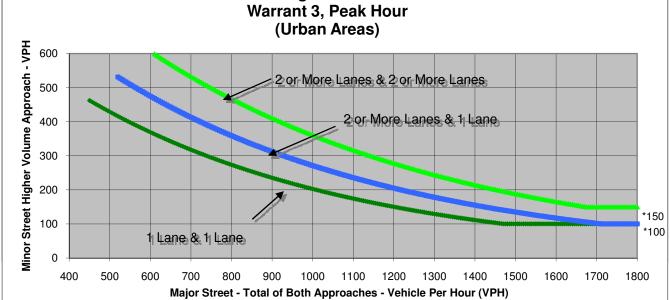
520

50

Sheet No

of


2


**Project** Scenario Elverta Specific Plan EIS Cumualtive Plus Preferred Alt

Peak Hour AM

Major Street Direction

North/South East/West





WB

160

1,140

350

\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | Elwyn Road   | <u>waiiani wet</u> |
| Number of Approach Lanes | 2            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,230        | 670          | <u>. 20</u>        |

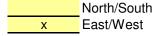


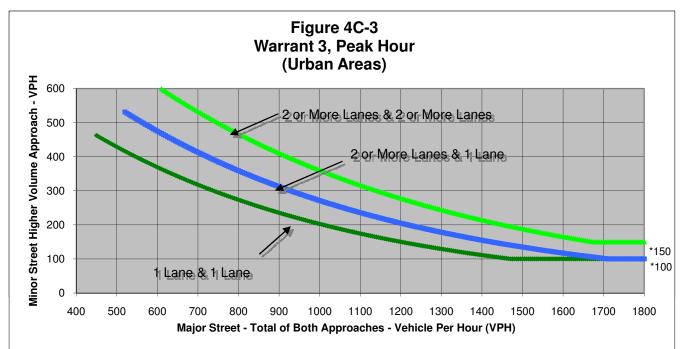
Elverta Road Elwyn Road Sheet No

2

of

2


Project Scenario Elverta Specific Plan EIS
Cumualtive Plus Preferred Alt


Peak Hour PM

**Turn Movement Volumes** 

|         | NB  | SB  | EB    | WB    |
|---------|-----|-----|-------|-------|
| Left    | 50  | 380 | 160   | 30    |
| Through | 230 | 80  | 1,150 | 620   |
| Right   | 190 | 20  | 20    | 370   |
| Total   | 470 | 480 | 1,330 | 1,020 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | Elwyn Road   | <u>waiiani wet</u> |
| Number of Approach Lanes | 1            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,350        | 480          | <u>. 10</u>        |



0

40

220

Major Street Minor Street

Left

Right

Total

Through

**Turn Movement Volumes** 

Elverta Road Rio Linda Blvd

SB

0

0

0

0

Sheet No 1

of

2

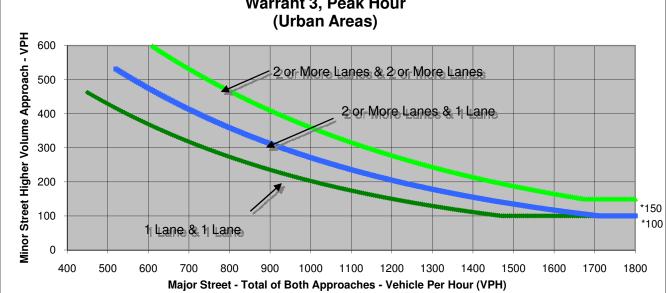
Project Scenario Elverta Specific Plan EIS

Peak Hour AM

Cumualtive Plus Preferred Alt

## **Major Street Direction**

|   | North/South |
|---|-------------|
| Χ | East/West   |




EΒ

710

160

870



WB

100

1,440

0

1,540

\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

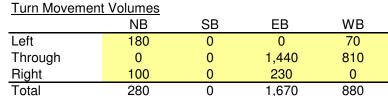
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

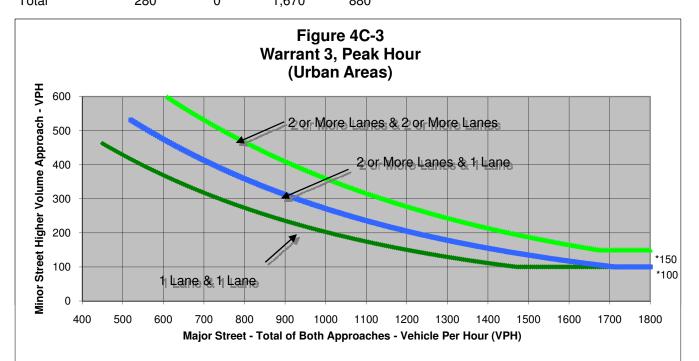
|                          | Major Street | Minor Street   | Warrant Met       |
|--------------------------|--------------|----------------|-------------------|
|                          | Elverta Road | Rio Linda Blvd | <u>wanani wet</u> |
| Number of Approach Lanes | 2            | 1              | YES               |
| Traffic Volume (VPH) *   | 2,410        | 220            | <u>. 10</u>       |



Elverta Road Rio Linda Blvd Sheet No

of


2


**Project** Scenario Elverta Specific Plan EIS Cumualtive Plus Preferred Alt

Peak Hour PM

Major Street Direction

North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street   | Warrant Met        |
|--------------------------|--------------|----------------|--------------------|
|                          | Elverta Road | Rio Linda Blvd | <u>warrant wet</u> |
| Number of Approach Lanes | 2            | 1              | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,550        | 280            | <u> </u>           |

Note: Traffic Volume for Major Street is Total Volume of Both Approaches. Traffic Volume for Minor Street is the Volume of High Volume Approach.

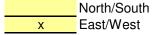


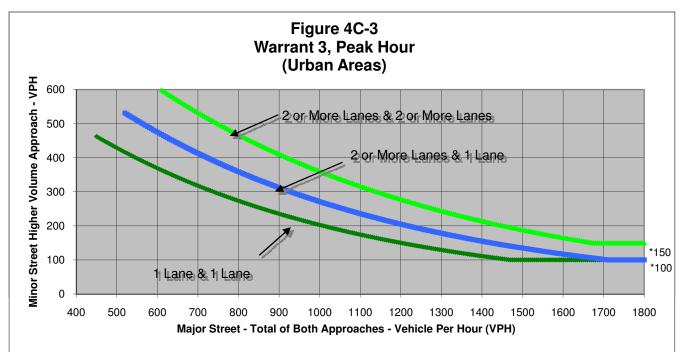
Elverta Road 9th Street

Sheet No

of

2


Project Scenario Elverta Specific Plan EIS Cumualtive Plus Preferred Alt


Peak Hour AM

**Turn Movement Volumes** 

|         | NB  | SB | EB  | WB    |
|---------|-----|----|-----|-------|
| Left    | 10  | 0  | 0   | 330   |
| Through | 0   | 0  | 680 | 1,160 |
| Right   | 90  | 0  | 60  | 0     |
| Total   | 100 | 0  | 740 | 1,490 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>wairant wet</u> |
| Number of Approach Lanes | 2            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,230        | 100          | <u> </u>           |

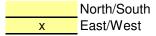


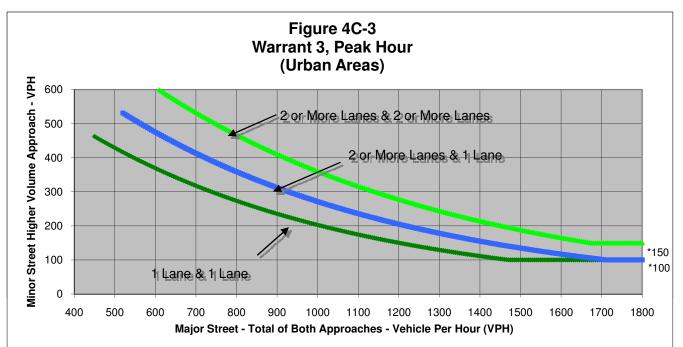
Elverta Road 9th Street Sheet No

2

of

2


Project Scenario Elverta Specific Plan EIS
Cumualtive Plus Preferred Alt


Peak Hour PM

**Turn Movement Volumes** 

|         | NB  | SB | EB    | WB  |
|---------|-----|----|-------|-----|
| Left    | 60  | 0  | 0     | 110 |
| Through | 0   | 0  | 1,280 | 830 |
| Right   | 260 | 0  | 40    | 0   |
| Total   | 320 | 0  | 1,320 | 940 |

Major Street Direction





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>warrant wet</u> |
| Number of Approach Lanes | 2            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,260        | 320          | <u> </u>           |

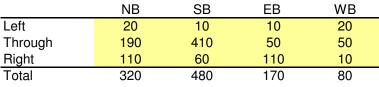


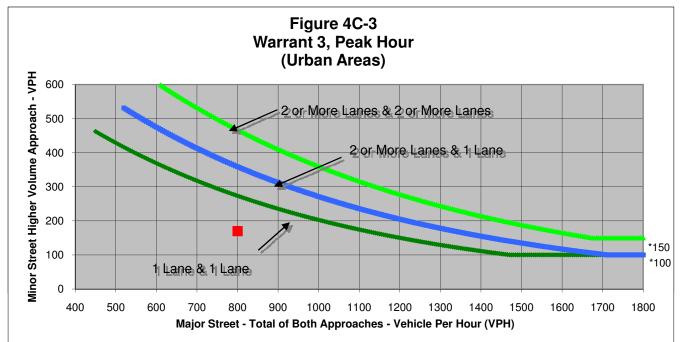
**Turn Movement Volumes** 

Dry Creek Road **U** Street

Sheet No

2


**Project** Scenario Elverta Specific Plan EIS Cumualtive Plus Preferred Alt


of

Peak Hour AM

Major Street Direction

North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>waiiani wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 800            | 170          | <u></u>            |

Note: Traffic Volume for Major Street is Total Volume of Both Approaches. Traffic Volume for Minor Street is the Volume of High Volume Approach.



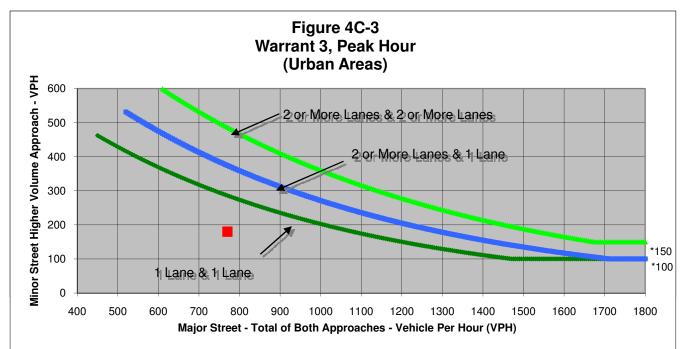
Dry Creek Road **U** Street

Sheet No

of

2

**Project** Scenario Elverta Specific Plan EIS Cumualtive Plus Preferred Alt


Peak Hour PM

**Turn Movement Volumes** 

|         | NB  | SB  | EB  | WB  |
|---------|-----|-----|-----|-----|
| Left    | 110 | 10  | 40  | 100 |
| Through | 390 | 220 | 60  | 70  |
| Right   | 30  | 10  | 50  | 10  |
| Total   | 530 | 240 | 150 | 180 |

Major Street Direction

North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

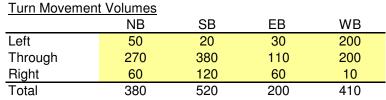
|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 770            | 180          |                    |

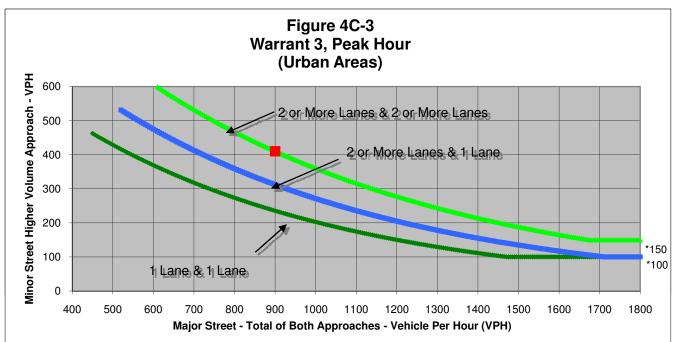


Dry Creek Road Q Street Sheet No

1

of


2


Project Scenario Elverta Specific Plan EIS
Cumualtive Plus Preferred Alt

Peak Hour AM

Major Street Direction

x North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

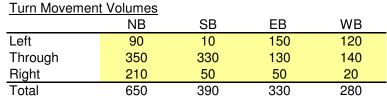
|                          | Major Street   | Minor Street | Warrant Met                                   |
|--------------------------|----------------|--------------|-----------------------------------------------|
|                          | Dry Creek Road | Q Street     | <u>wairant wet</u>                            |
| Number of Approach Lanes | 1              | 1            | <u>YES</u>                                    |
| Traffic Volume (VPH) *   | 900            | 410          | <u>. =                                   </u> |

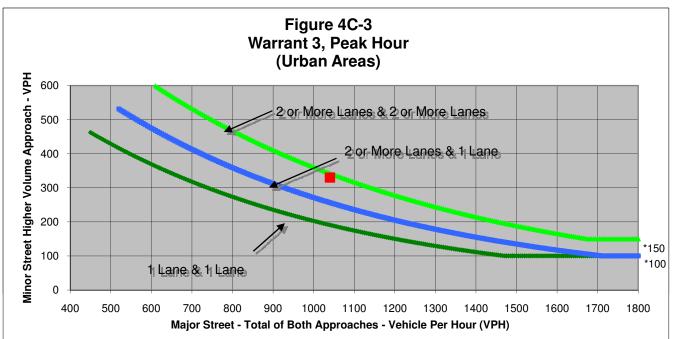


Dry Creek Road Q Street Sheet No

2

of


2


Project Scenario Elverta Specific Plan EIS
Cumualtive Plus Preferred Alt

Peak Hour PM

Major Street Direction

x North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | Q Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1              | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 1,040          | 330          |                    |



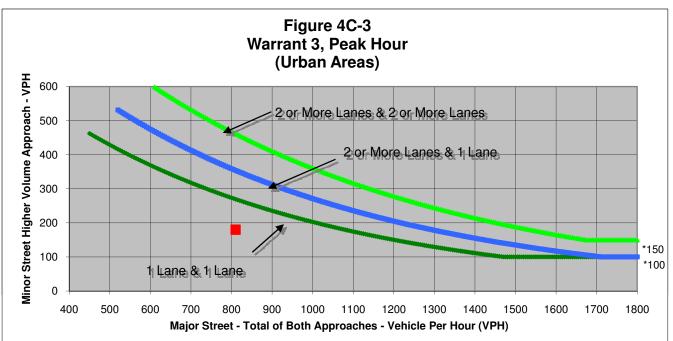
16th Street **U** Street

Sheet No

of

2

Project Scenario Elverta Specific Plan EIS Cumualtive Plus Preferred Alt


Peak Hour AM

**Turn Movement Volumes** 

|         | NB  | SB  | EB  | WB |
|---------|-----|-----|-----|----|
| Left    | 10  | 10  | 140 | 30 |
| Through | 80  | 600 | 10  | 10 |
| Right   | 10  | 100 | 30  | 20 |
| Total   | 100 | 710 | 180 | 60 |

Major Street Direction

North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | U Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 810          | 180          | <u></u>            |



500

30

Major Street Minor Street

Left

Right

Through

**Turn Movement Volumes** 

16th Street
U Street

SB

30

200

160

EΒ

120

10

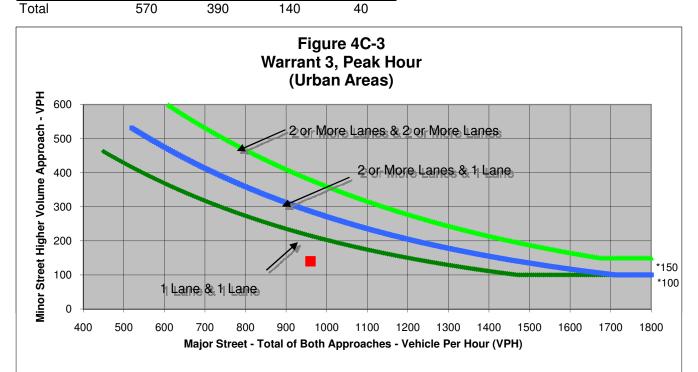
10

Sheet No

2

of

2


Project Scenario Elverta Specific Plan EIS
Cumualtive Plus Preferred Alt

Peak Hour PM

Major Street Direction

| ٧B  | - |
|-----|---|
| 20  |   |
| 10  |   |
| 4.0 |   |

x North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met |
|--------------------------|--------------|--------------|-------------|
|                          | 16th Street  | U Street     | warrant wet |
| Number of Approach Lanes | 1            | 1            | <u>NO</u>   |
| Traffic Volume (VPH) *   | 960          | 140          | <u></u>     |

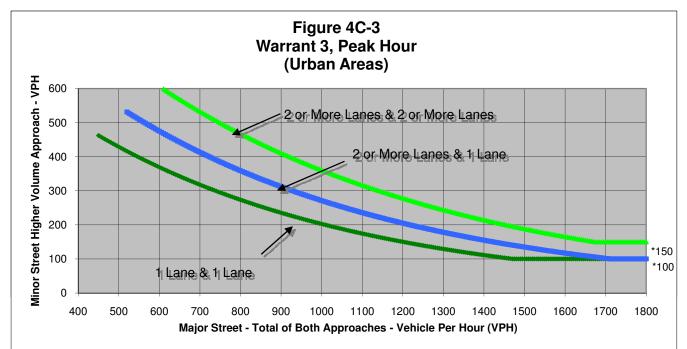


16th Street Q Street

Sheet No

2

Project Scenario Elverta Specific Plan EIS Cumualtive Plus Preferred Alt


of

Peak Hour AM

Major Street Direction

| Turn Movemen | t Volumes |     |     |     |
|--------------|-----------|-----|-----|-----|
|              | NB        | SB  | EB  | WB  |
| Left         | 0         | 300 | 50  | 0   |
| Through      | 0         | 0   | 150 | 70  |
| Right        | 0         | 360 | 0   | 50  |
| Total        | 0         | 660 | 200 | 120 |

North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | Q Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 320          | 660          | <u> </u>           |

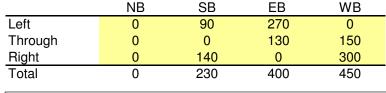


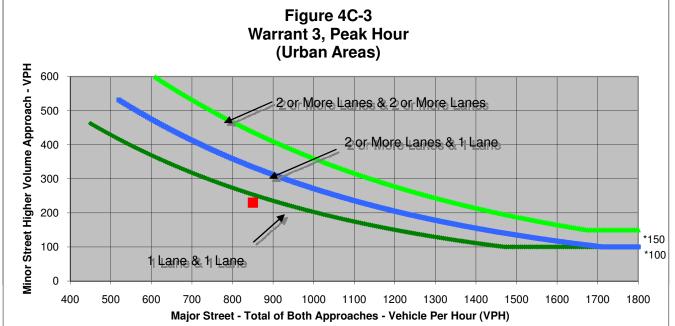
**Turn Movement Volumes** 

16th Street Q Street

Sheet No

of


2


**Project** Scenario Elverta Specific Plan EIS Cumualtive Plus Preferred Alt

Peak Hour PM

Major Street Direction

North/South East/West





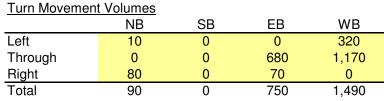
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

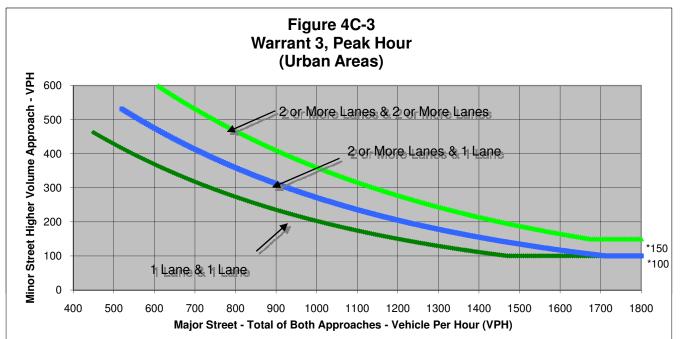
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | Q Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1            | 1            | <u>NO</u>          |
| Traffic Volume (VPH) *   | 850          | 230          | <u></u>            |

Note: Traffic Volume for Major Street is Total Volume of Both Approaches. Traffic Volume for Minor Street is the Volume of High Volume Approach.




Elverta Road 9th Street Sheet No 1 of 2


Project Elverta Specific Plan
Scenario Cumulative Plus Approved SP

Peak Hour AM

Major Street Direction

|   | North/South |
|---|-------------|
| Х | East/West   |





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>warrant wet</u> |
| Number of Approach Lanes | 2            | 1            | NO                 |
| Traffic Volume (VPH) *   | 2,240        | 90           | <u> </u>           |



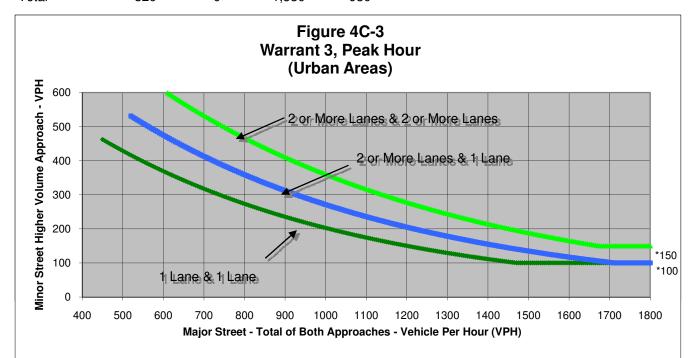
**Turn Movement Volumes** 

Elverta Road 9th Street

Sheet No

of

2


**Project** Scenario Elverta Specific Plan

Cumulative Plus Approved SP Peak Hour PM

Major Street Direction

SB EΒ WB Left 70 110 0 Through 0 0 1,290 820 Right 250 0 40 0 930 Total 320 0 1,330

North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>warrant wet</u> |
| Number of Approach Lanes | 2            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,260        | 320          | <u> </u>           |



190

110

Major Street Minor Street

Left

Right

Through

**Turn Movement Volumes** 

Dry Creek Road U Street

SB

10

460

50

EΒ

10

50

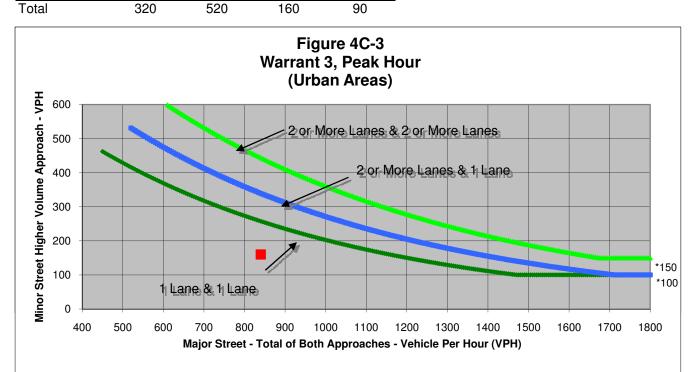
100

Sheet No 1

of

2

Project Scenario Elverta Specific Plan


Peak Hour AM

Cumulative Plus Approved SP

Major Street Direction

| WB |  |
|----|--|
| 20 |  |
| 60 |  |
| 10 |  |

x North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 840            | 160          | <u></u>            |



Dry Creek Road U Street Sheet No

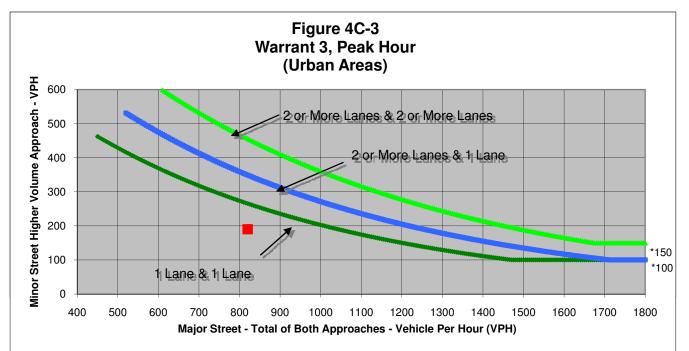
2

of

2

Project Scenario Elverta Specific Plan
Cumulative Plus Approved SP

Cumulative


Peak Hour PM

**Turn Movement Volumes** 

|         | NB  | SB  | EB  | WB  |
|---------|-----|-----|-----|-----|
| Left    | 120 | 10  | 40  | 110 |
| Through | 410 | 240 | 60  | 70  |
| Right   | 30  | 10  | 60  | 10  |
| Total   | 560 | 260 | 160 | 190 |

Major Street Direction

x North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 820            | 190          | <u></u>            |

<sup>\*</sup> Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

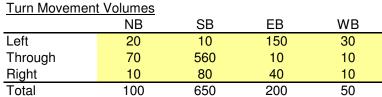


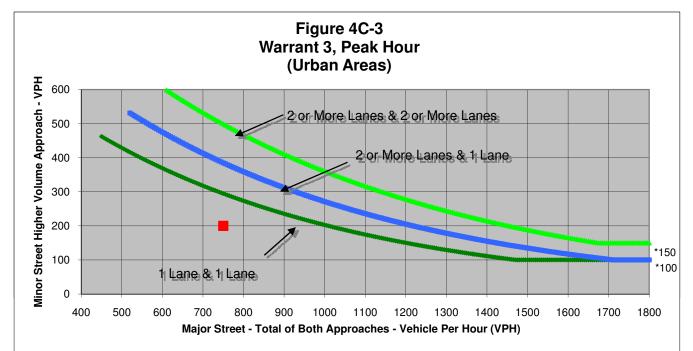
16th Street **U** Street

Sheet No

of

2


**Project** Scenario Elverta Specific Plan


Peak Hour AM

Cumulative Plus Approved SP

Major Street Direction

North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | U Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 750          | 200          | <u></u>            |



520

30

Major Street Minor Street

Left

Right

Through

**Turn Movement Volumes** 

16th Street **U** Street

SB

30

190

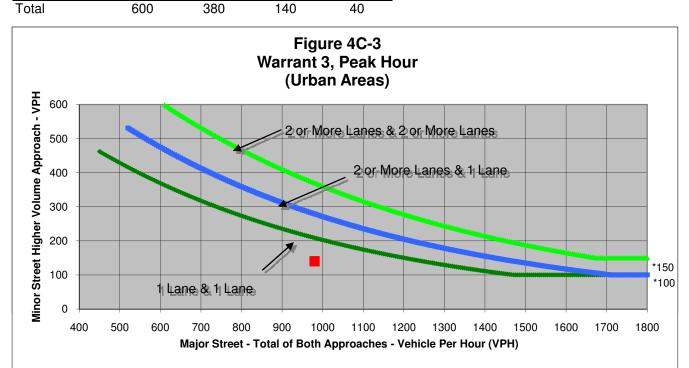
160

Sheet No

of

2

**Project** Scenario Elverta Specific Plan Cumulative Plus Approved SP


Peak Hour PM

Major Street Direction

| WB |  |
|----|--|
| 20 |  |

EΒ 120 10 10 10 10 140 40

North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

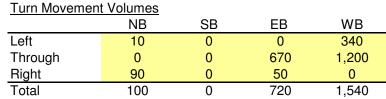
|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | U Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 980          | 140          | <u></u>            |

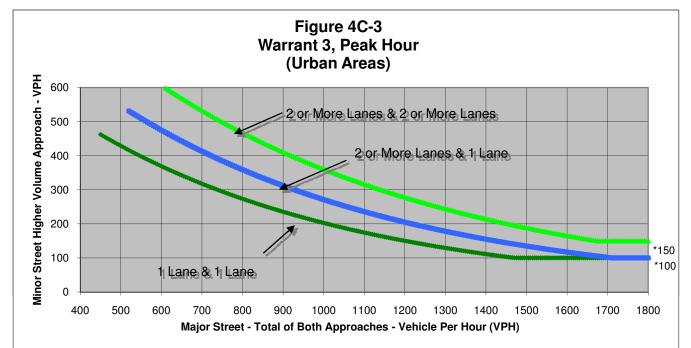


Elverta Road 9th Street

Sheet No

of


2


**Project** Scenario Elverta Specific Plan

**Cumulative Plus Minimal Impact** Peak Hour AM

Major Street Direction

North/South East/West





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>wairant wet</u> |
| Number of Approach Lanes | 2            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,260        | 100          | <u> </u>           |



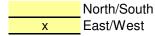
Elverta Road 9th Street Sheet No

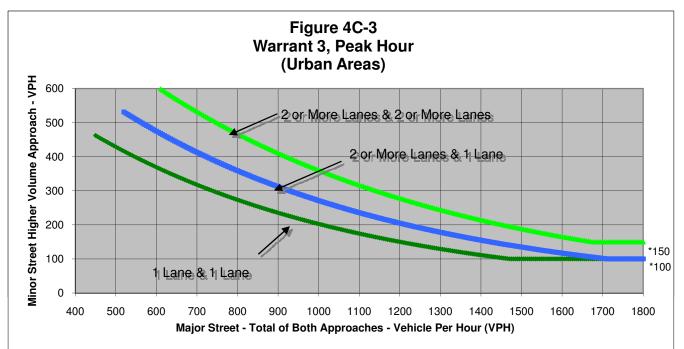
2

of

2

Project Scenario Elverta Specific Plan


Cumulative Plus Minimal Impact


Peak Hour PM

**Turn Movement Volumes** 

|         | NB  | SB | EB    | WB  |
|---------|-----|----|-------|-----|
| Left    | 50  | 0  | 0     | 110 |
| Through | 0   | 0  | 1,320 | 820 |
| Right   | 270 | 0  | 30    | 0   |
| Total   | 320 | 0  | 1,350 | 930 |

Major Street Direction



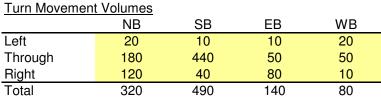


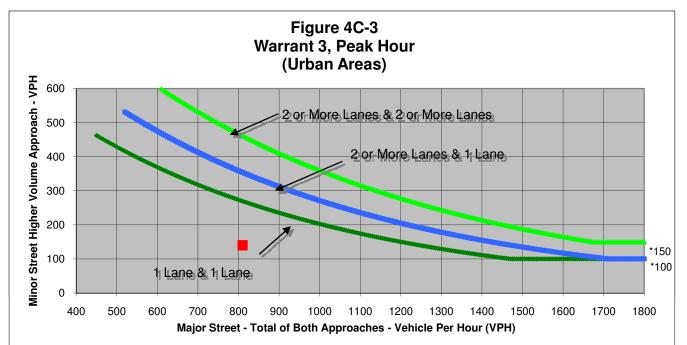
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>warrant wet</u> |
| Number of Approach Lanes | 2            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 2,280        | 320          | <u> </u>           |




Dry Creek Road U Street Sheet No 1 of 2


Project Elverta Specific Plan
Scenario Cumulative Plus Minimal Impact

Peak Hour AM

**Major Street Direction** 

| X | North/South |
|---|-------------|
|   | East/West   |





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1              | 1            | NO                 |
| Traffic Volume (VPH) *   | 810            | 140          | <u></u>            |



90

400

Major Street Minor Street

Left

Through

**Turn Movement Volumes** 

Dry Creek Road U Street

SB

10

240

EB

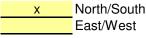
30

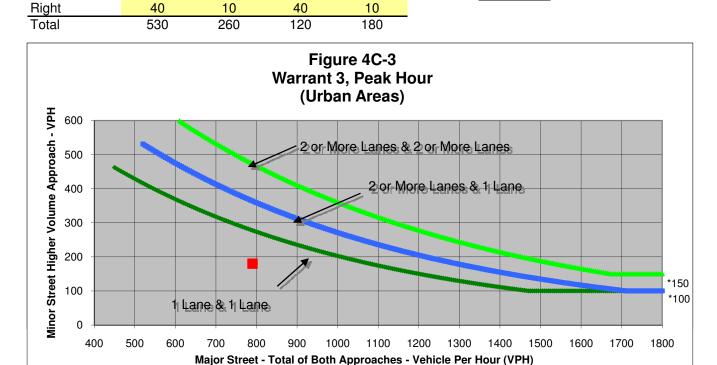
50

Sheet No

2

of


2


Project Scenario Elverta Specific Plan
Cumulative Plus Minimal Impact

Peak Hour PM

**Major Street Direction** 

| viajoi Oti | CCL | חום | Otion |
|------------|-----|-----|-------|
| •          |     |     |       |
|            |     |     |       |
|            |     |     |       |
|            |     |     |       |
|            |     |     |       |





WB

100

70

\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1              | 1            | <u>NO</u>          |
| Traffic Volume (VPH) *   | 790            | 180          | <u></u>            |



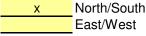
**Turn Movement Volumes** 

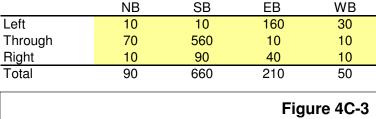
16th Street
U Street

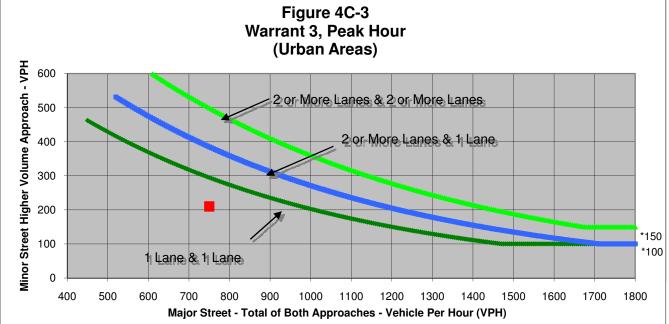
Sheet No

2

Project Scenario Elverta Specific Plan


Peak Hour AM


Cumulative Plus Minimal Impact


of

**Major Street Direction** 

Major Otreet Breetier







\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | U Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | <u>NO</u>          |
| Traffic Volume (VPH) *   | 750          | 210          | <u></u>            |



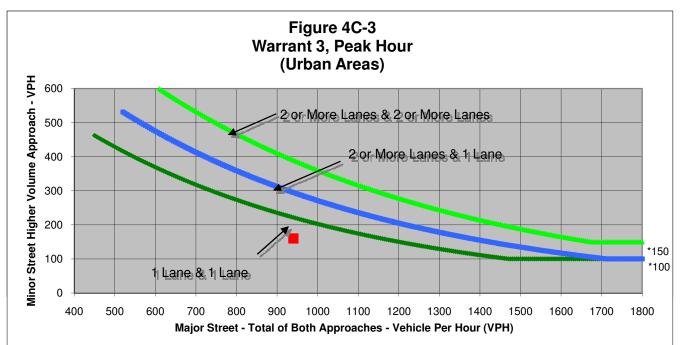
16th Street **U** Street

Sheet No

of

2

**Project** Scenario Elverta Specific Plan


Cumulative Plus Minimal Impact Peak Hour PM

**Turn Movement Volumes** 

|         | NB  | SB  | EB  | WB |
|---------|-----|-----|-----|----|
| Left    | 50  | 30  | 140 | 20 |
| Through | 480 | 190 | 10  | 10 |
| Right   | 30  | 160 | 10  | 10 |
| Total   | 560 | 380 | 160 | 40 |

Major Street Direction

North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1            | 1            | NO                 |
| Traffic Volume (VPH) *   | 940          | 160          | <u></u>            |



10

0

70

Major Street Minor Street

Left

Right

Through

**Turn Movement Volumes** 

Elverta Road 9th Street

SB

0

0

0

EB

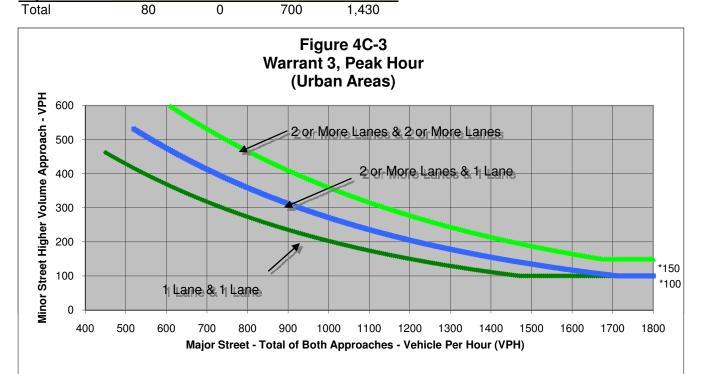
690

10

Sheet No

of

2


**Project** Scenario Elverta Specific Plan

Cumulative Plus No Federal Action Peak Hour AM

Major Street Direction

WB 240 1,190 0

North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | Elverta Road | 9th Street   | <u>warrant wet</u> |
| Number of Approach Lanes | 2            | 1            | NO                 |
| Traffic Volume (VPH) *   | 2,130        | 80           | <u> </u>           |



**Turn Movement Volumes** 

Elverta Road 9th Street Sheet No

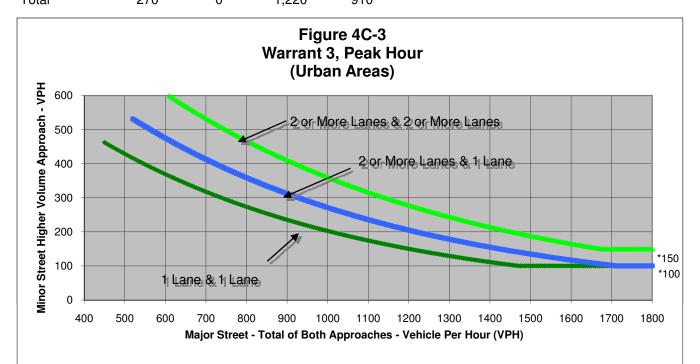
2

of

2

Project Scenario Elverta Specific Plan

Peak Hour PM


Cumulative Plus No Federal Action

Major Street Direction

SB EΒ WB Left 10 0 80 Through 0 0 1,210 830 Right 260 0 10 0 1,220 Total 270 0 910

North/South

East/West



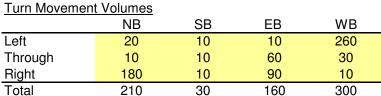
\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

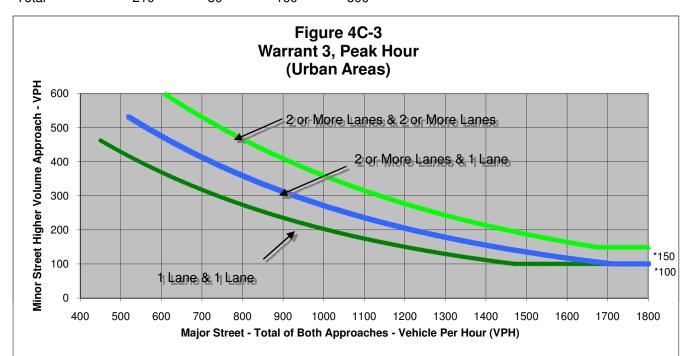
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met |
|--------------------------|--------------|--------------|-------------|
|                          | Elverta Road | 9th Street   | warrant wet |
| Number of Approach Lanes | 2            | 1            | <u>YES</u>  |
| Traffic Volume (VPH) *   | 2,130        | 270          | <u> </u>    |



Dry Creek Road U Street Sheet No 1 of


Project Elverta Specific Plan
Scenario Cumulative Plus No Federal Action


Peak Hour AM

Major Street Direction

| Χ | North/South |
|---|-------------|
|   | East/West   |

2





\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1              | 1            | <u>NO</u>          |
| Traffic Volume (VPH) *   | 240            | 300          | <u></u>            |



Dry Creek Road U Street Sheet No

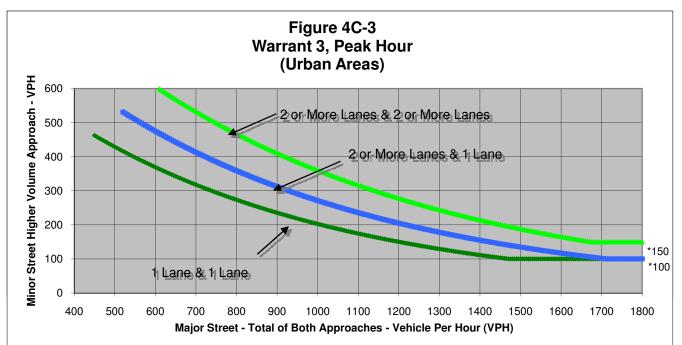
2

of

2

Project Scenario Elverta Specific Plan

Cumulative Plus No Federal Action


Peak Hour PM

<u>Turn Movement Volumes</u>

|         | NB  | SB | EB | WB  |
|---------|-----|----|----|-----|
| Left    | 80  | 10 | 10 | 230 |
| Through | 10  | 10 | 40 | 60  |
| Right   | 220 | 10 | 40 | 10  |
| Total   | 310 | 30 | 90 | 300 |

Major Street Direction

x North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street   | Minor Street | Warrant Met        |
|--------------------------|----------------|--------------|--------------------|
|                          | Dry Creek Road | U Street     | <u>wairant wet</u> |
| Number of Approach Lanes | 1              | 1            | <u>NO</u>          |
| Traffic Volume (VPH) *   | 340            | 300          | <u></u>            |



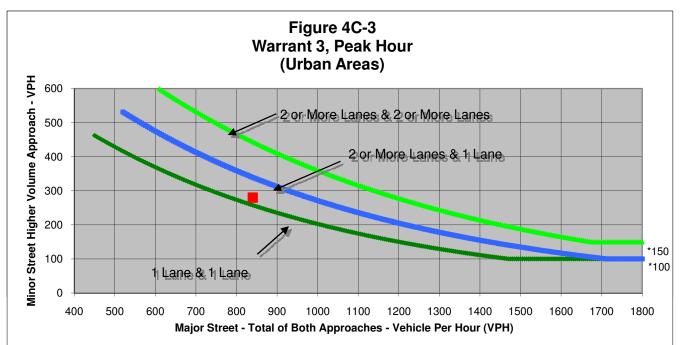
16th Street **U** Street

Sheet No

of

2

**Project** Scenario Elverta Specific Plan


Cumulative Plus No Federal Action Peak Hour AM

**Turn Movement Volumes** 

|         | NB | SB  | EB  | WB |
|---------|----|-----|-----|----|
| Left    | 10 | 10  | 230 | 30 |
| Through | 70 | 390 | 10  | 10 |
| Right   | 10 | 350 | 40  | 10 |
| Total   | 90 | 750 | 280 | 50 |

Major Street Direction

North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met        |
|--------------------------|--------------|--------------|--------------------|
|                          | 16th Street  | U Street     | <u>warrant wet</u> |
| Number of Approach Lanes | 1            | 1            | <u>YES</u>         |
| Traffic Volume (VPH) *   | 840          | 280          | . 10               |



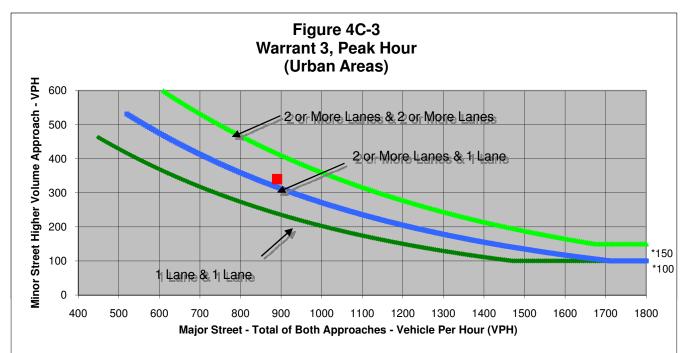
Turn Movement Volumes

16th Street **U** Street

Sheet No

of

2


**Project** Scenario Elverta Specific Plan Cumulative Plus No Federal Action

Peak Hour PM

Major Street Direction

| 1 0111 1110 1 0111011 | t voidinioo |     |     |    |
|-----------------------|-------------|-----|-----|----|
|                       | NB          | SB  | EB  | WB |
| Left                  | 40          | 10  | 320 | 10 |
| Through               | 350         | 160 | 10  | 10 |
| Right                 | 30          | 300 | 10  | 10 |
| Total                 | 420         | 470 | 340 | 30 |

North/South East/West



\* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

|                          | Major Street | Minor Street | Warrant Met |
|--------------------------|--------------|--------------|-------------|
|                          | 16th Street  | U Street     | warrant wet |
| Number of Approach Lanes | 1            | 1            | <u>YES</u>  |
| Traffic Volume (VPH) *   | 890          | 340          | <u> </u>    |

## Appendix D Existing and Cumulative Mitigations

## **Appendix D-1: Existing Plus Project Mitigation**

Existing Plus Preferred Alternative Conditions

Existing Plus Approved Specific Plan Conditions

Existing Plus Minimal Impact Conditions

Existing Plus No Federal Action Conditions

|                          | -         | •    | •     | •        | 4       | /             |   |     |  |
|--------------------------|-----------|------|-------|----------|---------|---------------|---|-----|--|
| Movement                 | EBT       | EBR  | WBL   | WBT      | NBL     | NBR           |   |     |  |
| Lane Configurations      | 4         |      |       | <b>*</b> | *       | 7             |   |     |  |
| Ideal Flow (vphpl)       | 1900      | 1900 | 1900  | 1900     | 1900    | 1900          |   |     |  |
| Total Lost time (s)      | 4.0       |      |       | 4.0      | 4.0     | 4.0           |   |     |  |
| Lane Util. Factor        | 1.00      |      |       | 1.00     | 1.00    | 1.00          |   |     |  |
| Frt                      | 1.00      |      |       | 1.00     | 1.00    | 0.85          |   |     |  |
| Flt Protected            | 1.00      |      |       | 1.00     | 0.95    | 1.00          |   |     |  |
| Satd. Flow (prot)        | 1861      |      |       | 1863     | 1770    | 1583          |   |     |  |
| Flt Permitted            | 1.00      |      |       | 1.00     | 0.95    | 1.00          |   |     |  |
| Satd. Flow (perm)        | 1861      |      |       | 1863     | 1770    | 1583          |   |     |  |
| Volume (vph)             | 116       | 1    | 0     | 952      | 7       | 299           |   |     |  |
| Peak-hour factor, PHF    | 0.79      | 0.79 | 0.84  | 0.84     | 0.92    | 0.92          |   |     |  |
| Adj. Flow (vph)          | 147       | 1    | 0     | 1133     | 8       | 325           |   |     |  |
| RTOR Reduction (vph)     | 0         | 0    | 0     | 0        | 0       | 276           |   |     |  |
| Lane Group Flow (vph)    | 148       | 0    | 0     | 1133     | 8       | 49            |   |     |  |
| Turn Type                |           |      |       |          |         | Perm          |   |     |  |
| Protected Phases         | 4         |      |       | 8        | 2       |               |   |     |  |
| Permitted Phases         | •         |      |       |          | _       | 2             |   |     |  |
| Actuated Green, G (s)    | 40.7      |      |       | 40.7     | 8.6     | 8.6           |   |     |  |
| Effective Green, g (s)   | 40.7      |      |       | 40.7     | 8.6     | 8.6           |   |     |  |
| Actuated g/C Ratio       | 0.71      |      |       | 0.71     | 0.15    | 0.15          |   |     |  |
| Clearance Time (s)       | 4.0       |      |       | 4.0      | 4.0     | 4.0           |   |     |  |
| Vehicle Extension (s)    | 3.0       |      |       | 3.0      | 3.0     | 3.0           |   |     |  |
| Lane Grp Cap (vph)       | 1322      |      |       | 1323     | 266     | 238           |   |     |  |
| v/s Ratio Prot           | 0.08      |      |       | c0.61    | 0.00    |               |   |     |  |
| v/s Ratio Perm           | 0.00      |      |       | 00.0.    | 0.00    | c0.03         |   |     |  |
| v/c Ratio                | 0.11      |      |       | 0.86     | 0.03    | 0.20          |   |     |  |
| Uniform Delay, d1        | 2.6       |      |       | 6.1      | 20.8    | 21.4          |   |     |  |
| Progression Factor       | 1.00      |      |       | 1.00     | 1.00    | 1.00          |   |     |  |
| Incremental Delay, d2    | 0.0       |      |       | 5.7      | 0.0     | 0.4           |   |     |  |
| Delay (s)                | 2.6       |      |       | 11.8     | 20.8    | 21.8          |   |     |  |
| Level of Service         | Α         |      |       | В        | С       | С             |   |     |  |
| Approach Delay (s)       | 2.6       |      |       | 11.8     | 21.8    |               |   |     |  |
| Approach LOS             | Α         |      |       | В        | С       |               |   |     |  |
|                          |           |      |       |          |         |               |   |     |  |
| Intersection Summary     |           |      | 16.5  |          | 1014:   | 1 ( )         |   |     |  |
| HCM Average Control D    |           |      | 13.0  | H        | ICM Lev | vel of Servic | е | В   |  |
| HCM Volume to Capacit    |           |      | 0.74  |          |         |               |   | 0.0 |  |
| Actuated Cycle Length (  |           |      | 57.3  |          |         | ost time (s)  |   | 8.0 |  |
| Intersection Capacity Ut | ilization |      | 60.1% | I        | SU Leve | el of Service |   | В   |  |
| Analysis Period (min)    |           |      | 15    |          |         |               |   |     |  |
| c Critical Lane Group    |           |      |       |          |         |               |   |     |  |

|                          | ۶         | <b>→</b>   | •     | •     | <b>←</b>   | •         | •      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ     | 4    |
|--------------------------|-----------|------------|-------|-------|------------|-----------|--------|----------|-------------|-------------|-------|------|
| Movement                 | EBL       | EBT        | EBR   | WBL   | WBT        | WBR       | NBL    | NBT      | NBR         | SBL         | SBT   | SBR  |
| Lane Configurations      | ¥         | <b>∱</b> } |       | J.    | <b>↑</b> ↑ |           | ,      | f)       |             | 7           | ĵ»    |      |
| Ideal Flow (vphpl)       | 1900      | 1900       | 1900  | 1900  | 1900       | 1900      | 1900   | 1900     | 1900        | 1900        | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0      |             | 4.0         | 4.0   |      |
| Lane Util. Factor        | 1.00      | 0.95       |       | 1.00  | 0.95       |           | 1.00   | 1.00     |             | 1.00        | 1.00  |      |
| Frt                      | 1.00      | 1.00       |       | 1.00  | 1.00       |           | 1.00   | 0.91     |             | 1.00        | 0.98  |      |
| Flt Protected            | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00     |             | 0.95        | 1.00  |      |
| Satd. Flow (prot)        | 1444      | 3432       |       | 1770  | 3503       |           | 1770   | 1689     |             | 1770        | 1833  |      |
| Flt Permitted            | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00     |             | 0.95        | 1.00  |      |
| Satd. Flow (perm)        | 1444      | 3432       |       | 1770  | 3503       |           | 1770   | 1689     |             | 1770        | 1833  |      |
| Volume (vph)             | 4         | 284        | 4     | 106   | 1102       | 4         | 1      | 13       | 21          | 3           | 35    | 4    |
| Peak-hour factor, PHF    | 0.87      | 0.87       | 0.87  | 0.93  | 0.93       | 0.93      | 0.75   | 0.75     | 0.75        | 0.83        | 0.83  | 0.83 |
| Adj. Flow (vph)          | 5         | 326        | 5     | 114   | 1185       | 4         | 1      | 17       | 28          | 4           | 42    | 5    |
| RTOR Reduction (vph)     | 0         | 1          | 0     | 0     | 0          | 0         | 0      | 26       | 0           | 0           | 5     | 0    |
| Lane Group Flow (vph)    | 5         | 330        | 0     | 114   | 1189       | 0         | 1      | 19       | 0           | 4           | 42    | 0    |
| Heavy Vehicles (%)       | 25%       | 5%         | 2%    | 2%    | 3%         | 2%        | 2%     | 2%       | 2%          | 2%          | 2%    | 2%   |
| Turn Type                | Prot      |            |       | Prot  |            |           | Prot   |          |             | Prot        |       |      |
| Protected Phases         | 7         | 4          |       | 3     | 8          |           | 5      | 2        |             | 1           | 6     |      |
| Permitted Phases         |           |            |       |       |            |           |        |          |             |             |       |      |
| Actuated Green, G (s)    | 0.5       | 21.1       |       | 2.9   | 23.5       |           | 0.4    | 2.9      |             | 0.5         | 3.0   |      |
| Effective Green, g (s)   | 0.5       | 21.1       |       | 2.9   | 23.5       |           | 0.4    | 2.9      |             | 0.5         | 3.0   |      |
| Actuated g/C Ratio       | 0.01      | 0.49       |       | 0.07  | 0.54       |           | 0.01   | 0.07     |             | 0.01        | 0.07  |      |
| Clearance Time (s)       | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0      |             | 4.0         | 4.0   |      |
| Vehicle Extension (s)    | 3.0       | 3.0        |       | 3.0   | 3.0        |           | 3.0    | 3.0      |             | 3.0         | 3.0   |      |
| Lane Grp Cap (vph)       | 17        | 1669       |       | 118   | 1897       |           | 16     | 113      |             | 20          | 127   |      |
| v/s Ratio Prot           | 0.00      | 0.10       |       | c0.06 | c0.34      |           | 0.00   | 0.01     |             | c0.00       | c0.02 |      |
| v/s Ratio Perm           |           |            |       |       |            |           |        |          |             |             |       |      |
| v/c Ratio                | 0.29      | 0.20       |       | 0.97  | 0.63       |           | 0.06   | 0.17     |             | 0.20        | 0.33  |      |
| Uniform Delay, d1        | 21.3      | 6.3        |       | 20.2  | 6.9        |           | 21.3   | 19.1     |             | 21.3        | 19.2  |      |
| Progression Factor       | 1.00      | 1.00       |       | 1.00  | 1.00       |           | 1.00   | 1.00     |             | 1.00        | 1.00  |      |
| Incremental Delay, d2    | 9.4       | 0.1        |       | 71.5  | 0.7        |           | 1.6    | 0.7      |             | 4.9         | 1.6   |      |
| Delay (s)                | 30.7      | 6.4        |       | 91.7  | 7.6        |           | 23.0   | 19.8     |             | 26.1        | 20.8  |      |
| Level of Service         | С         | Α          |       | F     | Α          |           | С      | В        |             | С           | С     |      |
| Approach Delay (s)       |           | 6.8        |       |       | 14.9       |           |        | 19.9     |             |             | 21.2  |      |
| Approach LOS             |           | Α          |       |       | В          |           |        | В        |             |             | С     |      |
| Intersection Summary     |           |            |       |       |            |           |        |          |             |             |       |      |
| HCM Average Control D    | elay      |            | 13.7  | H     | ICM Lev    | vel of Se | ervice |          | В           |             |       |      |
| HCM Volume to Capacit    | ty ratio  |            | 0.50  |       |            |           |        |          |             |             |       |      |
| Actuated Cycle Length (  | s)        |            | 43.4  |       |            | ost time  |        |          | 8.0         |             |       |      |
| Intersection Capacity Ut | ilization |            | 47.3% | I     | CU Leve    | el of Ser | vice   |          | Α           |             |       |      |
| Analysis Period (min)    |           |            | 15    |       |            |           |        |          |             |             |       |      |

|                          | ۶         | <b>→</b>   | $\rightarrow$ | •    | <b>←</b>   | •         | •      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ     | 4    |
|--------------------------|-----------|------------|---------------|------|------------|-----------|--------|----------|-------------|-------------|-------|------|
| Movement                 | EBL       | EBT        | EBR           | WBL  | WBT        | WBR       | NBL    | NBT      | NBR         | SBL         | SBT   | SBR  |
| Lane Configurations      | , j       | <b>↑</b> ↑ |               | J.   | <b>↑</b> ↑ |           | ,      | f)       |             | , N         | f)    |      |
| Ideal Flow (vphpl)       | 1900      | 1900       | 1900          | 1900 | 1900       | 1900      | 1900   | 1900     | 1900        | 1900        | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0        |               | 4.0  | 4.0        |           |        | 4.0      |             | 4.0         | 4.0   |      |
| Lane Util. Factor        | 1.00      | 0.95       |               | 1.00 | 0.95       |           |        | 1.00     |             | 1.00        | 1.00  |      |
| Frt                      | 1.00      | 1.00       |               | 1.00 | 1.00       |           |        | 0.88     |             | 1.00        | 0.85  |      |
| Flt Protected            | 0.95      | 1.00       |               | 0.95 | 1.00       |           |        | 1.00     |             | 0.95        | 1.00  |      |
| Satd. Flow (prot)        | 1770      | 3470       |               | 1444 | 3524       |           |        | 1389     |             | 1770        | 1582  |      |
| Flt Permitted            | 0.95      | 1.00       |               | 0.95 | 1.00       |           |        | 1.00     |             | 0.95        | 1.00  |      |
| Satd. Flow (perm)        | 1770      | 3470       |               | 1444 | 3524       |           |        | 1389     |             | 1770        | 1582  |      |
| Volume (vph)             | 4         | 303        | 1             | 3    | 1162       | 34        | 0      | 1        | 5           | 9           | 1     | 50   |
| Peak-hour factor, PHF    | 0.91      | 0.91       | 0.91          | 0.93 | 0.93       | 0.93      | 0.63   | 0.63     | 0.63        | 0.85        | 0.85  | 0.85 |
| Adj. Flow (vph)          | 4         | 333        | 1             | 3    | 1249       | 37        | 0      | 2        | 8           | 11          | 1     | 59   |
| RTOR Reduction (vph)     | 0         | 0          | 0             | 0    | 2          | 0         | 0      | 8        | 0           | 0           | 50    | 0    |
| Lane Group Flow (vph)    | 4         | 334        | 0             | 3    | 1284       | 0         | 0      | 2        | 0           | 11          | 10    | 0    |
| Heavy Vehicles (%)       | 2%        | 4%         | 2%            | 25%  | 2%         | 2%        | 2%     | 2%       | 25%         | 2%          | 25%   | 2%   |
| Turn Type                | Prot      |            |               | Prot |            |           | Prot   |          |             | Prot        |       |      |
| Protected Phases         | 7         | 4          |               | 3    | 8          |           | 5      | 2        |             | 1           | 6     |      |
| Permitted Phases         |           |            |               |      |            |           |        |          |             |             |       |      |
| Actuated Green, G (s)    | 0.3       | 22.8       |               | 0.3  | 22.8       |           |        | 1.7      |             | 0.3         | 6.0   |      |
| Effective Green, g (s)   | 0.3       | 22.8       |               | 0.3  | 22.8       |           |        | 1.7      |             | 0.3         | 6.0   |      |
| Actuated g/C Ratio       | 0.01      | 0.55       |               | 0.01 | 0.55       |           |        | 0.04     |             | 0.01        | 0.15  |      |
| Clearance Time (s)       | 4.0       | 4.0        |               | 4.0  | 4.0        |           |        | 4.0      |             | 4.0         | 4.0   |      |
| Vehicle Extension (s)    | 3.0       | 3.0        |               | 3.0  | 3.0        |           |        | 3.0      |             | 3.0         | 3.0   |      |
| Lane Grp Cap (vph)       | 13        | 1925       |               | 11   | 1955       |           |        | 57       |             | 13          | 231   |      |
| v/s Ratio Prot           | c0.00     | 0.10       |               | 0.00 | c0.36      |           |        | 0.00     |             | c0.01       | c0.01 |      |
| v/s Ratio Perm           |           |            |               |      |            |           |        |          |             |             |       |      |
| v/c Ratio                | 0.31      | 0.17       |               | 0.27 | 0.66       |           |        | 0.04     |             | 0.85        | 0.04  |      |
| Uniform Delay, d1        | 20.3      | 4.5        |               | 20.3 | 6.4        |           |        | 18.9     |             | 20.4        | 15.1  |      |
| Progression Factor       | 1.00      | 1.00       |               | 1.00 | 1.00       |           |        | 1.00     |             | 1.00        | 1.00  |      |
| Incremental Delay, d2    | 13.0      | 0.0        |               | 13.0 | 0.8        |           |        | 0.3      |             | 166.4       | 0.1   |      |
| Delay (s)                | 33.3      | 4.6        |               | 33.3 | 7.2        |           |        | 19.2     |             | 186.8       | 15.2  |      |
| Level of Service         | С         | Α          |               | С    | Α          |           |        | В        |             | F           | В     |      |
| Approach Delay (s)       |           | 4.9        |               |      | 7.3        |           |        | 19.2     |             |             | 41.7  |      |
| Approach LOS             |           | Α          |               |      | Α          |           |        | В        |             |             | D     |      |
| Intersection Summary     |           |            |               |      |            |           |        |          |             |             |       |      |
| HCM Average Control D    | elay      |            | 8.3           | H    | ICM Lev    | vel of Se | ervice |          | Α           |             |       |      |
| HCM Volume to Capaci     | ty ratio  |            | 0.53          |      |            |           |        |          |             |             |       |      |
| Actuated Cycle Length (  |           |            | 41.1          |      |            | ost time  |        |          | 12.0        |             |       |      |
| Intersection Capacity Ut | ilization |            | 47.0%         | 10   | CU Leve    | el of Ser | vice   |          | Α           |             |       |      |
| Analysis Period (min)    |           |            | 15            |      |            |           |        |          |             |             |       |      |

|                          | ۶         | <b>→</b>   | •     | •    | <b>←</b>   | •         | 4      | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ    | 4    |
|--------------------------|-----------|------------|-------|------|------------|-----------|--------|----------|----------|-------------|------|------|
| Movement                 | EBL       | EBT        | EBR   | WBL  | WBT        | WBR       | NBL    | NBT      | NBR      | SBL         | SBT  | SBR  |
| Lane Configurations      | ¥         | <b>↑</b> ↑ |       | J.   | <b>↑</b> ↑ |           | ň      | f)       |          | ň           | f)   |      |
| Ideal Flow (vphpl)       | 1900      | 1900       | 1900  | 1900 | 1900       | 1900      | 1900   | 1900     | 1900     | 1900        | 1900 | 1900 |
| Total Lost time (s)      | 4.0       | 4.0        |       | 4.0  | 4.0        |           | 4.0    | 4.0      |          | 4.0         | 4.0  |      |
| Lane Util. Factor        | 1.00      | 0.95       |       | 1.00 | 0.95       |           | 1.00   | 1.00     |          | 1.00        | 1.00 |      |
| Frt                      | 1.00      | 1.00       |       | 1.00 | 0.99       |           | 1.00   | 0.96     |          | 1.00        | 0.89 |      |
| Flt Protected            | 0.95      | 1.00       |       | 0.95 | 1.00       |           | 0.95   | 1.00     |          | 0.95        | 1.00 |      |
| Satd. Flow (prot)        | 1480      | 3420       |       | 1770 | 3483       |           | 1770   | 1685     |          | 1752        | 1628 |      |
| Flt Permitted            | 0.95      | 1.00       |       | 0.95 | 1.00       |           | 0.95   | 1.00     |          | 0.95        | 1.00 |      |
| Satd. Flow (perm)        | 1480      | 3420       |       | 1770 | 3483       |           | 1770   | 1685     |          | 1752        | 1628 |      |
| Volume (vph)             | 9         | 299        | 7     | 5    | 1117       | 102       | 16     | 27       | 9        | 109         | 25   | 64   |
| Peak-hour factor, PHF    | 0.87      | 0.87       | 0.87  | 0.93 | 0.93       | 0.93      | 0.81   | 0.81     | 0.81     | 0.86        | 0.86 | 0.86 |
| Adj. Flow (vph)          | 10        | 344        | 8     | 5    | 1201       | 110       | 20     | 33       | 11       | 127         | 29   | 74   |
| RTOR Reduction (vph)     | 0         | 1          | 0     | 0    | 4          | 0         | 0      | 10       | 0        | 0           | 60   | 0    |
| Lane Group Flow (vph)    | 10        | 351        | 0     | 5    | 1307       | 0         | 20     | 34       | 0        | 127         | 43   | 0    |
| Heavy Vehicles (%)       | 22%       | 5%         | 14%   | 2%   | 2%         | 6%        | 2%     | 4%       | 22%      | 3%          | 2%   | 5%   |
| Turn Type                | Prot      |            |       | Prot |            |           | Prot   |          |          | Prot        |      |      |
| Protected Phases         | 7         | 4          |       | 3    | 8          |           | 5      | 2        |          | 1           | 6    |      |
| Permitted Phases         |           |            |       |      |            |           |        |          |          |             |      |      |
| Actuated Green, G (s)    | 0.9       | 37.8       |       | 0.8  | 37.7       |           | 1.0    | 5.4      |          | 8.1         | 12.5 |      |
| Effective Green, g (s)   | 0.9       | 37.8       |       | 0.8  | 37.7       |           | 1.0    | 5.4      |          | 8.1         | 12.5 |      |
| Actuated g/C Ratio       | 0.01      | 0.56       |       | 0.01 | 0.55       |           | 0.01   | 0.08     |          | 0.12        | 0.18 |      |
| Clearance Time (s)       | 4.0       | 4.0        |       | 4.0  | 4.0        |           | 4.0    | 4.0      |          | 4.0         | 4.0  |      |
| Vehicle Extension (s)    | 3.0       | 3.0        |       | 3.0  | 3.0        |           | 3.0    | 3.0      |          | 3.0         | 3.0  |      |
| Lane Grp Cap (vph)       | 20        | 1898       |       | 21   | 1928       |           | 26     | 134      |          | 208         | 299  |      |
| v/s Ratio Prot           | c0.01     | 0.10       |       | 0.00 | c0.38      |           | 0.01   | c0.02    |          | c0.07       | 0.03 |      |
| v/s Ratio Perm           |           |            |       |      |            |           |        |          |          |             |      |      |
| v/c Ratio                | 0.50      | 0.18       |       | 0.24 | 0.68       |           | 0.77   | 0.25     |          | 0.61        | 0.14 |      |
| Uniform Delay, d1        | 33.4      | 7.5        |       | 33.3 | 10.9       |           | 33.4   | 29.5     |          | 28.5        | 23.3 |      |
| Progression Factor       | 1.00      | 1.00       |       | 1.00 | 1.00       |           | 1.00   | 1.00     |          | 1.00        | 1.00 |      |
| Incremental Delay, d2    | 18.3      | 0.0        |       | 5.8  | 1.0        |           | 80.9   | 1.0      |          | 5.2         | 0.2  |      |
| Delay (s)                | 51.7      | 7.6        |       | 39.1 | 11.8       |           | 114.4  | 30.5     |          | 33.7        | 23.5 |      |
| Level of Service         | D         | Α          |       | D    | В          |           | F      | С        |          | С           | С    |      |
| Approach Delay (s)       |           | 8.8        |       |      | 11.9       |           |        | 56.7     |          |             | 29.2 |      |
| Approach LOS             |           | Α          |       |      | В          |           |        | E        |          |             | С    |      |
| Intersection Summary     |           |            |       |      |            |           |        |          |          |             |      |      |
| HCM Average Control D    | •         |            | 14.8  | H    | ICM Le     | vel of Se | ervice |          | В        |             |      |      |
| HCM Volume to Capacit    | •         |            | 0.62  |      |            |           |        |          |          |             |      |      |
| Actuated Cycle Length (  |           |            | 68.1  |      |            | ost time  |        |          | 16.0     |             |      |      |
| Intersection Capacity Ut | ilization |            | 53.5% | 10   | CU Leve    | el of Ser | vice   |          | Α        |             |      |      |
| Analysis Period (min)    |           |            | 15    |      |            |           |        |          |          |             |      |      |

|                          | -          | •    | •     | ←        | 1         | <i>&gt;</i>   |     |  |
|--------------------------|------------|------|-------|----------|-----------|---------------|-----|--|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL       | NBR           |     |  |
| Lane Configurations      | <b>↑</b> ↑ |      | ች     | <b>^</b> | *         | 1             |     |  |
| Ideal Flow (vphpl)       | 1900       | 1900 | 1900  | 1900     | 1900      | 1900          |     |  |
| Total Lost time (s)      | 4.0        |      | 4.0   | 4.0      | 4.0       | 4.0           |     |  |
| Lane Util. Factor        | 0.95       |      | 1.00  | 0.95     | 1.00      | 1.00          |     |  |
| Frt                      | 0.97       |      | 1.00  | 1.00     | 1.00      | 0.85          |     |  |
| Flt Protected            | 1.00       |      | 0.95  | 1.00     | 0.95      | 1.00          |     |  |
| Satd. Flow (prot)        | 3322       |      | 1687  | 3539     | 1736      | 1509          |     |  |
| Flt Permitted            | 1.00       |      | 0.95  | 1.00     | 0.95      | 1.00          |     |  |
| Satd. Flow (perm)        | 3322       |      | 1687  | 3539     | 1736      | 1509          |     |  |
| Volume (vph)             | 355        | 82   | 59    | 1164     | 49        | 28            |     |  |
| Peak-hour factor, PHF    | 0.89       | 0.89 | 0.93  | 0.93     | 0.71      | 0.71          |     |  |
| Adj. Flow (vph)          | 399        | 92   | 63    | 1252     | 69        | 39            |     |  |
| RTOR Reduction (vph)     | 25         | 0    | 0     | 0        | 0         | 33            |     |  |
| Lane Group Flow (vph)    | 466        | 0    | 63    | 1252     | 69        | 6             |     |  |
| Heavy Vehicles (%)       | 6%         | 4%   | 7%    | 2%       | 4%        | 7%            |     |  |
| Turn Type                |            |      | Prot  |          |           | Perm          |     |  |
| Protected Phases         | 4          |      | 3     | 8        | 2         |               |     |  |
| Permitted Phases         | •          |      |       |          |           | 2             |     |  |
| Actuated Green, G (s)    | 15.0       |      | 2.3   | 21.3     | 4.9       | 4.9           |     |  |
| Effective Green, g (s)   | 15.0       |      | 2.3   | 21.3     | 4.9       | 4.9           |     |  |
| Actuated g/C Ratio       | 0.44       |      | 0.07  | 0.62     | 0.14      | 0.14          |     |  |
| Clearance Time (s)       | 4.0        |      | 4.0   | 4.0      | 4.0       | 4.0           |     |  |
| Vehicle Extension (s)    | 3.0        |      | 3.0   | 3.0      | 3.0       | 3.0           |     |  |
| Lane Grp Cap (vph)       | 1457       |      | 113   | 2204     | 249       | 216           |     |  |
| v/s Ratio Prot           | 0.14       |      | 0.04  | c0.35    | c0.04     |               |     |  |
| v/s Ratio Perm           |            |      | 2.0.  | 22.00    |           | 0.00          |     |  |
| v/c Ratio                | 0.32       |      | 0.56  | 0.57     | 0.28      | 0.03          |     |  |
| Uniform Delay, d1        | 6.3        |      | 15.5  | 3.8      | 13.1      | 12.6          |     |  |
| Progression Factor       | 1.00       |      | 1.00  | 1.00     | 1.00      | 1.00          |     |  |
| Incremental Delay, d2    | 0.1        |      | 5.8   | 0.3      | 0.6       | 0.0           |     |  |
| Delay (s)                | 6.4        |      | 21.3  | 4.1      | 13.7      | 12.6          |     |  |
| Level of Service         | Α          |      | С     | Α        | В         | В             |     |  |
| Approach Delay (s)       | 6.4        |      |       | 4.9      | 13.3      |               |     |  |
| Approach LOS             | Α          |      |       | Α        | В         |               |     |  |
| Intersection Summary     |            |      |       |          |           |               |     |  |
| HCM Average Control D    | elay       |      | 5.8   | F        | ICM Lev   | vel of Servic | e A |  |
| HCM Volume to Capacit    |            |      | 0.51  |          |           |               |     |  |
| Actuated Cycle Length (  |            |      | 34.2  | 5        | Sum of lo | ost time (s)  | 8.0 |  |
| Intersection Capacity Ut |            |      | 42.2% | I        | CU Leve   | el of Service | А   |  |
| Analysis Period (min)    |            |      | 15    |          |           |               |     |  |
| o Critical Lana Group    |            |      |       |          |           |               |     |  |

|                           | •        | -     | $\rightarrow$ | •     | <b>←</b> | •         | •      | <b>†</b> | <b>/</b> | <b>&gt;</b> | ţ     | 4    |
|---------------------------|----------|-------|---------------|-------|----------|-----------|--------|----------|----------|-------------|-------|------|
| Movement                  | EBL      | EBT   | EBR           | WBL   | WBT      | WBR       | NBL    | NBT      | NBR      | SBL         | SBT   | SBR  |
| Lane Configurations       |          | 4     |               |       | 4        |           | ř      | £        |          | Ţ           | £     | _    |
| Ideal Flow (vphpl)        | 1900     | 1900  | 1900          | 1900  | 1900     | 1900      | 1900   | 1900     | 1900     | 1900        | 1900  | 1900 |
| Total Lost time (s)       |          | 4.0   |               |       | 4.0      |           | 4.0    | 4.0      |          |             | 4.0   |      |
| Lane Util. Factor         |          | 1.00  |               |       | 1.00     |           | 1.00   | 1.00     |          |             | 1.00  |      |
| Frt                       |          | 0.91  |               |       | 1.00     |           | 1.00   | 0.98     |          |             | 1.00  |      |
| Flt Protected             |          | 1.00  |               |       | 0.96     |           | 0.95   | 1.00     |          |             | 1.00  |      |
| Satd. Flow (prot)         |          | 1689  |               |       | 1760     |           | 1626   | 1823     |          |             | 1859  |      |
| Flt Permitted             |          | 1.00  |               |       | 0.96     |           | 0.95   | 1.00     |          |             | 1.00  |      |
| Satd. Flow (perm)         |          | 1689  |               |       | 1760     |           | 1626   | 1823     |          |             | 1859  |      |
| Volume (vph)              | 2        | 19    | 45            | 80    | 18       | 1         | 18     | 173      | 29       | 0           | 607   | 7    |
| Peak-hour factor, PHF     | 0.73     | 0.73  | 0.73          | 0.86  | 0.86     | 0.86      | 0.87   | 0.87     | 0.87     | 0.92        | 0.92  | 0.92 |
| Adj. Flow (vph)           | 3        | 26    | 62            | 93    | 21       | 1         | 21     | 199      | 33       | 0           | 660   | 8    |
| RTOR Reduction (vph)      | 0        | 57    | 0             | 0     | 0        | 0         | 0      | 4        | 0        | 0           | 0     | 0    |
| Lane Group Flow (vph)     | 0        | 34    | 0             | 0     | 115      | 0         | 21     | 228      | 0        | 0           | 668   | 0    |
| Heavy Vehicles (%)        | 2%       | 2%    | 2%            | 2%    | 11%      | 2%        | 11%    | 2%       | 2%       | 2%          | 2%    | 2%   |
| Turn Type                 | Split    |       |               | Split |          |           | Prot   |          |          | Prot        |       |      |
| Protected Phases          | 4        | 4     |               | 8     | 8        |           | 5      | 2        |          | 1           | 6     |      |
| Permitted Phases          |          |       |               |       |          |           |        |          |          |             |       |      |
| Actuated Green, G (s)     |          | 5.4   |               |       | 6.7      |           | 1.3    | 48.3     |          |             | 43.0  |      |
| Effective Green, g (s)    |          | 5.4   |               |       | 6.7      |           | 1.3    | 48.3     |          |             | 43.0  |      |
| Actuated g/C Ratio        |          | 0.07  |               |       | 0.09     |           | 0.02   | 0.67     |          |             | 0.59  |      |
| Clearance Time (s)        |          | 4.0   |               |       | 4.0      |           | 4.0    | 4.0      |          |             | 4.0   |      |
| Vehicle Extension (s)     |          | 3.0   |               |       | 3.0      |           | 3.0    | 3.0      |          |             | 3.0   |      |
| Lane Grp Cap (vph)        |          | 126   |               |       | 163      |           | 29     | 1216     |          |             | 1104  |      |
| v/s Ratio Prot            |          | c0.02 |               |       | c0.07    |           | c0.01  | 0.13     |          |             | c0.36 |      |
| v/s Ratio Perm            |          |       |               |       |          |           |        |          |          |             |       |      |
| v/c Ratio                 |          | 0.27  |               |       | 0.71     |           | 0.72   | 0.19     |          |             | 0.60  |      |
| Uniform Delay, d1         |          | 31.6  |               |       | 31.9     |           | 35.4   | 4.6      |          |             | 9.3   |      |
| Progression Factor        |          | 1.00  |               |       | 1.00     |           | 1.00   | 1.00     |          |             | 1.00  |      |
| Incremental Delay, d2     |          | 1.1   |               |       | 13.0     |           | 61.8   | 0.1      |          |             | 0.9   |      |
| Delay (s)                 |          | 32.8  |               |       | 44.9     |           | 97.2   | 4.7      |          |             | 10.3  |      |
| Level of Service          |          | С     |               |       | D        |           | F      | Α        |          |             | В     |      |
| Approach Delay (s)        |          | 32.8  |               |       | 44.9     |           |        | 12.3     |          |             | 10.3  |      |
| Approach LOS              |          | С     |               |       | D        |           |        | В        |          |             | В     |      |
| Intersection Summary      |          |       |               |       |          |           |        |          |          |             |       |      |
| HCM Average Control D     | elay     |       | 16.1          | F     | ICM Lev  | vel of Se | ervice |          | В        |             |       |      |
| HCM Volume to Capacit     | •        |       | 0.59          |       |          |           |        |          |          |             |       |      |
| Actuated Cycle Length (   |          |       | 72.4          |       |          | ost time  | ` '    |          | 16.0     |             |       |      |
| Intersection Capacity Uti | lization |       | 51.1%         | 10    | CU Leve  | el of Ser | vice   |          | Α        |             |       |      |
| Analysis Period (min)     |          |       | 15            |       |          |           |        |          |          |             |       |      |

|                              | ᄼ         | <b>→</b> | •     | •     | <b>←</b> | •         | •      | <b>†</b> | <b>/</b> | <b>&gt;</b> | ţ     | 4    |
|------------------------------|-----------|----------|-------|-------|----------|-----------|--------|----------|----------|-------------|-------|------|
| Movement                     | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR      | SBL         | SBT   | SBR  |
| Lane Configurations          | ሻ         | f)       |       | 7     | ₽        |           | 7      | 4        |          | ሻ           | ₽     |      |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900     | 1900        | 1900  | 1900 |
| Total Lost time (s)          | 4.0       | 4.0      |       | 4.0   | 4.0      |           | 4.0    | 4.0      |          | 4.0         | 4.0   |      |
| Lane Util. Factor            | 1.00      | 1.00     |       | 1.00  | 1.00     |           | 1.00   | 1.00     |          | 1.00        | 1.00  |      |
| Frt                          | 1.00      | 0.93     |       | 1.00  | 0.98     |           | 1.00   | 0.97     |          | 1.00        | 1.00  |      |
| Flt Protected                | 0.95      | 1.00     |       | 0.95  | 1.00     |           | 0.95   | 1.00     |          | 0.95        | 1.00  |      |
| Satd. Flow (prot)            | 1770      | 1678     |       | 1770  | 1803     |           | 1736   | 1778     |          | 1770        | 1856  |      |
| Flt Permitted                | 0.95      | 1.00     |       | 0.95  | 1.00     |           | 0.95   | 1.00     |          | 0.95        | 1.00  |      |
| Satd. Flow (perm)            | 1770      | 1678     |       | 1770  | 1803     |           | 1736   | 1778     |          | 1770        | 1856  |      |
| Volume (vph)                 | 6         | 56       | 53    | 132   | 77       | 15        | 47     | 208      | 54       | 36          | 696   | 17   |
| Peak-hour factor, PHF        | 0.85      | 0.85     | 0.85  | 0.88  | 0.88     | 0.88      | 0.87   | 0.87     | 0.87     | 0.92        | 0.92  | 0.92 |
| Adj. Flow (vph)              | 7         | 66       | 62    | 150   | 88       | 17        | 54     | 239      | 62       | 39          | 757   | 18   |
| RTOR Reduction (vph)         | 0         | 41       | 0     | 0     | 8        | 0         | 0      | 9        | 0        | 0           | 1     | 0    |
| Lane Group Flow (vph)        | 7         | 87       | 0     | 150   | 97       | 0         | 54     | 292      | 0        | 39          | 774   | 0    |
| Heavy Vehicles (%)           | 2%        | 6%       | 4%    | 2%    | 3%       | 2%        | 4%     | 4%       | 2%       | 2%          | 2%    | 2%   |
| Turn Type                    | Prot      |          |       | Prot  |          |           | Prot   |          |          | Prot        |       |      |
| Protected Phases             | 7         | 4        |       | 3     | 8        |           | 5      | 2        |          | 1           | 6     |      |
| Permitted Phases             |           |          |       |       |          |           |        |          |          |             |       |      |
| Actuated Green, G (s)        | 0.7       | 9.7      |       | 9.5   | 18.5     |           | 3.2    | 45.1     |          | 3.4         | 45.3  |      |
| Effective Green, g (s)       | 0.7       | 9.7      |       | 9.5   | 18.5     |           | 3.2    | 45.1     |          | 3.4         | 45.3  |      |
| Actuated g/C Ratio           | 0.01      | 0.12     |       | 0.11  | 0.22     |           | 0.04   | 0.54     |          | 0.04        | 0.54  |      |
| Clearance Time (s)           | 4.0       | 4.0      |       | 4.0   | 4.0      |           | 4.0    | 4.0      |          | 4.0         | 4.0   |      |
| Vehicle Extension (s)        | 3.0       | 3.0      |       | 3.0   | 3.0      |           | 3.0    | 3.0      |          | 3.0         | 3.0   |      |
| Lane Grp Cap (vph)           | 15        | 194      |       | 201   | 399      |           | 66     | 958      |          | 72          | 1005  |      |
| v/s Ratio Prot               | 0.00      | c0.05    |       | c0.08 | 0.05     |           | c0.03  | 0.16     |          | 0.02        | c0.42 |      |
| v/s Ratio Perm               |           |          |       |       |          |           |        |          |          |             |       |      |
| v/c Ratio                    | 0.47      | 0.45     |       | 0.75  | 0.24     |           | 0.82   | 0.31     |          | 0.54        | 0.77  |      |
| Uniform Delay, d1            | 41.3      | 34.5     |       | 35.9  | 26.8     |           | 40.0   | 10.7     |          | 39.4        | 15.1  |      |
| Progression Factor           | 1.00      | 1.00     |       | 1.00  | 1.00     |           | 1.00   | 1.00     |          | 1.00        | 1.00  |      |
| Incremental Delay, d2        | 21.2      | 1.7      |       | 14.0  | 0.3      |           | 52.2   | 0.2      |          | 8.1         | 3.7   |      |
| Delay (s)                    | 62.5      | 36.2     |       | 49.9  | 27.2     |           | 92.1   | 10.8     |          | 47.5        | 18.8  |      |
| Level of Service             | Е         | D        |       | D     | С        |           | F      | В        |          | D           | В     |      |
| Approach Delay (s)           |           | 37.5     |       |       | 40.5     |           |        | 23.2     |          |             | 20.2  |      |
| Approach LOS                 |           | D        |       |       | D        |           |        | С        |          |             | С     |      |
| Intersection Summary         |           |          |       |       |          |           |        |          |          |             |       |      |
| <b>HCM Average Control D</b> | elay      |          | 25.7  | F     | ICM Lev  | vel of Se | ervice |          | С        |             |       |      |
| <b>HCM Volume to Capacit</b> | •         |          | 0.68  |       |          |           |        |          |          |             |       |      |
| Actuated Cycle Length (      |           |          | 83.7  |       |          | ost time  | ` '    |          | 12.0     |             |       |      |
| Intersection Capacity Ut     | ilization |          | 59.7% | 10    | CU Leve  | el of Ser | vice   |          | В        |             |       |      |
| Analysis Period (min)        |           |          | 15    |       |          |           |        |          |          |             |       |      |

|                          | ၨ         | <b>→</b> | •     | •     | <b>←</b> | •         | •      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ     | 4    |
|--------------------------|-----------|----------|-------|-------|----------|-----------|--------|----------|-------------|-------------|-------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR         | SBL         | SBT   | SBR  |
| Lane Configurations      | ሻ         | <b>^</b> | 7     | ሻ     | <b>^</b> | 7         | ሻ      | <b>1</b> | 7           | ሻ           | ĵ»    |      |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900        | 1900        | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0         | 4.0         | 4.0   |      |
| Lane Util. Factor        | 1.00      | 0.95     | 1.00  | 1.00  | 0.95     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00        | 1.00  |      |
| Frt                      | 1.00      | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85        | 1.00        | 0.92  |      |
| Flt Protected            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95        | 1.00  |      |
| Satd. Flow (prot)        | 1597      | 3471     | 1583  | 1656  | 3505     | 1583      | 1770   | 1743     | 1568        | 1444        | 1709  |      |
| Flt Permitted            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95        | 1.00  |      |
| Satd. Flow (perm)        | 1597      | 3471     | 1583  | 1656  | 3505     | 1583      | 1770   | 1743     | 1568        | 1444        | 1709  |      |
| Volume (vph)             | 55        | 814      | 118   | 224   | 731      | 84        | 176    | 49       | 281         | 322         | 156   | 190  |
| Peak-hour factor, PHF    | 0.93      | 0.93     | 0.93  | 0.93  | 0.93     | 0.93      | 0.93   | 0.93     | 0.93        | 0.92        | 0.92  | 0.92 |
| Adj. Flow (vph)          | 59        | 875      | 127   | 241   | 786      | 90        | 189    | 53       | 302         | 350         | 170   | 207  |
| RTOR Reduction (vph)     | 0         | 0        | 86    | 0     | 0        | 55        | 0      | 0        | 238         | 0           | 41    | 0    |
| Lane Group Flow (vph)    | 59        | 875      | 41    | 241   | 786      | 35        | 189    | 53       | 64          | 350         | 336   | 0    |
| Heavy Vehicles (%)       | 13%       | 4%       | 2%    | 9%    | 3%       | 2%        | 2%     | 9%       | 3%          | 25%         | 2%    | 2%   |
| Turn Type                | Prot      |          | Perm  | Prot  |          | Perm      | Prot   |          | Perm        | Prot        |       |      |
| Protected Phases         | 7         | 4        |       | 3     | 8        |           | 5      | 2        |             | 1           | 6     |      |
| Permitted Phases         |           |          | 4     |       |          | 8         |        |          | 2           |             |       |      |
| Actuated Green, G (s)    | 7.2       | 31.0     | 31.0  | 17.1  | 40.9     | 40.9      | 14.6   | 13.1     | 13.1        | 29.1        | 27.6  |      |
| Effective Green, g (s)   | 7.2       | 31.0     | 31.0  | 17.1  | 40.9     | 40.9      | 14.6   | 13.1     | 13.1        | 29.1        | 27.6  |      |
| Actuated g/C Ratio       | 0.07      | 0.29     | 0.29  | 0.16  | 0.38     | 0.38      | 0.14   | 0.12     | 0.12        | 0.27        | 0.26  |      |
| Clearance Time (s)       | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0         | 4.0         | 4.0   |      |
| Vehicle Extension (s)    | 3.0       | 3.0      | 3.0   | 3.0   | 3.0      | 3.0       | 3.0    | 3.0      | 3.0         | 3.0         | 3.0   |      |
| Lane Grp Cap (vph)       | 108       | 1012     | 462   | 266   | 1349     | 609       | 243    | 215      | 193         | 395         | 444   |      |
| v/s Ratio Prot           | 0.04      | c0.25    |       | c0.15 | 0.22     |           | 0.11   | 0.03     |             | c0.24       | c0.20 |      |
| v/s Ratio Perm           |           |          | 0.03  |       |          | 0.02      |        |          | 0.04        |             |       |      |
| v/c Ratio                | 0.55      | 0.86     | 0.09  | 0.91  | 0.58     | 0.06      | 0.78   | 0.25     | 0.33        | 0.89        | 0.76  |      |
| Uniform Delay, d1        | 48.0      | 35.7     | 27.4  | 43.8  | 25.9     | 20.6      | 44.3   | 42.1     | 42.6        | 37.0        | 36.3  |      |
| Progression Factor       | 1.00      | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00        | 1.00  |      |
| Incremental Delay, d2    | 5.5       | 7.8      | 0.1   | 31.4  | 0.6      | 0.0       | 14.5   | 0.6      | 1.0         | 20.5        | 7.2   |      |
| Delay (s)                | 53.5      | 43.5     | 27.5  | 75.2  | 26.6     | 20.6      | 58.7   | 42.7     | 43.6        | 57.5        | 43.5  |      |
| Level of Service         | D         | D        | С     | Е     | С        | С         | E      | D        | D           | Е           | D     |      |
| Approach Delay (s)       |           | 42.1     |       |       | 36.6     |           |        | 48.8     |             |             | 50.2  |      |
| Approach LOS             |           | D        |       |       | D        |           |        | D        |             |             | D     |      |
| Intersection Summary     |           |          |       |       |          |           |        |          |             |             |       |      |
| HCM Average Control D    | elay      |          | 43.1  | F     | ICM Lev  | vel of Se | ervice |          | D           |             |       |      |
| HCM Volume to Capacit    | •         |          | 0.85  |       |          |           |        |          |             |             |       |      |
| Actuated Cycle Length (  |           |          | 106.3 |       |          | ost time  |        |          | 12.0        |             |       |      |
| Intersection Capacity Ut | ilization |          | 77.8% | 10    | CU Leve  | el of Ser | vice   |          | D           |             |       |      |
| Analysis Period (min)    |           |          | 15    |       |          |           |        |          |             |             |       |      |

|                          | -         | •    | 1     | •        | 1       | <b>/</b>       |      |   |
|--------------------------|-----------|------|-------|----------|---------|----------------|------|---|
| Movement                 | EBT       | EBR  | WBL   | WBT      | NBL     | NBR            |      |   |
| Lane Configurations      | <b>^</b>  | 7    | ች     | <b>^</b> | ች       | #              |      |   |
| Ideal Flow (vphpl)       | 1900      | 1900 | 1900  | 1900     | 1900    | 1900           |      |   |
| Total Lost time (s)      | 4.0       | 4.0  | 4.0   | 4.0      | 4.0     | 4.0            |      |   |
| Lane Util. Factor        | 0.95      | 1.00 | 1.00  | 0.95     | 1.00    | 1.00           |      |   |
| Frt                      | 1.00      | 0.85 | 1.00  | 1.00     | 1.00    | 0.85           |      |   |
| Flt Protected            | 1.00      | 1.00 | 0.95  | 1.00     | 0.95    | 1.00           |      |   |
| Satd. Flow (prot)        | 3471      | 1583 | 1770  | 3539     | 1770    | 1524           |      |   |
| Flt Permitted            | 1.00      | 1.00 | 0.95  | 1.00     | 0.95    | 1.00           |      |   |
| Satd. Flow (perm)        | 3471      | 1583 | 1770  | 3539     | 1770    | 1524           |      |   |
| Volume (vph)             | 1539      | 236  | 170   | 837      | 66      | 51             |      |   |
| Peak-hour factor, PHF    | 0.93      | 0.93 | 0.93  | 0.93     | 0.76    | 0.76           |      |   |
| Adj. Flow (vph)          | 1655      | 254  | 183   | 900      | 87      | 67             |      |   |
| RTOR Reduction (vph)     | 0         | 97   | 0     | 0        | 0       | 63             |      |   |
| Lane Group Flow (vph)    | 1655      | 157  | 183   | 900      | 87      | 4              |      |   |
| Heavy Vehicles (%)       | 4%        | 2%   | 2%    | 2%       | 2%      | 6%             |      |   |
| Turn Type                |           | Perm | Prot  |          |         | Perm           |      |   |
| Protected Phases         | 2         |      | 1     | 6        | 3       |                |      |   |
| Permitted Phases         |           | 2    |       |          |         | 3              |      |   |
| Actuated Green, G (s)    | 51.1      | 51.1 | 12.3  | 68.4     | 5.8     | 5.8            |      |   |
| Effective Green, g (s)   | 52.1      | 52.1 | 13.1  | 69.2     | 5.3     | 5.3            |      |   |
| Actuated g/C Ratio       | 0.59      | 0.59 | 0.15  | 0.78     | 0.06    | 0.06           |      |   |
| Clearance Time (s)       | 5.0       | 5.0  | 4.8   | 4.8      | 3.5     | 3.5            |      |   |
| Vehicle Extension (s)    | 6.8       | 6.8  | 6.3   | 6.3      | 2.0     | 2.0            |      |   |
| Lane Grp Cap (vph)       | 2050      | 935  | 263   | 2777     | 106     | 92             |      |   |
| v/s Ratio Prot           | c0.48     |      | c0.10 | 0.25     | c0.05   |                |      |   |
| v/s Ratio Perm           |           | 0.10 |       |          |         | 0.00           |      |   |
| v/c Ratio                | 0.81      | 0.17 | 0.70  | 0.32     | 0.82    | 0.04           |      |   |
| Uniform Delay, d1        | 14.1      | 8.2  | 35.7  | 2.7      | 41.0    | 39.1           |      |   |
| Progression Factor       | 1.00      | 1.00 | 1.00  | 1.00     | 1.00    | 1.00           |      |   |
| Incremental Delay, d2    | 3.0       | 0.3  | 11.9  | 0.2      | 36.3    | 0.1            |      |   |
| Delay (s)                | 17.2      | 8.5  | 47.5  | 3.0      | 77.2    | 39.1           |      |   |
| Level of Service         | В         | Α    | D     | Α        | Е       | D              |      |   |
| Approach Delay (s)       | 16.0      |      |       | 10.5     | 60.7    |                |      |   |
| Approach LOS             | В         |      |       | В        | Е       |                |      |   |
| Intersection Summary     |           |      |       |          |         |                |      |   |
| HCM Average Control D    | elay      |      | 16.3  | H        | ICM Lev | vel of Service | Е    | 3 |
| HCM Volume to Capacit    |           |      | 0.79  |          |         |                |      |   |
| Actuated Cycle Length (  | ,         |      | 88.2  |          |         | ost time (s)   | 17.7 |   |
| Intersection Capacity Ut | ilization |      | 65.6% | [(       | CU Leve | el of Service  | C    | ) |
| Analysis Period (min)    |           |      | 15    |          |         |                |      |   |
| c Critical Lane Group    |           |      |       |          |         |                |      |   |

|                              | -         | •    | •     | <b>←</b> | •       | <b>/</b>      |   |
|------------------------------|-----------|------|-------|----------|---------|---------------|---|
| Movement                     | EBT       | EBR  | WBL   | WBT      | NBL     | NBR           |   |
| Lane Configurations          | <b></b>   | 7    | ች     | <b>†</b> | ች       | 7             |   |
| Ideal Flow (vphpl)           | 1900      | 1900 | 1900  | 1900     | 1900    | 1900          |   |
| Total Lost time (s)          | 4.0       | 4.0  | 4.0   | 4.0      | 4.0     | 4.0           |   |
| Lane Util. Factor            | 1.00      | 1.00 | 1.00  | 1.00     | 1.00    | 1.00          |   |
| Frt                          | 1.00      | 0.85 | 1.00  | 1.00     | 1.00    | 0.85          |   |
| Flt Protected                | 1.00      | 1.00 | 0.95  | 1.00     | 0.95    | 1.00          |   |
| Satd. Flow (prot)            | 1863      | 1583 | 1770  | 1863     | 1770    | 1583          |   |
| Flt Permitted                | 1.00      | 1.00 | 0.95  | 1.00     | 0.95    | 1.00          |   |
| Satd. Flow (perm)            | 1863      | 1583 | 1770  | 1863     | 1770    | 1583          |   |
| Volume (vph)                 | 189       | 39   | 454   | 730      | 35      | 348           |   |
| Peak-hour factor, PHF        | 0.93      | 0.93 | 0.97  | 0.97     | 0.87    | 0.87          |   |
| Adj. Flow (vph)              | 203       | 42   | 468   | 753      | 40      | 400           |   |
| RTOR Reduction (vph)         | 0         | 22   | 0     | 0        | 0       | 260           |   |
| Lane Group Flow (vph)        | 203       | 20   | 468   | 753      | 40      | 140           |   |
| Turn Type                    |           | Perm | Prot  |          |         | om+ov         |   |
| Protected Phases             | 2         |      | 1     | 6        | 4       | 1             |   |
| Permitted Phases             |           | 2    |       |          |         | 4             |   |
| Actuated Green, G (s)        | 34.0      | 34.0 | 21.5  | 59.1     | 4.5     | 26.0          |   |
| Effective Green, g (s)       | 36.0      | 36.0 | 21.1  | 61.1     | 4.8     | 25.9          |   |
| Actuated g/C Ratio           | 0.49      | 0.49 | 0.29  | 0.83     | 0.06    | 0.35          |   |
| Clearance Time (s)           | 6.0       | 6.0  | 3.6   | 6.0      | 4.3     | 3.6           |   |
| Vehicle Extension (s)        | 2.0       | 2.0  | 1.0   | 2.0      | 1.0     | 1.0           |   |
| Lane Grp Cap (vph)           | 908       | 771  | 505   | 1540     | 115     | 640           |   |
| v/s Ratio Prot               | 0.11      |      | c0.26 | c0.40    | c0.02   | 0.06          |   |
| v/s Ratio Perm               |           | 0.01 |       |          |         | 0.03          |   |
| v/c Ratio                    | 0.22      | 0.03 | 0.93  | 0.49     | 0.35    | 0.22          |   |
| Uniform Delay, d1            | 10.9      | 9.8  | 25.6  | 1.9      | 33.1    | 16.9          |   |
| Progression Factor           | 1.00      | 1.00 | 1.00  | 1.00     | 1.00    | 1.00          |   |
| Incremental Delay, d2        | 0.6       | 0.1  | 22.8  | 1.1      | 0.7     | 0.1           |   |
| Delay (s)                    | 11.5      | 9.9  | 48.5  | 3.0      | 33.7    | 16.9          |   |
| Level of Service             | В         | Α    | D     | Α        | С       | В             |   |
| Approach Delay (s)           | 11.2      |      |       | 20.4     | 18.5    |               |   |
| Approach LOS                 | В         |      |       | С        | В       |               |   |
| Intersection Summary         |           |      |       |          |         |               |   |
| HCM Average Control D        |           |      | 18.8  | F        | ICM Lev | el of Servic  | е |
| <b>HCM Volume to Capacit</b> | •         |      | 0.61  |          |         |               |   |
| Actuated Cycle Length (      |           |      | 73.9  |          |         | ost time (s)  |   |
| Intersection Capacity Ut     | ilization |      | 48.4% | ŀ        | CU Leve | el of Service | ) |
| Analysis Period (min)        |           |      | 15    |          |         |               |   |
| c Critical Lane Group        |           |      |       |          |         |               |   |

|                              | ۶         | <b>→</b> | •     | €    | +        | •         | •      | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>+</b> | -√   |
|------------------------------|-----------|----------|-------|------|----------|-----------|--------|----------|-------------|----------|----------|------|
| Movement                     | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL    | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations          | 44        | <b>^</b> | 77    | 1,1  | <b>^</b> | 7         | ሻሻ     | ተተተ      | 7           | 1,1      | ተተተ      | 7    |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900  | 1900 | 1900     | 1900      | 1900   | 1900     | 1900        | 1900     | 1900     | 1900 |
| Total Lost time (s)          | 4.0       | 4.0      | 4.0   | 4.0  | 4.0      | 4.0       | 4.0    | 4.0      | 4.0         | 4.0      | 4.0      | 4.0  |
| Lane Util. Factor            | 0.97      | 0.95     | 0.88  | 0.97 | 0.95     | 1.00      | 0.97   | 0.91     | 1.00        | 0.97     | 0.91     | 1.00 |
| Frt                          | 1.00      | 1.00     | 0.85  | 1.00 | 1.00     | 0.85      | 1.00   | 1.00     | 0.85        | 1.00     | 1.00     | 0.85 |
| Flt Protected                | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00     | 1.00 |
| Satd. Flow (prot)            | 3433      | 3539     | 2787  | 3433 | 3539     | 1583      | 3433   | 5085     | 1583        | 3433     | 5085     | 1583 |
| Flt Permitted                | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00     | 1.00 |
| Satd. Flow (perm)            | 3433      | 3539     | 2787  | 3433 | 3539     | 1583      | 3433   | 5085     | 1583        | 3433     | 5085     | 1583 |
| Volume (vph)                 | 442       | 198      | 964   | 429  | 409      | 348       | 403    | 463      | 84          | 110      | 991      | 350  |
| Peak-hour factor, PHF        | 0.93      | 0.93     | 0.93  | 0.95 | 0.95     | 0.95      | 0.93   | 0.93     | 0.93        | 0.95     | 0.95     | 0.95 |
| Adj. Flow (vph)              | 475       | 213      | 1037  | 452  | 431      | 366       | 433    | 498      | 90          | 116      | 1043     | 368  |
| RTOR Reduction (vph)         | 0         | 0        | 352   | 0    | 0        | 162       | 0      | 0        | 55          | 0        | 0        | 164  |
| Lane Group Flow (vph)        | 475       | 213      | 685   | 452  | 431      | 204       | 433    | 498      | 35          | 116      | 1043     | 204  |
| Turn Type                    | Prot      |          | Perm  | Prot |          | Perm      | Prot   |          | Perm        | Prot     |          | Perm |
| Protected Phases             | 7         | 4        |       | 3    | 8        |           | 5      | 2        |             | 1        | 6        |      |
| Permitted Phases             |           |          | 4     |      |          | 8         |        |          | 2           |          |          | 6    |
| Actuated Green, G (s)        | 27.7      | 51.8     | 51.8  | 26.5 | 50.5     | 50.5      | 25.5   | 66.2     | 66.2        | 9.1      | 49.4     | 49.4 |
| Effective Green, g (s)       | 29.2      | 53.4     | 53.4  | 28.0 | 52.2     | 52.2      | 27.0   | 67.7     | 67.7        | 10.6     | 51.3     | 51.3 |
| Actuated g/C Ratio           | 0.17      | 0.30     | 0.30  | 0.16 | 0.30     | 0.30      | 0.15   | 0.39     | 0.39        | 0.06     | 0.29     | 0.29 |
| Clearance Time (s)           | 5.5       | 5.6      | 5.6   | 5.5  | 5.7      | 5.7       | 5.5    | 5.5      | 5.5         | 5.5      | 5.9      | 5.9  |
| Vehicle Extension (s)        | 1.0       | 5.0      | 5.0   | 1.0  | 5.9      | 5.9       | 1.0    | 5.4      | 5.4         | 1.0      | 5.4      | 5.4  |
| Lane Grp Cap (vph)           | 571       | 1076     | 847   | 547  | 1051     | 470       | 528    | 1959     | 610         | 207      | 1485     | 462  |
| v/s Ratio Prot               | c0.14     | 0.06     |       | 0.13 | 0.12     |           | c0.13  | 0.10     |             | 0.03     | c0.21    |      |
| v/s Ratio Perm               |           |          | c0.25 |      |          | 0.13      |        |          | 0.02        |          |          | 0.13 |
| v/c Ratio                    | 0.83      | 0.20     | 0.81  | 0.83 | 0.41     | 0.43      | 0.82   | 0.25     | 0.06        | 0.56     | 0.70     | 0.44 |
| Uniform Delay, d1            | 70.9      | 45.3     | 56.4  | 71.5 | 49.4     | 49.8      | 72.0   | 36.8     | 33.9        | 80.3     | 55.4     | 50.5 |
| Progression Factor           | 1.00      | 1.00     | 1.00  | 1.00 | 1.00     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00     | 1.00     | 1.00 |
| Incremental Delay, d2        | 9.6       | 0.2      | 6.5   | 9.4  | 0.7      | 1.8       | 9.4    | 0.2      | 0.1         | 2.1      | 2.1      | 1.6  |
| Delay (s)                    | 80.5      | 45.5     | 62.9  | 80.9 | 50.1     | 51.6      | 81.4   | 37.0     | 34.0        | 82.3     | 57.5     | 52.1 |
| Level of Service             | F         | D        | Е     | F    | D        | D         | F      | D        | С           | F        | Е        | D    |
| Approach Delay (s)           |           | 65.6     |       |      | 61.7     |           |        | 55.6     |             |          | 58.1     |      |
| Approach LOS                 |           | Е        |       |      | Е        |           |        | Е        |             |          | Е        |      |
| Intersection Summary         |           |          |       |      |          |           |        |          |             |          |          |      |
| HCM Average Control D        |           |          | 60.8  | H    | ICM Le   | vel of Se | ervice |          | E           |          |          |      |
| <b>HCM Volume to Capacit</b> |           |          | 0.77  |      |          |           |        |          |             |          |          |      |
| Actuated Cycle Length (      |           |          | 175.7 |      |          | ost time  |        |          | 12.0        |          |          |      |
| Intersection Capacity Ut     | ilization |          | 75.1% | 10   | CU Leve  | el of Ser | vice   |          | D           |          |          |      |
| Analysis Period (min)        |           |          | 15    |      |          |           |        |          |             |          |          |      |
| c Critical Lane Group        |           |          |       |      |          |           |        |          |             |          |          |      |

|                          | -         | •    | •     | ←       | 1       | <b>/</b>     |    |
|--------------------------|-----------|------|-------|---------|---------|--------------|----|
| Movement                 | EBT       | EBR  | WBL   | WBT     | NBL     | NBR          |    |
| Lane Configurations      | 4         |      |       | <b></b> | *       | #            |    |
| Ideal Flow (vphpl)       | 1900      | 1900 | 1900  | 1900    | 1900    | 1900         |    |
| Total Lost time (s)      | 4.0       |      |       | 4.0     | 4.0     | 4.0          |    |
| Lane Util. Factor        | 1.00      |      |       | 1.00    | 1.00    | 1.00         |    |
| Frt                      | 1.00      |      |       | 1.00    | 1.00    | 0.85         |    |
| Flt Protected            | 1.00      |      |       | 1.00    | 0.95    | 1.00         |    |
| Satd. Flow (prot)        | 1854      |      |       | 1863    | 1770    | 1583         |    |
| Flt Permitted            | 1.00      |      |       | 1.00    | 0.95    | 1.00         |    |
| Satd. Flow (perm)        | 1854      |      |       | 1863    | 1770    | 1583         |    |
| Volume (vph)             | 94        | 3    | 0     | 410     | 19      | 1166         |    |
| Peak-hour factor, PHF    | 0.84      | 0.84 | 0.88  | 0.88    | 0.90    | 0.90         |    |
| Adj. Flow (vph)          | 112       | 4    | 0     | 466     | 21      | 1296         |    |
| RTOR Reduction (vph)     | 1         | 0    | 0     | 0       | 0       | 277          |    |
| Lane Group Flow (vph)    | 115       | 0    | 0     | 466     | 21      | 1019         |    |
| Turn Type                |           |      |       |         |         | Perm         |    |
| Protected Phases         | 4         |      |       | 8       | 2       |              |    |
| Permitted Phases         |           |      |       |         |         | 2            |    |
| Actuated Green, G (s)    | 30.8      |      |       | 30.8    | 66.4    | 66.4         |    |
| Effective Green, g (s)   | 30.8      |      |       | 30.8    | 66.4    | 66.4         |    |
| Actuated g/C Ratio       | 0.29      |      |       | 0.29    | 0.63    | 0.63         |    |
| Clearance Time (s)       | 4.0       |      |       | 4.0     | 4.0     | 4.0          |    |
| Vehicle Extension (s)    | 3.0       |      |       | 3.0     | 3.0     | 3.0          |    |
| Lane Grp Cap (vph)       | 543       |      |       | 545     | 1117    | 999          |    |
| v/s Ratio Prot           | 0.06      |      |       | c0.25   | 0.01    |              |    |
| v/s Ratio Perm           |           |      |       |         |         | c0.64        |    |
| v/c Ratio                | 0.21      |      |       | 0.86    | 0.02    | 1.02         |    |
| Uniform Delay, d1        | 28.0      |      |       | 35.1    | 7.2     | 19.4         |    |
| Progression Factor       | 1.00      |      |       | 1.00    | 1.00    | 1.00         |    |
| Incremental Delay, d2    | 0.2       |      |       | 12.4    | 0.0     | 33.5         |    |
| Delay (s)                | 28.2      |      |       | 47.5    | 7.2     | 52.9         |    |
| Level of Service         | С         |      |       | D       | Α       | D            |    |
| Approach Delay (s)       | 28.2      |      |       | 47.5    | 52.2    |              |    |
| Approach LOS             | С         |      |       | D       | D       |              |    |
| Intersection Summary     |           |      |       |         |         |              |    |
| HCM Average Control D    | -         |      | 49.6  | -       | ICM Lev | vel of Servi | ce |
| HCM Volume to Capacit    |           |      | 0.97  |         |         |              |    |
| Actuated Cycle Length (  |           |      | 105.2 |         |         | ost time (s) |    |
| Intersection Capacity Ut | Ilization |      | 84.0% | 10      | JU Leve | el of Servic | е  |
| Analysis Period (min)    |           |      | 15    |         |         |              |    |
| c Critical Lane Group    |           |      |       |         |         |              |    |

|                          | ၨ         | <b>→</b>   | •     | •     | <b>←</b>   | •         | 4     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ    | 4    |
|--------------------------|-----------|------------|-------|-------|------------|-----------|-------|----------|-------------|-------------|------|------|
| Movement                 | EBL       | EBT        | EBR   | WBL   | WBT        | WBR       | NBL   | NBT      | NBR         | SBL         | SBT  | SBR  |
| Lane Configurations      | J.        | <b>∱</b> } |       | J.    | <b>↑</b> ↑ |           | , j   | ĵ»       |             | ň           | f)   |      |
| Ideal Flow (vphpl)       | 1900      | 1900       | 1900  | 1900  | 1900       | 1900      | 1900  | 1900     | 1900        | 1900        | 1900 | 1900 |
| Total Lost time (s)      | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0   | 4.0      |             | 4.0         | 4.0  |      |
| Lane Util. Factor        | 1.00      | 0.95       |       | 1.00  | 0.95       |           | 1.00  | 1.00     |             | 1.00        | 1.00 |      |
| Frt                      | 1.00      | 1.00       |       | 1.00  | 1.00       |           | 1.00  | 0.91     |             | 1.00        | 0.99 |      |
| Flt Protected            | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95  | 1.00     |             | 0.95        | 1.00 |      |
| Satd. Flow (prot)        | 1770      | 3539       |       | 1752  | 3438       |           | 1770  | 1691     |             | 1770        | 1841 |      |
| Flt Permitted            | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95  | 1.00     |             | 0.95        | 1.00 |      |
| Satd. Flow (perm)        | 1770      | 3539       |       | 1752  | 3438       |           | 1770  | 1691     |             | 1770        | 1841 |      |
| Volume (vph)             | 22        | 1397       | 0     | 34    | 562        | 0         | 4     | 60       | 96          | 4           | 25   | 2    |
| Peak-hour factor, PHF    | 0.93      | 0.93       | 0.93  | 0.92  | 0.92       | 0.92      | 0.97  | 0.97     | 0.97        | 0.70        | 0.70 | 0.70 |
| Adj. Flow (vph)          | 24        | 1502       | 0     | 37    | 611        | 0         | 4     | 62       | 99          | 6           | 36   | 3    |
| RTOR Reduction (vph)     | 0         | 0          | 0     | 0     | 0          | 0         | 0     | 55       | 0           | 0           | 3    | 0    |
| Lane Group Flow (vph)    | 24        | 1502       | 0     | 37    | 611        | 0         | 4     | 106      | 0           | 6           | 36   | 0    |
| Heavy Vehicles (%)       | 2%        | 2%         | 2%    | 3%    | 5%         | 2%        | 2%    | 2%       | 2%          | 2%          | 2%   | 2%   |
| Turn Type                | Prot      |            |       | Prot  |            |           | Prot  |          |             | Prot        |      |      |
| Protected Phases         | 7         | 4          |       | 3     | 8          |           | 5     | 2        |             | 1           | 6    |      |
| Permitted Phases         |           |            |       |       |            |           |       |          |             |             |      |      |
| Actuated Green, G (s)    | 2.6       | 46.6       |       | 4.2   | 48.2       |           | 0.9   | 9.0      |             | 1.0         | 9.1  |      |
| Effective Green, g (s)   | 2.6       | 46.6       |       | 4.2   | 48.2       |           | 0.9   | 9.0      |             | 1.0         | 9.1  |      |
| Actuated g/C Ratio       | 0.03      | 0.61       |       | 0.05  | 0.63       |           | 0.01  | 0.12     |             | 0.01        | 0.12 |      |
| Clearance Time (s)       | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0   | 4.0      |             | 4.0         | 4.0  |      |
| Vehicle Extension (s)    | 3.0       | 3.0        |       | 3.0   | 3.0        |           | 3.0   | 3.0      |             | 3.0         | 3.0  |      |
| Lane Grp Cap (vph)       | 60        | 2147       |       | 96    | 2158       |           | 21    | 198      |             | 23          | 218  |      |
| v/s Ratio Prot           | 0.01      | c0.42      |       | c0.02 | 0.18       |           | 0.00  | c0.06    |             | c0.00       | 0.02 |      |
| v/s Ratio Perm           |           |            |       |       |            |           |       |          |             |             |      |      |
| v/c Ratio                | 0.40      | 0.70       |       | 0.39  | 0.28       |           | 0.19  | 0.54     |             | 0.26        | 0.17 |      |
| Uniform Delay, d1        | 36.3      | 10.3       |       | 35.1  | 6.5        |           | 37.6  | 31.9     |             | 37.5        | 30.4 |      |
| Progression Factor       | 1.00      | 1.00       |       | 1.00  | 1.00       |           | 1.00  | 1.00     |             | 1.00        | 1.00 |      |
| Incremental Delay, d2    | 4.3       | 1.0        |       | 2.6   | 0.1        |           | 4.4   | 2.8      |             | 6.0         | 0.4  |      |
| Delay (s)                | 40.7      | 11.3       |       | 37.6  | 6.5        |           | 42.0  | 34.7     |             | 43.5        | 30.8 |      |
| Level of Service         | D         | В          |       | D     | Α          |           | D     | С        |             | D           | С    |      |
| Approach Delay (s)       |           | 11.8       |       |       | 8.3        |           |       | 34.9     |             |             | 32.5 |      |
| Approach LOS             |           | В          |       |       | Α          |           |       | С        |             |             | С    |      |
| Intersection Summary     |           |            |       |       |            |           |       |          |             |             |      |      |
| HCM Average Control D    | elay      |            | 12.8  | H     | ICM Lev    | vel of Se | rvice |          | В           |             |      |      |
| HCM Volume to Capacit    | ty ratio  |            | 0.65  |       |            |           |       |          |             |             |      |      |
| Actuated Cycle Length (  |           |            | 76.8  |       |            | ost time  |       |          | 16.0        |             |      |      |
| Intersection Capacity Ut | ilization |            | 54.3% | 10    | CU Leve    | el of Ser | vice  |          | Α           |             |      |      |
| Analysis Period (min)    |           |            | 15    |       |            |           |       |          |             |             |      |      |

|                              | ۶         | <b>→</b>   | $\rightarrow$ | •    | •          | •         | •      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ţ     | 4    |
|------------------------------|-----------|------------|---------------|------|------------|-----------|--------|----------|-------------|-------------|-------|------|
| Movement                     | EBL       | EBT        | EBR           | WBL  | WBT        | WBR       | NBL    | NBT      | NBR         | SBL         | SBT   | SBR  |
| Lane Configurations          | ¥         | <b>↑</b> ↑ |               | ¥    | <b>↑</b> ↑ |           | ,      | f)       |             | ¥           | ĵ»    |      |
| Ideal Flow (vphpl)           | 1900      | 1900       | 1900          | 1900 | 1900       | 1900      | 1900   | 1900     | 1900        | 1900        | 1900  | 1900 |
| Total Lost time (s)          | 4.0       | 4.0        |               | 4.0  | 4.0        |           | 4.0    | 4.0      |             | 4.0         | 4.0   |      |
| Lane Util. Factor            | 1.00      | 0.95       |               | 1.00 | 0.95       |           | 1.00   | 1.00     |             | 1.00        | 1.00  |      |
| Frt                          | 1.00      | 1.00       |               | 1.00 | 0.99       |           | 1.00   | 0.87     |             | 1.00        | 0.88  |      |
| Flt Protected                | 0.95      | 1.00       |               | 0.95 | 1.00       |           | 0.95   | 1.00     |             | 0.95        | 1.00  |      |
| Satd. Flow (prot)            | 1703      | 3537       |               | 1770 | 3486       |           | 1770   | 1572     |             | 1770        | 1489  |      |
| Flt Permitted                | 0.95      | 1.00       |               | 0.95 | 1.00       |           | 0.95   | 1.00     |             | 0.95        | 1.00  |      |
| Satd. Flow (perm)            | 1703      | 3537       |               | 1770 | 3486       |           | 1770   | 1572     |             | 1770        | 1489  |      |
| Volume (vph)                 | 33        | 1461       | 3             | 2    | 584        | 24        | 1      | 1        | 5           | 39          | 2     | 11   |
| Peak-hour factor, PHF        | 0.93      | 0.93       | 0.93          | 0.92 | 0.92       | 0.92      | 0.45   | 0.45     | 0.45        | 0.71        | 0.71  | 0.71 |
| Adj. Flow (vph)              | 35        | 1571       | 3             | 2    | 635        | 26        | 2      | 2        | 11          | 55          | 3     | 15   |
| RTOR Reduction (vph)         | 0         | 0          | 0             | 0    | 3          | 0         | 0      | 11       | 0           | 0           | 14    | 0    |
| Lane Group Flow (vph)        | 35        | 1574       | 0             | 2    | 658        | 0         | 2      | 2        | 0           | 55          | 4     | 0    |
| Heavy Vehicles (%)           | 6%        | 2%         | 25%           | 2%   | 3%         | 2%        | 2%     | 25%      | 2%          | 2%          | 25%   | 9%   |
| Turn Type                    | Prot      |            |               | Prot |            |           | Prot   |          |             | Prot        |       |      |
| Protected Phases             | 7         | 4          |               | 3    | 8          |           | 5      | 2        |             | 1           | 6     |      |
| Permitted Phases             |           |            |               |      |            |           |        |          |             |             |       |      |
| Actuated Green, G (s)        | 0.6       | 28.8       |               | 0.4  | 28.6       |           | 0.4    | 2.1      |             | 2.0         | 3.7   |      |
| Effective Green, g (s)       | 0.6       | 28.8       |               | 0.4  | 28.6       |           | 0.4    | 2.1      |             | 2.0         | 3.7   |      |
| Actuated g/C Ratio           | 0.01      | 0.58       |               | 0.01 | 0.58       |           | 0.01   | 0.04     |             | 0.04        | 0.08  |      |
| Clearance Time (s)           | 4.0       | 4.0        |               | 4.0  | 4.0        |           | 4.0    | 4.0      |             | 4.0         | 4.0   |      |
| Vehicle Extension (s)        | 3.0       | 3.0        |               | 3.0  | 3.0        |           | 3.0    | 3.0      |             | 3.0         | 3.0   |      |
| Lane Grp Cap (vph)           | 21        | 2066       |               | 14   | 2022       |           | 14     | 67       |             | 72          | 112   |      |
| v/s Ratio Prot               | c0.02     | c0.45      |               | 0.00 | 0.19       |           | 0.00   | 0.00     |             | c0.03       | c0.00 |      |
| v/s Ratio Perm               |           |            |               |      |            |           |        |          |             |             |       |      |
| v/c Ratio                    | 1.67      | 0.76       |               | 0.14 | 0.33       |           | 0.14   | 0.04     |             | 0.76        | 0.04  |      |
| Uniform Delay, d1            | 24.3      | 7.7        |               | 24.3 | 5.4        |           | 24.3   | 22.6     |             | 23.4        | 21.1  |      |
| Progression Factor           | 1.00      | 1.00       |               | 1.00 | 1.00       |           | 1.00   | 1.00     |             | 1.00        | 1.00  |      |
| Incremental Delay, d2        | 444.6     | 1.7        |               | 4.7  | 0.1        |           | 4.7    | 0.2      |             | 37.3        | 0.1   |      |
| Delay (s)                    | 468.9     | 9.4        |               | 28.9 | 5.5        |           | 28.9   | 22.9     |             | 60.8        | 21.3  |      |
| Level of Service             | F         | Α          |               | С    | Α          |           | С      | С        |             | Е           | С     |      |
| Approach Delay (s)           |           | 19.4       |               |      | 5.5        |           |        | 23.7     |             |             | 51.0  |      |
| Approach LOS                 |           | В          |               |      | Α          |           |        | С        |             |             | D     |      |
| Intersection Summary         |           |            |               |      |            |           |        |          |             |             |       |      |
| <b>HCM Average Control D</b> | elay      |            | 16.5          | H    | ICM Lev    | vel of Se | ervice |          | В           |             |       |      |
| HCM Volume to Capaci         |           |            | 0.59          |      |            |           |        |          |             |             |       |      |
| Actuated Cycle Length (      |           |            | 49.3          | S    | Sum of l   | ost time  | (s)    |          | 8.0         |             |       |      |
| Intersection Capacity Ut     | ilization |            | 56.0%         | 10   | CU Leve    | el of Ser | vice   |          | В           |             |       |      |
| Analysis Period (min)        |           |            | 15            |      |            |           |        |          |             |             |       |      |
| o Critical Lana Croup        |           |            |               |      |            |           |        |          |             |             |       |      |

|                          | ၨ         | <b>→</b>   | $\rightarrow$ | •    | <b>←</b>   | •         | •     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ    | 4    |
|--------------------------|-----------|------------|---------------|------|------------|-----------|-------|----------|-------------|-------------|------|------|
| Movement                 | EBL       | EBT        | EBR           | WBL  | WBT        | WBR       | NBL   | NBT      | NBR         | SBL         | SBT  | SBR  |
| Lane Configurations      | J.        | <b>↑</b> ↑ |               | ¥    | <b>↑</b> ↑ |           | , j   | f)       |             | 7           | f)   |      |
| Ideal Flow (vphpl)       | 1900      | 1900       | 1900          | 1900 | 1900       | 1900      | 1900  | 1900     | 1900        | 1900        | 1900 | 1900 |
| Total Lost time (s)      | 4.0       | 4.0        |               | 4.0  | 4.0        |           | 4.0   | 4.0      |             | 4.0         | 4.0  |      |
| Lane Util. Factor        | 1.00      | 0.95       |               | 1.00 | 0.95       |           | 1.00  | 1.00     |             | 1.00        | 1.00 |      |
| Frt                      | 1.00      | 1.00       |               | 1.00 | 0.97       |           | 1.00  | 0.95     |             | 1.00        | 0.96 |      |
| Flt Protected            | 0.95      | 1.00       |               | 0.95 | 1.00       |           | 0.95  | 1.00     |             | 0.95        | 1.00 |      |
| Satd. Flow (prot)        | 1770      | 3531       |               | 1770 | 3357       |           | 1770  | 1775     |             | 1770        | 1678 |      |
| Flt Permitted            | 0.95      | 1.00       |               | 0.95 | 1.00       |           | 0.95  | 1.00     |             | 0.95        | 1.00 |      |
| Satd. Flow (perm)        | 1770      | 3531       |               | 1770 | 3357       |           | 1770  | 1775     |             | 1770        | 1678 |      |
| Volume (vph)             | 157       | 1326       | 15            | 9    | 593        | 143       | 6     | 18       | 8           | 124         | 26   | 10   |
| Peak-hour factor, PHF    | 0.93      | 0.93       | 0.93          | 0.92 | 0.92       | 0.92      | 0.80  | 0.80     | 0.80        | 0.63        | 0.63 | 0.63 |
| Adj. Flow (vph)          | 169       | 1426       | 16            | 10   | 645        | 155       | 8     | 22       | 10          | 197         | 41   | 16   |
| RTOR Reduction (vph)     | 0         | 0          | 0             | 0    | 16         | 0         | 0     | 9        | 0           | 0           | 13   | 0    |
| Lane Group Flow (vph)    | 169       | 1442       | 0             | 10   | 784        | 0         | 8     | 23       | 0           | 197         | 44   | 0    |
| Heavy Vehicles (%)       | 2%        | 2%         | 7%            | 2%   | 5%         | 2%        | 2%    | 2%       | 2%          | 2%          | 4%   | 20%  |
| Turn Type                | Prot      |            |               | Prot |            |           | Prot  |          |             | Prot        |      |      |
| Protected Phases         | 7         | 4          |               | 3    | 8          |           | 5     | 2        |             | 1           | 6    |      |
| Permitted Phases         |           |            |               |      |            |           |       |          |             |             |      |      |
| Actuated Green, G (s)    | 10.0      | 44.6       |               | 1.0  | 35.6       |           | 0.9   | 4.2      |             | 12.7        | 16.0 |      |
| Effective Green, g (s)   | 10.0      | 44.6       |               | 1.0  | 35.6       |           | 0.9   | 4.2      |             | 12.7        | 16.0 |      |
| Actuated g/C Ratio       | 0.13      | 0.57       |               | 0.01 | 0.45       |           | 0.01  | 0.05     |             | 0.16        | 0.20 |      |
| Clearance Time (s)       | 4.0       | 4.0        |               | 4.0  | 4.0        |           | 4.0   | 4.0      |             | 4.0         | 4.0  |      |
| Vehicle Extension (s)    | 3.0       | 3.0        |               | 3.0  | 3.0        |           | 3.0   | 3.0      |             | 3.0         | 3.0  |      |
| Lane Grp Cap (vph)       | 225       | 2006       |               | 23   | 1522       |           | 20    | 95       |             | 286         | 342  |      |
| v/s Ratio Prot           | c0.10     | c0.41      |               | 0.01 | 0.23       |           | 0.00  | c0.01    |             | c0.11       | 0.03 |      |
| v/s Ratio Perm           |           |            |               |      |            |           |       |          |             |             |      |      |
| v/c Ratio                | 0.75      | 0.72       |               | 0.43 | 0.52       |           | 0.40  | 0.24     |             | 0.69        | 0.13 |      |
| Uniform Delay, d1        | 33.0      | 12.4       |               | 38.5 | 15.3       |           | 38.5  | 35.6     |             | 31.0        | 25.6 |      |
| Progression Factor       | 1.00      | 1.00       |               | 1.00 | 1.00       |           | 1.00  | 1.00     |             | 1.00        | 1.00 |      |
| Incremental Delay, d2    | 13.2      | 1.3        |               | 12.6 | 0.3        |           | 12.6  | 1.3      |             | 6.8         | 0.2  |      |
| Delay (s)                | 46.2      | 13.6       |               | 51.1 | 15.6       |           | 51.1  | 36.9     |             | 37.8        | 25.7 |      |
| Level of Service         | D         | В          |               | D    | В          |           | D     | D        |             | D           | С    |      |
| Approach Delay (s)       |           | 17.0       |               |      | 16.0       |           |       | 39.8     |             |             | 35.1 |      |
| Approach LOS             |           | В          |               |      | В          |           |       | D        |             |             | D    |      |
| Intersection Summary     |           |            |               |      |            |           |       |          |             |             |      |      |
| HCM Average Control D    | )elay     |            | 18.8          | H    | ICM Lev    | vel of Se | rvice |          | В           |             |      |      |
| HCM Volume to Capaci     | ty ratio  |            | 0.67          |      |            |           |       |          |             |             |      |      |
| Actuated Cycle Length (  | (s)       |            | 78.5          | S    | Sum of lo  | ost time  | (s)   |          | 12.0        |             |      |      |
| Intersection Capacity Ut | ilization |            | 64.0%         | 10   | CU Leve    | el of Ser | vice  |          | С           |             |      |      |
| Analysis Period (min)    |           |            | 15            |      |            |           |       |          |             |             |      |      |

|                          | -          | •    | •     | ←        | 4         | ~              |      |  |
|--------------------------|------------|------|-------|----------|-----------|----------------|------|--|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL       | NBR            |      |  |
| Lane Configurations      | <b>↑</b> ↑ |      | *     | <b>^</b> | ች         | #              |      |  |
| Ideal Flow (vphpl)       | 1900       | 1900 | 1900  | 1900     | 1900      | 1900           |      |  |
| Total Lost time (s)      | 4.0        |      | 4.0   | 4.0      | 4.0       | 4.0            |      |  |
| Lane Util. Factor        | 0.95       |      | 1.00  | 0.95     | 1.00      | 1.00           |      |  |
| Frt                      | 0.99       |      | 1.00  | 1.00     | 1.00      | 0.85           |      |  |
| Flt Protected            | 1.00       |      | 0.95  | 1.00     | 0.95      | 1.00           |      |  |
| Satd. Flow (prot)        | 3508       |      | 1736  | 3505     | 1770      | 1509           |      |  |
| Flt Permitted            | 1.00       |      | 0.95  | 1.00     | 0.95      | 1.00           |      |  |
| Satd. Flow (perm)        | 3508       |      | 1736  | 3505     | 1770      | 1509           |      |  |
| Volume (vph)             | 1385       | 87   | 55    | 656      | 105       | 55             |      |  |
| Peak-hour factor, PHF    | 0.97       | 0.97 | 0.92  | 0.92     | 0.91      | 0.91           |      |  |
| Adj. Flow (vph)          | 1428       | 90   | 60    | 713      | 115       | 60             |      |  |
| RTOR Reduction (vph)     | 5          | 0    | 0     | 0        | 0         | 50             |      |  |
| Lane Group Flow (vph)    | 1513       | 0    | 60    | 713      | 115       | 10             |      |  |
| Heavy Vehicles (%)       | 2%         | 2%   | 4%    | 3%       | 2%        | 7%             |      |  |
| Turn Type                |            |      | Prot  |          |           | Perm           |      |  |
| Protected Phases         | 4          |      | 3     | 8        | 2         |                |      |  |
| Permitted Phases         |            |      |       |          |           | 2              |      |  |
| Actuated Green, G (s)    | 28.6       |      | 1.9   | 34.5     | 8.0       | 8.0            |      |  |
| Effective Green, g (s)   | 28.6       |      | 1.9   | 34.5     | 8.0       | 8.0            |      |  |
| Actuated g/C Ratio       | 0.57       |      | 0.04  | 0.68     | 0.16      | 0.16           |      |  |
| Clearance Time (s)       | 4.0        |      | 4.0   | 4.0      | 4.0       | 4.0            |      |  |
| /ehicle Extension (s)    | 3.0        |      | 3.0   | 3.0      | 3.0       | 3.0            |      |  |
| ane Grp Cap (vph)        | 1987       |      | 65    | 2395     | 280       | 239            |      |  |
| //s Ratio Prot           | c0.43      |      | c0.03 | 0.20     | c0.06     |                |      |  |
| r/s Ratio Perm           |            |      |       |          |           | 0.01           |      |  |
| r/c Ratio                | 0.76       |      | 0.92  | 0.30     | 0.41      | 0.04           |      |  |
| Jniform Delay, d1        | 8.3        |      | 24.2  | 3.2      | 19.1      | 18.0           |      |  |
| Progression Factor       | 1.00       |      | 1.00  | 1.00     | 1.00      | 1.00           |      |  |
| Incremental Delay, d2    | 1.8        |      | 84.3  | 0.1      | 1.0       | 0.1            |      |  |
| Delay (s)                | 10.1       |      | 108.6 | 3.3      | 20.1      | 18.1           |      |  |
| Level of Service         | В          |      | F     | Α        | С         | В              |      |  |
| Approach Delay (s)       | 10.1       |      |       | 11.4     | 19.4      |                |      |  |
| Approach LOS             | В          |      |       | В        | В         |                |      |  |
| ntersection Summary      |            |      |       |          |           |                |      |  |
| HCM Average Control D    | elay       |      | 11.2  | H        | ICM Lev   | vel of Service | е В  |  |
| HCM Volume to Capacit    |            |      | 0.70  |          |           |                |      |  |
| Actuated Cycle Length (  | s)         |      | 50.5  | S        | Sum of lo | ost time (s)   | 12.0 |  |
| Intersection Capacity Ut | ilization  |      | 58.2% | 10       | CU Leve   | el of Service  | е В  |  |
| Analysis Period (min)    |            |      | 15    |          |           |                |      |  |
| Critical Lana Group      |            |      |       |          |           |                |      |  |

|                               | ۶        | <b>→</b> | •     | •     | <b>←</b> | •         | 4      | <b>†</b> | <b>/</b> | <b>/</b> | ļ    | 4    |
|-------------------------------|----------|----------|-------|-------|----------|-----------|--------|----------|----------|----------|------|------|
| Movement                      | EBL      | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations           |          | 4        |       |       | 4        |           | *      | f)       |          | 7        | f)   |      |
| Ideal Flow (vphpl)            | 1900     | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900     | 1900     | 1900 | 1900 |
| Total Lost time (s)           |          | 4.0      |       |       | 4.0      |           | 4.0    | 4.0      |          | 4.0      | 4.0  |      |
| Lane Util. Factor             |          | 1.00     |       |       | 1.00     |           | 1.00   | 1.00     |          | 1.00     | 1.00 |      |
| Frt                           |          | 0.94     |       |       | 1.00     |           | 1.00   | 0.98     |          | 1.00     | 1.00 |      |
| Flt Protected                 |          | 0.99     |       |       | 0.97     |           | 0.95   | 1.00     |          | 0.95     | 1.00 |      |
| Satd. Flow (prot)             |          | 1742     |       |       | 1797     |           | 1770   | 1827     |          | 1770     | 1858 |      |
| Flt Permitted                 |          | 0.99     |       |       | 0.97     |           | 0.95   | 1.00     |          | 0.95     | 1.00 |      |
| Satd. Flow (perm)             |          | 1742     |       |       | 1797     |           | 1770   | 1827     |          | 1770     | 1858 |      |
| Volume (vph)                  | 8        | 31       | 31    | 64    | 26       | 1         | 53     | 688      | 99       | 1        | 392  | 6    |
| Peak-hour factor, PHF         | 0.84     | 0.84     | 0.84  | 0.90  | 0.90     | 0.90      | 0.92   | 0.92     | 0.92     | 0.87     | 0.87 | 0.87 |
| Adj. Flow (vph)               | 10       | 37       | 37    | 71    | 29       | 1         | 58     | 748      | 108      | 1        | 451  | 7    |
| RTOR Reduction (vph)          | 0        | 33       | 0     | 0     | 0        | 0         | 0      | 4        | 0        | 0        | 0    | 0    |
| Lane Group Flow (vph)         | 0        | 51       | 0     | 0     | 101      | 0         | 58     | 852      | 0        | 1        | 458  | 0    |
| Turn Type                     | Split    |          |       | Split |          |           | Prot   |          |          | Prot     |      |      |
| Protected Phases              | 4        | 4        |       | 8     | 8        |           | 5      | 2        |          | 1        | 6    |      |
| Permitted Phases              |          |          |       |       |          |           |        |          |          |          |      |      |
| Actuated Green, G (s)         |          | 8.2      |       |       | 9.5      |           | 4.7    | 52.1     |          | 0.7      | 48.1 |      |
| Effective Green, g (s)        |          | 8.2      |       |       | 9.5      |           | 4.7    | 52.1     |          | 0.7      | 48.1 |      |
| Actuated g/C Ratio            |          | 0.09     |       |       | 0.11     |           | 0.05   | 0.60     |          | 0.01     | 0.56 |      |
| Clearance Time (s)            |          | 4.0      |       |       | 4.0      |           | 4.0    | 4.0      |          | 4.0      | 4.0  |      |
| Vehicle Extension (s)         |          | 3.0      |       |       | 3.0      |           | 3.0    | 3.0      |          | 3.0      | 3.0  |      |
| Lane Grp Cap (vph)            |          | 165      |       |       | 197      |           | 96     | 1100     |          | 14       | 1033 |      |
| v/s Ratio Prot                |          | c0.03    |       |       | c0.06    |           | c0.03  | c0.47    |          | 0.00     | 0.25 |      |
| v/s Ratio Perm                |          |          |       |       |          |           |        |          |          |          |      |      |
| v/c Ratio                     |          | 0.31     |       |       | 0.51     |           | 0.60   | 0.77     |          | 0.07     | 0.44 |      |
| Uniform Delay, d1             |          | 36.5     |       |       | 36.3     |           | 40.0   | 12.8     |          | 42.6     | 11.3 |      |
| Progression Factor            |          | 1.00     |       |       | 1.00     |           | 1.00   | 1.00     |          | 1.00     | 1.00 |      |
| Incremental Delay, d2         |          | 1.1      |       |       | 2.2      |           | 10.3   | 3.5      |          | 2.2      | 0.3  |      |
| Delay (s)                     |          | 37.6     |       |       | 38.6     |           | 50.3   | 16.3     |          | 44.7     | 11.6 |      |
| Level of Service              |          | D        |       |       | D        |           | D      | В        |          | D        | В    |      |
| Approach Delay (s)            |          | 37.6     |       |       | 38.6     |           |        | 18.4     |          |          | 11.7 |      |
| Approach LOS                  |          | D        |       |       | D        |           |        | В        |          |          | В    |      |
| Intersection Summary          |          |          |       |       |          |           |        |          |          |          |      |      |
| HCM Average Control D         | elay     |          | 18.8  | H     | ICM Le   | vel of Se | ervice |          | В        |          |      |      |
| <b>HCM Volume to Capacity</b> | y ratio  |          | 0.70  |       |          |           |        |          |          |          |      |      |
| Actuated Cycle Length (s      | s)       |          | 86.5  |       |          | ost time  |        |          | 16.0     |          |      |      |
| Intersection Capacity Uti     | lization |          | 62.3% | [0    | CU Leve  | el of Ser | vice   |          | В        |          |      |      |
| Analysis Period (min)         |          |          | 15    |       |          |           |        |          |          |          |      |      |
| c Critical Lane Group         |          |          |       |       |          |           |        |          |          |          |      |      |

| ۶        | <b>→</b>                                                                                                     | •                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                   | <b>←</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | †                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>/</b>                                      | <b>&gt;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ļ                                                                               | 4                                                                                  |
|----------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| EBL      | EBT                                                                                                          | EBR                                                                                                                                                                                                                                                                 | WBL                                                                                                                                                                                                                                                                                                                                 | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WBR                                                                                                                                                                                                                                                                                                                                                                                                                                     | NBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NBR                                           | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SBT                                                                             | SBR                                                                                |
| J.       | ĵ»                                                                                                           |                                                                                                                                                                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                   | ĵ»                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ĵ»                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               | Ť                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f)                                                                              |                                                                                    |
| 1900     | 1900                                                                                                         | 1900                                                                                                                                                                                                                                                                | 1900                                                                                                                                                                                                                                                                                                                                | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1900                                          | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1900                                                                            | 1900                                                                               |
| 4.0      | 4.0                                                                                                          |                                                                                                                                                                                                                                                                     | 4.0                                                                                                                                                                                                                                                                                                                                 | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.0                                                                             |                                                                                    |
| 1.00     | 1.00                                                                                                         |                                                                                                                                                                                                                                                                     | 1.00                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00                                                                            |                                                                                    |
| 1.00     | 0.95                                                                                                         |                                                                                                                                                                                                                                                                     | 1.00                                                                                                                                                                                                                                                                                                                                | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00                                                                            |                                                                                    |
| 0.95     | 1.00                                                                                                         |                                                                                                                                                                                                                                                                     | 0.95                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                                                    |
| 1770     | 1772                                                                                                         |                                                                                                                                                                                                                                                                     | 1770                                                                                                                                                                                                                                                                                                                                | 1744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 1770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1822                                                                            |                                                                                    |
| 0.95     | 1.00                                                                                                         |                                                                                                                                                                                                                                                                     | 0.95                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00                                                                            |                                                                                    |
| 1770     | 1772                                                                                                         |                                                                                                                                                                                                                                                                     | 1770                                                                                                                                                                                                                                                                                                                                | 1744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 1770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1822                                                                            |                                                                                    |
| 18       | 90                                                                                                           | 44                                                                                                                                                                                                                                                                  | 105                                                                                                                                                                                                                                                                                                                                 | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 164                                           | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 463                                                                             | 10                                                                                 |
| 0.95     | 0.95                                                                                                         | 0.95                                                                                                                                                                                                                                                                | 0.87                                                                                                                                                                                                                                                                                                                                | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92                                          | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.87                                                                            | 0.87                                                                               |
| 19       | 95                                                                                                           | 46                                                                                                                                                                                                                                                                  | 121                                                                                                                                                                                                                                                                                                                                 | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 53                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 178                                           | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 532                                                                             | 11                                                                                 |
| 0        | 20                                                                                                           | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                   | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                               | 0                                                                                  |
| 19       | 121                                                                                                          | 0                                                                                                                                                                                                                                                                   | 121                                                                                                                                                                                                                                                                                                                                 | 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                             | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 542                                                                             | 0                                                                                  |
| 2%       | 2%                                                                                                           | 2%                                                                                                                                                                                                                                                                  | 2%                                                                                                                                                                                                                                                                                                                                  | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6%                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2%                                            | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4%                                                                              | 2%                                                                                 |
| Prot     |                                                                                                              |                                                                                                                                                                                                                                                                     | Prot                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                         | Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                                                    |
| 7        | 4                                                                                                            |                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                               |                                                                                    |
|          |                                                                                                              |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                    |
| 1.5      | 13.3                                                                                                         |                                                                                                                                                                                                                                                                     | 6.0                                                                                                                                                                                                                                                                                                                                 | 17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45.2                                                                            |                                                                                    |
| 1.5      | 13.3                                                                                                         |                                                                                                                                                                                                                                                                     | 6.0                                                                                                                                                                                                                                                                                                                                 | 17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45.2                                                                            |                                                                                    |
| 0.02     | 0.15                                                                                                         |                                                                                                                                                                                                                                                                     | 0.07                                                                                                                                                                                                                                                                                                                                | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.52                                                                            |                                                                                    |
| 4.0      | 4.0                                                                                                          |                                                                                                                                                                                                                                                                     | 4.0                                                                                                                                                                                                                                                                                                                                 | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.0                                                                             |                                                                                    |
| 3.0      | 3.0                                                                                                          |                                                                                                                                                                                                                                                                     | 3.0                                                                                                                                                                                                                                                                                                                                 | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0                                                                             |                                                                                    |
| 30       | 270                                                                                                          |                                                                                                                                                                                                                                                                     | 122                                                                                                                                                                                                                                                                                                                                 | 356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 944                                                                             |                                                                                    |
| 0.01     | 0.07                                                                                                         |                                                                                                                                                                                                                                                                     | c0.07                                                                                                                                                                                                                                                                                                                               | c0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         | c0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.30                                                                            |                                                                                    |
|          |                                                                                                              |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                    |
| 0.63     | 0.45                                                                                                         |                                                                                                                                                                                                                                                                     | 0.99                                                                                                                                                                                                                                                                                                                                | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.57                                                                            |                                                                                    |
| 42.6     | 33.6                                                                                                         |                                                                                                                                                                                                                                                                     | 40.6                                                                                                                                                                                                                                                                                                                                | 29.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 42.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.4                                                                            |                                                                                    |
| 1.00     | 1.00                                                                                                         |                                                                                                                                                                                                                                                                     | 1.00                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00                                                                            |                                                                                    |
|          |                                                                                                              |                                                                                                                                                                                                                                                                     | 78.7                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | 84.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8                                                                             |                                                                                    |
|          |                                                                                                              |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                    |
| Е        |                                                                                                              |                                                                                                                                                                                                                                                                     | F                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                         | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |                                                                                    |
|          | 40.0                                                                                                         |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     | 69.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                    |
|          | D                                                                                                            |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     | Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В                                                                               |                                                                                    |
|          |                                                                                                              |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                    |
|          |                                                                                                              | 39.6                                                                                                                                                                                                                                                                | H                                                                                                                                                                                                                                                                                                                                   | ICM Lev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vel of Se                                                                                                                                                                                                                                                                                                                                                                                                                               | ervice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                    |
| ,        |                                                                                                              | 0.84                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                    |
|          |                                                                                                              | 87.2                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.0                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                    |
| lization |                                                                                                              |                                                                                                                                                                                                                                                                     | I                                                                                                                                                                                                                                                                                                                                   | CU Leve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | el of Ser                                                                                                                                                                                                                                                                                                                                                                                                                               | vice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                    |
|          |                                                                                                              | 15                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                    |
|          | 1900 4.0 1.00 1.00 0.95 1770 0.95 1770 18 0.95 1770 19 0 19 2% Prot 7 1.5 1.5 0.02 4.0 3.0 30 0.01 0.63 42.6 | EBL EBT  1900 1900 4.0 4.0 1.00 1.00 1.00 0.95 0.95 1.00 1770 1772 0.95 1.00 1770 1772 18 90 0.95 0.95 19 95 0 20 19 121 2% 2%  Prot 7 4  1.5 13.3 1.5 13.3 0.02 0.15 4.0 4.0 3.0 3.0 30 270 0.01 0.07  0.63 0.45 42.6 33.6 1.00 1.00 36.3 1.2 78.9 34.8 E C 40.0 D | EBL EBT EBR  1900 1900 1900 4.0 4.0 1.00 1.00 1.00 0.95 0.95 1.00 1770 1772 0.95 1.00 1770 1772 18 90 44 0.95 0.95 0.95 19 95 46 0 20 0 19 121 0 2% 2% 2%  Prot 7 4  1.5 13.3 1.5 13.3 1.5 13.3 0.02 0.15 4.0 4.0 3.0 3.0 30 270 0.01 0.07  0.63 0.45 42.6 33.6 1.00 1.00 36.3 1.2 78.9 34.8 E C 40.0 D  elay yratio s 9 39.6 9 7.2 | EBL         EBT         EBR         WBL           1900         1900         1900         1900           4.0         4.0         4.0           1.00         1.00         1.00           1.00         0.95         1.00           0.95         1.00         0.95           1770         1772         1770           0.95         1.00         0.95           1770         1772         1770           18         90         44         105           0.95         0.95         0.95         0.87           19         95         46         121           0         20         0         0           19         121         0         121           2%         2%         2%         2%           Prot         Prot         Prot         7           7         4         3         6.0           1.5         13.3         6.0           0.02         0.15         0.07           4.0         4.0         4.0           3.0         3.0         3.0           30         270         122           0.01< | BBL   BBT   BBR   WBL   WBT   1900   1900   1900   1900   1900   1900   1900   1.00   1.00   1.00   1.00   1.00   1.00   1.00   0.95   1.00   0.95   1.00   0.95   1.00   1.770   1772   1770   1744   0.95   1.00   0.95   1.00   1.770   1772   1.770   1744   18   90   44   105   89   0.95   0.95   0.87   0.87   19   95   46   121   102   0   20   0   0   21   19   121   0   121   134   2%   2%   2%   2%   2%   2%   2%   2 | EBL EBT EBR WBL WBT WBR  1900 1900 1900 1900 1900 1900 4.0 4.0 4.0 4.0 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.95 0.95 1.00 0.95 1.00 1770 1772 1770 1744 0.95 1.00 0.95 1.00 1770 1772 1770 1744 18 90 44 105 89 46 0.95 0.95 0.95 0.87 0.87 0.87 19 95 46 121 102 53 0 20 0 0 21 0 19 121 0 121 134 0 2% 2% 2% 2% 2% 6%  Prot Prot 7 4 3 8 1.5 13.3 6.0 17.8 1.5 13.3 6.0 17.8 0.02 0.15 0.07 0.20 4.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 3.0 30 270 122 356 0.01 0.07 0.07 0.08  E C F C 40.0 69.5  D E  elay 39.6 HCM Level of Se yratio 0.84 s) 87.2 Sum of lost time ICU Level of Ser | EBL         EBT         EBR         WBL         WBT         WBR         NBL           1900         1900         1900         1900         1900         1900         1900           4.0         4.0         4.0         4.0         4.0           1.00         1.00         1.00         1.00         1.00           1.00         0.95         1.00         0.95         1.00           0.95         1.00         0.95         1.00         0.95           1770         1772         1770         1744         1752           0.95         1.00         0.95         1.00         0.95           1770         1772         1770         1744         1752           18         90         44         105         89         46         63           0.95         0.95         0.95         0.87         0.87         0.87         0.92           19         95         46         121         102         53         68           0         20         0         21         0         0           19         121         0         121         134         0         68           < | BBL   BBT   BBR   WBL   WBT   WBR   NBL   NBT | EBL         EBT         EBR         WBL         WBT         WBR         NBL         NBT         NBR           1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900 | EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL  1900 1900 1900 1900 1900 1900 1900 190 | EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT 1900 1900 1900 1900 1900 1900 1900 190 |

|                          | ၨ         | <b>→</b> | •     | •     | <b>←</b> | •         | 4      | <b>†</b> | /    | <b>&gt;</b> | ţ        | 4    |
|--------------------------|-----------|----------|-------|-------|----------|-----------|--------|----------|------|-------------|----------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations      | ሻ         | <b>^</b> | 7     | ሻ     | <b>^</b> | 7         | ሻ      | <b>1</b> | 7    | ሻ           | <b>^</b> |      |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900 | 1900        | 1900     | 1900 |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0  | 4.0         | 4.0      |      |
| Lane Util. Factor        | 1.00      | 0.95     | 1.00  | 1.00  | 0.95     | 1.00      | 1.00   | 1.00     | 1.00 | 1.00        | 1.00     |      |
| Frt                      | 1.00      | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85 | 1.00        | 0.92     |      |
| Flt Protected            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00 | 0.95        | 1.00     |      |
| Satd. Flow (prot)        | 1770      | 3539     | 1583  | 1770  | 3539     | 1346      | 1770   | 1863     | 1524 | 1770        | 1603     |      |
| Flt Permitted            | 0.95      | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00 | 0.95        | 1.00     |      |
| Satd. Flow (perm)        | 1770      | 3539     | 1583  | 1770  | 3539     | 1346      | 1770   | 1863     | 1524 | 1770        | 1603     |      |
| Volume (vph)             | 222       | 1091     | 214   | 371   | 1001     | 376       | 172    | 182      | 332  | 213         | 114      | 135  |
| Peak-hour factor, PHF    | 0.94      | 0.94     | 0.94  | 0.97  | 0.97     | 0.97      | 0.92   | 0.92     | 0.92 | 0.87        | 0.87     | 0.87 |
| Adj. Flow (vph)          | 236       | 1161     | 228   | 382   | 1032     | 388       | 187    | 198      | 361  | 245         | 131      | 155  |
| RTOR Reduction (vph)     | 0         | 0        | 123   | 0     | 0        | 232       | 0      | 0        | 253  | 0           | 35       | 0    |
| Lane Group Flow (vph)    | 236       | 1161     | 105   | 382   | 1032     | 156       | 187    | 198      | 108  | 245         | 251      | 0    |
| Heavy Vehicles (%)       | 2%        | 2%       | 2%    | 2%    | 2%       | 20%       | 2%     | 2%       | 6%   | 2%          | 17%      | 2%   |
| Turn Type                | Prot      |          | Perm  | Prot  |          | Perm      | Prot   |          | Perm | Prot        |          |      |
| Protected Phases         | 7         | 4        |       | 3     | 8        |           | 5      | 2        |      | 1           | 6        |      |
| Permitted Phases         |           |          | 4     |       |          | 8         |        |          | 2    |             |          |      |
| Actuated Green, G (s)    | 18.6      | 37.0     | 37.0  | 24.0  | 42.4     | 42.4      | 13.0   | 28.0     | 28.0 | 15.0        | 30.0     |      |
| Effective Green, g (s)   | 18.6      | 37.0     | 37.0  | 24.0  | 42.4     | 42.4      | 13.0   | 28.0     | 28.0 | 15.0        | 30.0     |      |
| Actuated g/C Ratio       | 0.16      | 0.31     | 0.31  | 0.20  | 0.35     | 0.35      | 0.11   | 0.23     | 0.23 | 0.12        | 0.25     |      |
| Clearance Time (s)       | 4.0       | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0  | 4.0         | 4.0      |      |
| Vehicle Extension (s)    | 3.0       | 3.0      | 3.0   | 3.0   | 3.0      | 3.0       | 3.0    | 3.0      | 3.0  | 3.0         | 3.0      |      |
| Lane Grp Cap (vph)       | 274       | 1091     | 488   | 354   | 1250     | 476       | 192    | 435      | 356  | 221         | 401      |      |
| v/s Ratio Prot           | 0.13      | c0.33    |       | c0.22 | 0.29     |           | 0.11   | 0.11     |      | c0.14       | c0.16    |      |
| v/s Ratio Perm           |           |          | 0.07  |       |          | 0.12      |        |          | 0.07 |             |          |      |
| v/c Ratio                | 0.86      | 1.06     | 0.21  | 1.08  | 0.83     | 0.33      | 0.97   | 0.46     | 0.30 | 1.11        | 0.63     |      |
| Uniform Delay, d1        | 49.4      | 41.5     | 30.7  | 48.0  | 35.4     | 28.4      | 53.3   | 39.5     | 38.0 | 52.5        | 40.0     |      |
| Progression Factor       | 1.00      | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00 | 1.00        | 1.00     |      |
| Incremental Delay, d2    | 23.1      | 46.0     | 0.2   | 70.6  | 4.6      | 0.4       | 57.0   | 3.4      | 2.2  | 92.7        | 7.2      |      |
| Delay (s)                | 72.5      | 87.5     | 31.0  | 118.6 | 40.0     | 28.8      | 110.3  | 42.9     | 40.1 | 145.2       | 47.2     |      |
| Level of Service         | Е         | F        | С     | F     | D        | С         | F      | D        | D    | F           | D        |      |
| Approach Delay (s)       |           | 77.4     |       |       | 54.3     |           |        | 58.4     |      |             | 92.4     |      |
| Approach LOS             |           | Е        |       |       | D        |           |        | E        |      |             | F        |      |
| Intersection Summary     |           |          |       |       |          |           |        |          |      |             |          |      |
| HCM Average Control D    | elay      |          | 67.2  | F     | ICM Lev  | vel of So | ervice |          | Е    |             |          |      |
| HCM Volume to Capacit    | •         |          | 0.93  |       |          |           |        |          |      |             |          |      |
| Actuated Cycle Length (  |           |          | 120.0 |       | Sum of l |           |        |          | 12.0 |             |          |      |
| Intersection Capacity Ut | ilization |          | 87.8% | 10    | CU Leve  | el of Sei | vice   |          | E    |             |          |      |
| Analysis Period (min)    |           |          | 15    |       |          |           |        |          |      |             |          |      |

|                          | -        | •    | •     | •        | 1         | <b>/</b>          |  |
|--------------------------|----------|------|-------|----------|-----------|-------------------|--|
| Movement                 | EBT      | EBR  | WBL   | WBT      | NBL       | NBR               |  |
| Lane Configurations      | <b>^</b> | 7    | *     | <b>^</b> | ሻ         | 7                 |  |
| Ideal Flow (vphpl)       | 1900     | 1900 | 1900  | 1900     | 1900      | 1900              |  |
| Total Lost time (s)      | 4.0      | 4.0  | 4.0   | 4.0      | 4.0       | 4.0               |  |
| Lane Util. Factor        | 0.95     | 1.00 | 1.00  | 0.95     | 1.00      | 1.00              |  |
| Frt                      | 1.00     | 0.85 | 1.00  | 1.00     | 1.00      | 0.85              |  |
| Flt Protected            | 1.00     | 1.00 | 0.95  | 1.00     | 0.95      | 1.00              |  |
| Satd. Flow (prot)        | 3539     | 1583 | 1770  | 3539     | 1770      | 1583              |  |
| Flt Permitted            | 1.00     | 1.00 | 0.95  | 1.00     | 0.95      | 1.00              |  |
| Satd. Flow (perm)        | 3539     | 1583 | 1770  | 3539     | 1770      | 1583              |  |
| Volume (vph)             | 1430     | 144  | 84    | 1863     | 283       | 171               |  |
| Peak-hour factor, PHF    | 0.93     | 0.93 | 0.93  | 0.93     | 0.87      | 0.87              |  |
| Adj. Flow (vph)          | 1538     | 155  | 90    | 2003     | 325       | 197               |  |
| RTOR Reduction (vph)     | 0        | 65   | 0     | 0        | 0         | 156               |  |
| Lane Group Flow (vph)    | 1538     | 90   | 90    | 2003     | 325       | 41                |  |
| Turn Type                |          | Perm | Prot  |          |           | Perm              |  |
| Protected Phases         | 2        |      | 1     | 6        | 3         |                   |  |
| Permitted Phases         |          | 2    |       |          |           | 3                 |  |
| Actuated Green, G (s)    | 46.4     | 46.4 | 5.6   | 57.0     | 19.2      | 19.2              |  |
| Effective Green, g (s)   | 47.4     | 47.4 | 6.4   | 57.8     | 18.7      | 18.7              |  |
| Actuated g/C Ratio       | 0.53     | 0.53 | 0.07  | 0.64     | 0.21      | 0.21              |  |
| Clearance Time (s)       | 5.0      | 5.0  | 4.8   | 4.8      | 3.5       | 3.5               |  |
| Vehicle Extension (s)    | 6.8      | 6.8  | 6.3   | 6.3      | 2.0       | 2.0               |  |
| Lane Grp Cap (vph)       | 1860     | 832  | 126   | 2268     | 367       | 328               |  |
| v/s Ratio Prot           | 0.43     |      | 0.05  | c0.57    | c0.18     |                   |  |
| v/s Ratio Perm           |          | 0.06 |       |          |           | 0.03              |  |
| v/c Ratio                | 0.83     | 0.11 | 0.71  | 0.88     | 0.89      | 0.12              |  |
| Uniform Delay, d1        | 18.0     | 10.8 | 41.0  | 13.4     | 34.7      | 29.1              |  |
| Progression Factor       | 1.00     | 1.00 | 1.00  | 1.00     | 1.00      | 1.00              |  |
| Incremental Delay, d2    | 3.9      | 0.2  | 25.0  | 5.1      | 21.1      | 0.1               |  |
| Delay (s)                | 21.8     | 11.0 | 66.0  | 18.5     | 55.8      | 29.2              |  |
| Level of Service         | С        | В    | Е     | В        | Е         | С                 |  |
| Approach Delay (s)       | 20.8     |      |       | 20.5     | 45.8      |                   |  |
| Approach LOS             | С        |      |       | С        | D         |                   |  |
| Intersection Summary     |          |      |       |          |           |                   |  |
| HCM Average Control D    | elav     |      | 23.7  | ŀ        | ICM Lev   | vel of Service    |  |
| HCM Volume to Capacit    |          |      | 0.88  |          |           | 2 2 2 2 3 7 1 0 0 |  |
| Actuated Cycle Length (  | •        |      | 90.2  | S        | Sum of le | ost time (s)      |  |
| Intersection Capacity Ut |          |      | 73.8% |          |           | el of Service     |  |
| Analysis Period (min)    |          |      | 15    |          |           |                   |  |
| c Critical Lane Group    |          |      |       |          |           |                   |  |
|                          |          |      |       |          |           |                   |  |

|                          | -         | •    | •     | ←       | 1       | ~             |   |  |
|--------------------------|-----------|------|-------|---------|---------|---------------|---|--|
| Movement                 | EBT       | EBR  | WBL   | WBT     | NBL     | NBR           |   |  |
| Lane Configurations      | <b></b>   | 7    | ሻ     | <b></b> | ች       | 7             |   |  |
| Ideal Flow (vphpl)       | 1900      | 1900 | 1900  | 1900    | 1900    | 1900          |   |  |
| Total Lost time (s)      | 4.0       | 4.0  | 4.0   | 4.0     | 4.0     | 4.0           |   |  |
| Lane Util. Factor        | 1.00      | 1.00 | 1.00  | 1.00    | 1.00    | 1.00          |   |  |
| Frt                      | 1.00      | 0.85 | 1.00  | 1.00    | 1.00    | 0.85          |   |  |
| Flt Protected            | 1.00      | 1.00 | 0.95  | 1.00    | 0.95    | 1.00          |   |  |
| Satd. Flow (prot)        | 1863      | 1583 | 1770  | 1863    | 1770    | 1583          |   |  |
| Flt Permitted            | 1.00      | 1.00 | 0.95  | 1.00    | 0.95    | 1.00          |   |  |
| Satd. Flow (perm)        | 1863      | 1583 | 1770  | 1863    | 1770    | 1583          |   |  |
| Volume (vph)             | 922       | 46   | 384   | 241     | 40      | 453           |   |  |
| Peak-hour factor, PHF    | 0.96      | 0.96 | 0.92  | 0.92    | 0.87    | 0.87          |   |  |
| Adj. Flow (vph)          | 960       | 48   | 417   | 262     | 46      | 521           |   |  |
| RTOR Reduction (vph)     | 0         | 11   | 0     | 0       | 0       | 75            |   |  |
| Lane Group Flow (vph)    | 960       | 37   | 417   | 262     | 46      | 446           |   |  |
| Turn Type                |           | Perm | Prot  |         |         | pm+ov         |   |  |
| Protected Phases         | 2         |      | 1     | 6       | 4       | 1             |   |  |
| Permitted Phases         |           | 2    |       |         |         | 4             |   |  |
| Actuated Green, G (s)    | 87.2      | 87.2 | 35.2  | 126.0   | 7.6     | 42.8          |   |  |
| Effective Green, g (s)   | 89.2      | 89.2 | 34.8  | 128.0   | 7.9     | 42.7          |   |  |
| Actuated g/C Ratio       | 0.62      | 0.62 | 0.24  | 0.89    | 0.05    | 0.30          |   |  |
| Clearance Time (s)       | 6.0       | 6.0  | 3.6   | 6.0     | 4.3     | 3.6           |   |  |
| Vehicle Extension (s)    | 2.0       | 2.0  | 1.0   | 2.0     | 1.0     | 1.0           |   |  |
| Lane Grp Cap (vph)       | 1155      | 981  | 428   | 1657    | 97      | 514           |   |  |
| v/s Ratio Prot           | c0.52     |      | c0.24 | 0.14    | 0.03    | c0.21         |   |  |
| v/s Ratio Perm           |           | 0.02 |       |         |         | 0.07          |   |  |
| v/c Ratio                | 0.83      | 0.04 | 0.97  | 0.16    | 0.47    | 0.87          |   |  |
| Uniform Delay, d1        | 21.4      | 10.6 | 54.1  | 1.0     | 66.0    | 47.9          |   |  |
| Progression Factor       | 1.00      | 1.00 | 1.00  | 1.00    | 1.00    | 1.00          |   |  |
| Incremental Delay, d2    | 7.0       | 0.1  | 36.4  | 0.2     | 1.3     | 13.9          |   |  |
| Delay (s)                | 28.5      | 10.7 | 90.5  | 1.2     | 67.3    | 61.8          |   |  |
| Level of Service         | С         | В    | F     | Α       | Е       | Е             |   |  |
| Approach Delay (s)       | 27.6      |      |       | 56.0    | 62.2    |               |   |  |
| Approach LOS             | С         |      |       | E       | Е       |               |   |  |
| Intersection Summary     |           |      |       |         |         |               |   |  |
| HCM Average Control D    |           |      | 44.9  | H       | ICM Le  | vel of Servic | е |  |
| HCM Volume to Capaci     |           |      | 0.88  |         |         |               |   |  |
| Actuated Cycle Length (  |           |      | 143.9 |         |         | ost time (s)  |   |  |
| Intersection Capacity Ut | ilization |      | 83.2% | 10      | CU Leve | el of Service |   |  |
| Analysis Period (min)    |           |      | 15    |         |         |               |   |  |
| c Critical Lane Group    |           |      |       |         |         |               |   |  |

|                                   | ۶     | <b>→</b>   | •     | •     | <b>←</b> | •         | 4      | <b>†</b> | <i>&gt;</i> | <b>/</b> | ţ    | 4     |  |
|-----------------------------------|-------|------------|-------|-------|----------|-----------|--------|----------|-------------|----------|------|-------|--|
| Movement                          | EBL   | EBT        | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR         | SBL      | SBT  | SBR   |  |
| Lane Configurations               | ሻሻ    | <b>†</b> † | 77    | ሻሻ    | <b>^</b> | 7         | ሻሻ     | ተተተ      | 7           | 44       | ተተተ  | 7     |  |
| Ideal Flow (vphpl)                | 1900  | 1900       | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900        | 1900     | 1900 | 1900  |  |
| Total Lost time (s)               | 4.0   | 4.0        | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0         | 4.0      | 4.0  | 4.0   |  |
| Lane Util. Factor                 | 0.97  | 0.95       | 0.88  | 0.97  | 0.95     | 1.00      | 0.97   | 0.91     | 1.00        | 0.97     | 0.91 | 1.00  |  |
| Frt                               | 1.00  | 1.00       | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85        | 1.00     | 1.00 | 0.85  |  |
| Flt Protected                     | 0.95  | 1.00       | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00 | 1.00  |  |
| Satd. Flow (prot)                 | 3433  | 3539       | 2787  | 3433  | 3539     | 1583      | 3433   | 5085     | 1583        | 3433     | 5085 | 1583  |  |
| Flt Permitted                     | 0.95  | 1.00       | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95     | 1.00 | 1.00  |  |
| Satd. Flow (perm)                 | 3433  | 3539       | 2787  | 3433  | 3539     | 1583      | 3433   | 5085     | 1583        | 3433     | 5085 | 1583  |  |
| Volume (vph)                      | 421   | 530        | 736   | 260   | 355      | 81        | 1341   | 500      | 272         | 136      | 404  | 367   |  |
| Peak-hour factor, PHF             | 0.93  | 0.93       | 0.93  | 0.92  | 0.92     | 0.92      | 0.95   | 0.95     | 0.95        | 0.92     | 0.92 | 0.92  |  |
| Adj. Flow (vph)                   | 453   | 570        | 791   | 283   | 386      | 88        | 1412   | 526      | 286         | 148      | 439  | 399   |  |
| RTOR Reduction (vph)              | 0     | 0          | 468   | 0     | 0        | 73        | 0      | 0        | 131         | 0        | 0    | 166   |  |
| Lane Group Flow (vph)             | 453   | 570        | 323   | 283   | 386      | 15        | 1412   | 526      | 155         | 148      | 439  | 233   |  |
| Turn Type                         | Prot  |            | Perm  | Prot  |          | Perm      | Prot   |          | Perm        | Prot     |      | Perm  |  |
| Protected Phases                  | 7     | 4          |       | 3     | 8        |           | 5      | 2        |             | 1        | 6    |       |  |
| Permitted Phases                  |       |            | 4     |       |          | 8         |        |          | 2           |          |      | 6     |  |
| Actuated Green, G (s)             | 27.7  | 41.8       | 41.8  | 18.1  | 32.1     | 32.1      | 85.1   | 107.8    | 107.8       | 11.5     | 33.8 | 33.8  |  |
| Effective Green, g (s)            | 29.2  | 43.4       | 43.4  | 19.6  | 33.8     | 33.8      | 86.6   | 109.3    | 109.3       | 13.0     | 35.7 | 35.7  |  |
| Actuated g/C Ratio                | 0.15  | 0.22       | 0.22  | 0.10  | 0.17     | 0.17      | 0.43   | 0.54     | 0.54        | 0.06     | 0.18 | 0.18  |  |
| Clearance Time (s)                | 5.5   | 5.6        | 5.6   | 5.5   | 5.7      | 5.7       | 5.5    | 5.5      | 5.5         | 5.5      | 5.9  | 5.9   |  |
| Vehicle Extension (s)             | 1.0   | 5.0        | 5.0   | 1.0   | 5.9      | 5.9       | 1.0    | 5.4      | 5.4         | 1.0      | 5.4  | 5.4   |  |
| Lane Grp Cap (vph)                | 498   | 763        | 601   | 334   | 594      | 266       | 1477   | 2761     | 860         | 222      | 902  | 281   |  |
| v/s Ratio Prot                    | c0.13 | c0.16      |       | 0.08  | 0.11     |           | c0.41  | 0.10     |             | 0.04     | 0.09 |       |  |
| v/s Ratio Perm                    |       |            | 0.12  |       |          | 0.01      |        |          | 0.10        |          |      | c0.15 |  |
| v/c Ratio                         | 0.91  | 0.75       | 0.54  | 0.85  | 0.65     | 0.06      | 0.96   | 0.19     | 0.18        | 0.67     | 0.49 | 0.83  |  |
| Uniform Delay, d1                 | 84.8  | 73.8       | 70.1  | 89.4  | 78.2     | 70.3      | 55.5   | 23.4     | 23.3        | 92.0     | 74.6 | 79.8  |  |
| Progression Factor                | 1.00  | 1.00       | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00     | 1.00 | 1.00  |  |
| Incremental Delay, d2             | 20.0  | 4.8        | 1.7   | 17.1  | 3.9      | 0.2       | 14.1   | 0.1      | 0.2         | 5.7      | 1.0  | 20.1  |  |
| Delay (s)                         | 104.8 | 78.6       | 71.8  | 106.4 | 82.2     | 70.6      | 69.6   | 23.5     | 23.6        | 97.8     | 75.5 | 100.0 |  |
| Level of Service                  | F     | Е          | Е     | F     | F        | Е         | Е      | С        | С           | F        | Е    | F     |  |
| Approach Delay (s)                |       | 82.2       |       |       | 89.9     |           |        | 52.8     |             |          | 88.8 |       |  |
| Approach LOS                      |       | F          |       |       | F        |           |        | D        |             |          | F    |       |  |
| Intersection Summary              |       |            |       |       |          |           |        |          |             |          |      |       |  |
| HCM Average Control Delay         |       |            | 73.0  | H     | HCM Le   | vel of Se | ervice |          | Е           |          |      |       |  |
| HCM Volume to Capacity ratio      |       |            | 0.88  |       |          |           |        |          |             |          |      |       |  |
| Actuated Cycle Length (s)         |       |            | 201.3 | 5     | Sum of I | ost time  | (s)    | 12.0     |             |          |      |       |  |
| Intersection Capacity Utilization |       |            | 81.5% | Į(    | CU Leve  | el of Sei | vice   |          | D           |          |      |       |  |
| Analysis Period (min)             |       |            | 15    |       |          |           |        |          |             |          |      |       |  |
| c Critical Lane Group             |       |            |       |       |          |           |        |          |             |          |      |       |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ၨ                                       | -                                                                                                                       | •                     | •                                         | •                                                                                                                              | •                         | 4                                                                                                                          | <b>†</b>                                                                                                               | _                                | -                                 | ļ                                                                                                                                                               | 4    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EBL                                     | EBT                                                                                                                     | EBR                   | WBL                                       | WBT                                                                                                                            | WBR                       | NBL                                                                                                                        | NBT                                                                                                                    | NBR                              | SBL                               | SBT                                                                                                                                                             | SBR  |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 4                                                                                                                       |                       |                                           | 4                                                                                                                              |                           | ሻ                                                                                                                          | <del>(</del> Î                                                                                                         |                                  | *                                 | f)                                                                                                                                                              |      |
| Ideal Flow (vphpl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1900                                    | 1900                                                                                                                    | 1900                  | 1900                                      | 1900                                                                                                                           | 1900                      | 1900                                                                                                                       | 1900                                                                                                                   | 1900                             | 1900                              | 1900                                                                                                                                                            | 1900 |
| Total Lost time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 4.0                                                                                                                     |                       |                                           | 4.0                                                                                                                            |                           | 4.0                                                                                                                        | 4.0                                                                                                                    |                                  |                                   | 4.0                                                                                                                                                             |      |
| Lane Util. Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 1.00                                                                                                                    |                       |                                           | 1.00                                                                                                                           |                           | 1.00                                                                                                                       | 1.00                                                                                                                   |                                  |                                   | 1.00                                                                                                                                                            |      |
| Frt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 0.91                                                                                                                    |                       |                                           | 1.00                                                                                                                           |                           | 1.00                                                                                                                       | 0.98                                                                                                                   |                                  |                                   | 1.00                                                                                                                                                            |      |
| Flt Protected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 1.00                                                                                                                    |                       |                                           | 0.96                                                                                                                           |                           | 0.95                                                                                                                       | 1.00                                                                                                                   |                                  |                                   | 1.00                                                                                                                                                            |      |
| Satd. Flow (prot)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 1689                                                                                                                    |                       |                                           | 1759                                                                                                                           |                           | 1626                                                                                                                       | 1824                                                                                                                   |                                  |                                   | 1859                                                                                                                                                            |      |
| Flt Permitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 1.00                                                                                                                    |                       |                                           | 0.96                                                                                                                           |                           | 0.95                                                                                                                       | 1.00                                                                                                                   |                                  |                                   | 1.00                                                                                                                                                            |      |
| Satd. Flow (perm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 1689                                                                                                                    |                       |                                           | 1759                                                                                                                           |                           | 1626                                                                                                                       | 1824                                                                                                                   |                                  |                                   | 1859                                                                                                                                                            |      |
| Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 19                                                                                                                      | 45                    | 76                                        | 18                                                                                                                             | 1                         | 18                                                                                                                         | 175                                                                                                                    | 28                               | 0                                 | 611                                                                                                                                                             | 7    |
| Peak-hour factor, PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.73                                    | 0.73                                                                                                                    | 0.73                  | 0.86                                      | 0.86                                                                                                                           | 0.86                      | 0.87                                                                                                                       | 0.87                                                                                                                   | 0.87                             | 0.92                              | 0.92                                                                                                                                                            | 0.92 |
| Adj. Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                       | 26                                                                                                                      | 62                    | 88                                        | 21                                                                                                                             | 1                         | 21                                                                                                                         | 201                                                                                                                    | 32                               | 0                                 | 664                                                                                                                                                             | 8    |
| RTOR Reduction (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                       | 57                                                                                                                      | 0                     | 0                                         | 0                                                                                                                              | 0                         | 0                                                                                                                          | 4                                                                                                                      | 0                                | 0                                 | 0                                                                                                                                                               | 0    |
| Lane Group Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                       | 34                                                                                                                      | 0                     | 0                                         | 110                                                                                                                            | 0                         | 21                                                                                                                         | 229                                                                                                                    | 0                                | 0                                 | 672                                                                                                                                                             | 0    |
| Heavy Vehicles (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2%                                      | 2%                                                                                                                      | 2%                    | 2%                                        | 11%                                                                                                                            | 2%                        | 11%                                                                                                                        | 2%                                                                                                                     | 2%                               | 2%                                | 2%                                                                                                                                                              | 2%   |
| Turn Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Split                                   |                                                                                                                         |                       | Split                                     |                                                                                                                                |                           | Prot                                                                                                                       |                                                                                                                        |                                  | Prot                              |                                                                                                                                                                 |      |
| Protected Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                       | 4                                                                                                                       |                       | 8                                         | 8                                                                                                                              |                           | 5                                                                                                                          | 2                                                                                                                      |                                  | 1                                 | 6                                                                                                                                                               |      |
| Permitted Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                         |                       |                                           |                                                                                                                                |                           |                                                                                                                            |                                                                                                                        |                                  |                                   |                                                                                                                                                                 |      |
| Actuated Green, G (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 5.9                                                                                                                     |                       |                                           | 7.2                                                                                                                            |                           | 1.4                                                                                                                        | 52.7                                                                                                                   |                                  |                                   | 47.3                                                                                                                                                            |      |
| Effective Green, g (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 5.9                                                                                                                     |                       |                                           | 7.2                                                                                                                            |                           | 1.4                                                                                                                        | 52.7                                                                                                                   |                                  |                                   | 47.3                                                                                                                                                            |      |
| Actuated g/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 0.08                                                                                                                    |                       |                                           | 0.09                                                                                                                           |                           | 0.02                                                                                                                       | 0.68                                                                                                                   |                                  |                                   | 0.61                                                                                                                                                            |      |
| Clearance Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 4.0                                                                                                                     |                       |                                           | 4.0                                                                                                                            |                           | 4.0                                                                                                                        | 4.0                                                                                                                    |                                  |                                   | 4.0                                                                                                                                                             |      |
| Vehicle Extension (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 3.0                                                                                                                     |                       |                                           | 3.0                                                                                                                            |                           | 3.0                                                                                                                        | 3.0                                                                                                                    |                                  |                                   | 3.0                                                                                                                                                             |      |
| Lane Grp Cap (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 128                                                                                                                     |                       |                                           | 163                                                                                                                            |                           | 29                                                                                                                         | 1236                                                                                                                   |                                  |                                   | 1130                                                                                                                                                            |      |
| v/s Ratio Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | c0.02                                                                                                                   |                       |                                           | c0.06                                                                                                                          |                           | c0.01                                                                                                                      | 0.13                                                                                                                   |                                  |                                   | c0.36                                                                                                                                                           |      |
| v/s Ratio Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                         |                       |                                           |                                                                                                                                |                           |                                                                                                                            |                                                                                                                        |                                  |                                   |                                                                                                                                                                 |      |
| v/c Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 0.26                                                                                                                    |                       |                                           | 0.67                                                                                                                           |                           | 0.72                                                                                                                       | 0.19                                                                                                                   |                                  |                                   | 0.59                                                                                                                                                            |      |
| Uniform Delay, d1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 33.9                                                                                                                    |                       |                                           | 34.2                                                                                                                           |                           | 38.0                                                                                                                       | 4.6                                                                                                                    |                                  |                                   | 9.4                                                                                                                                                             |      |
| Progression Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 1.00                                                                                                                    |                       |                                           |                                                                                                                                |                           | 1.00                                                                                                                       | 1.00                                                                                                                   |                                  |                                   | 1.00                                                                                                                                                            |      |
| Incremental Delay, d2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                                                                                                         |                       |                                           |                                                                                                                                |                           | 61.8                                                                                                                       | 0.1                                                                                                                    |                                  |                                   |                                                                                                                                                                 |      |
| Delay (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                                                                                                         |                       |                                           |                                                                                                                                |                           |                                                                                                                            |                                                                                                                        |                                  |                                   |                                                                                                                                                                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                                                                         |                       |                                           |                                                                                                                                |                           | F                                                                                                                          |                                                                                                                        |                                  |                                   |                                                                                                                                                                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 35.0                                                                                                                    |                       |                                           |                                                                                                                                |                           |                                                                                                                            | 12.6                                                                                                                   |                                  |                                   |                                                                                                                                                                 |      |
| Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | D                                                                                                                       |                       |                                           | D                                                                                                                              |                           |                                                                                                                            | В                                                                                                                      |                                  |                                   | В                                                                                                                                                               |      |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                                                                                                         |                       |                                           |                                                                                                                                |                           |                                                                                                                            |                                                                                                                        |                                  |                                   |                                                                                                                                                                 |      |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                       |                                                                                                                         |                       | H                                         | HCM Lev                                                                                                                        | vel of Se                 | ervice                                                                                                                     |                                                                                                                        | В                                |                                   |                                                                                                                                                                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                                                                         |                       |                                           |                                                                                                                                |                           |                                                                                                                            |                                                                                                                        |                                  |                                   |                                                                                                                                                                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                                                                         |                       |                                           |                                                                                                                                | ost time                  |                                                                                                                            |                                                                                                                        | 16.0                             |                                   |                                                                                                                                                                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lization                                |                                                                                                                         |                       | 10                                        | CU Leve                                                                                                                        | el of Ser                 | vice                                                                                                                       |                                                                                                                        | Α                                |                                   |                                                                                                                                                                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                                                                         | 15                    |                                           |                                                                                                                                |                           |                                                                                                                            |                                                                                                                        |                                  |                                   |                                                                                                                                                                 |      |
| Lane Configurations Ideal Flow (vphpl) Total Lost time (s) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Volume (vph) Peak-hour factor, PHF Adj. Flow (vph) RTOR Reduction (vph) Lane Group Flow (vph) Heavy Vehicles (%) Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS | 2<br>0.73<br>3<br>0<br>2%<br>Split<br>4 | 4.0 1.00 0.91 1.00 1689 1.00 1689 19 0.73 26 57 34 2% 4 5.9 5.9 0.08 4.0 3.0 128 c0.02 0.26 33.9 1.00 1.1 35.0 D 35.0 D | 45<br>0.73<br>62<br>0 | 76<br>0.86<br>88<br>0<br>2%<br>Split<br>8 | 1900 4.0 1.00 1.00 0.96 1759 0.96 1759 18 0.86 21 0 110 11% 8 7.2 7.2 0.09 4.0 3.0 163 c0.06 0.67 34.2 1.00 10.5 44.7 D 44.7 D | 1<br>0.86<br>1<br>0<br>2% | 1900 4.0 1.00 1.00 0.95 1626 0.95 1626 18 0.87 21 0 21 11% Prot 5 1.4 1.4 0.02 4.0 3.0 29 c0.01 0.72 38.0 1.00 61.8 99.8 F | 4.0 1.00 0.98 1.00 1824 1.00 1824 1.75 0.87 201 4 229 2% 52.7 52.7 0.68 4.0 3.0 1236 0.13 0.19 4.6 1.00 0.1 4.7 A 12.6 | 28<br>0.87<br>32<br>0<br>0<br>2% | 0<br>0.92<br>0<br>0<br>2%<br>Prot | 1900<br>4.0<br>1.00<br>1.00<br>1.00<br>1859<br>1.00<br>1859<br>611<br>0.92<br>664<br>0<br>672<br>2%<br>6<br>47.3<br>47.3<br>0.61<br>4.0<br>3.0<br>1130<br>c0.36 | 0.0  |

c Critical Lane Group

|                                   | ۶    | <b>→</b>   | •     | •     | <b>←</b>               | •         | 4      | <b>†</b> | /    | <b>&gt;</b> | <b>↓</b> | 4    |
|-----------------------------------|------|------------|-------|-------|------------------------|-----------|--------|----------|------|-------------|----------|------|
| Movement                          | EBL  | EBT        | EBR   | WBL   | WBT                    | WBR       | NBL    | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations               | ሻ    | <b>†</b> † | 7     | ሻ     | <b>^</b>               | 7         | ሻ      | <b>1</b> | 7    | ሻ           | <b>∱</b> |      |
| Ideal Flow (vphpl)                | 1900 | 1900       | 1900  | 1900  | 1900                   | 1900      | 1900   | 1900     | 1900 | 1900        | 1900     | 1900 |
| Total Lost time (s)               | 4.0  | 4.0        | 4.0   | 4.0   | 4.0                    | 4.0       | 4.0    | 4.0      | 4.0  | 4.0         | 4.0      |      |
| Lane Util. Factor                 | 1.00 | 0.95       | 1.00  | 1.00  | 0.95                   | 1.00      | 1.00   | 1.00     | 1.00 | 1.00        | 1.00     |      |
| Frt                               | 1.00 | 1.00       | 0.85  | 1.00  | 1.00                   | 0.85      | 1.00   | 1.00     | 0.85 | 1.00        | 0.92     |      |
| Flt Protected                     | 0.95 | 1.00       | 1.00  | 0.95  | 1.00                   | 1.00      | 0.95   | 1.00     | 1.00 | 0.95        | 1.00     |      |
| Satd. Flow (prot)                 | 1597 | 3471       | 1583  | 1656  | 3505                   | 1583      | 1770   | 1743     | 1568 | 1444        | 1705     |      |
| Flt Permitted                     | 0.95 | 1.00       | 1.00  | 0.95  | 1.00                   | 1.00      | 0.95   | 1.00     | 1.00 | 0.95        | 1.00     |      |
| Satd. Flow (perm)                 | 1597 | 3471       | 1583  | 1656  | 3505                   | 1583      | 1770   | 1743     | 1568 | 1444        | 1705     |      |
| Volume (vph)                      | 56   | 837        | 118   | 212   | 724                    | 87        | 169    | 47       | 268  | 331         | 148      | 192  |
| Peak-hour factor, PHF             | 0.93 | 0.93       | 0.93  | 0.93  | 0.93                   | 0.93      | 0.93   | 0.93     | 0.93 | 0.92        | 0.92     | 0.92 |
| Adj. Flow (vph)                   | 60   | 900        | 127   | 228   | 778                    | 94        | 182    | 51       | 288  | 360         | 161      | 209  |
| RTOR Reduction (vph)              | 0    | 0          | 83    | 0     | 0                      | 58        | 0      | 0        | 222  | 0           | 44       | 0    |
| Lane Group Flow (vph)             | 60   | 900        | 44    | 228   | 778                    | 36        | 182    | 51       | 66   | 360         | 326      | 0    |
| Heavy Vehicles (%)                | 13%  | 4%         | 2%    | 9%    | 3%                     | 2%        | 2%     | 9%       | 3%   | 25%         | 2%       | 2%   |
| Turn Type                         | Prot |            | Perm  | Prot  |                        | Perm      | Prot   |          | Perm | Prot        |          |      |
| Protected Phases                  | 7    | 4          |       | 3     | 8                      |           | 5      | 2        |      | 1           | 6        |      |
| Permitted Phases                  |      |            | 4     |       |                        | 8         |        |          | 2    |             |          |      |
| Actuated Green, G (s)             | 7.2  | 32.0       | 32.0  | 16.1  | 40.9                   | 40.9      | 14.3   | 12.8     | 12.8 | 29.1        | 27.6     |      |
| Effective Green, g (s)            | 7.2  | 32.0       | 32.0  | 16.1  | 40.9                   | 40.9      | 14.3   | 12.8     | 12.8 | 29.1        | 27.6     |      |
| Actuated g/C Ratio                | 0.07 | 0.30       | 0.30  | 0.15  | 0.39                   | 0.39      | 0.13   | 0.12     | 0.12 | 0.27        | 0.26     |      |
| Clearance Time (s)                | 4.0  | 4.0        | 4.0   | 4.0   | 4.0                    | 4.0       | 4.0    | 4.0      | 4.0  | 4.0         | 4.0      |      |
| Vehicle Extension (s)             | 3.0  | 3.0        | 3.0   | 3.0   | 3.0                    | 3.0       | 3.0    | 3.0      | 3.0  | 3.0         | 3.0      |      |
| Lane Grp Cap (vph)                | 108  | 1048       | 478   | 252   | 1352                   | 611       | 239    | 210      | 189  | 396         | 444      |      |
| v/s Ratio Prot                    | 0.04 | c0.26      |       | c0.14 | 0.22                   |           | 0.10   | 0.03     |      | c0.25       | c0.19    |      |
| v/s Ratio Perm                    |      |            | 0.03  |       |                        | 0.02      |        |          | 0.04 |             |          |      |
| v/c Ratio                         | 0.56 | 0.86       | 0.09  | 0.90  | 0.58                   | 0.06      | 0.76   | 0.24     | 0.35 | 0.91        | 0.74     |      |
| Uniform Delay, d1                 | 47.9 | 34.9       | 26.6  | 44.2  | 25.7                   | 20.5      | 44.2   | 42.2     | 42.8 | 37.2        | 35.9     |      |
| Progression Factor                | 1.00 | 1.00       | 1.00  | 1.00  | 1.00                   | 1.00      | 1.00   | 1.00     | 1.00 | 1.00        | 1.00     |      |
| Incremental Delay, d2             | 6.1  | 7.1        | 0.1   | 32.4  | 0.6                    | 0.0       | 13.3   | 0.6      | 1.1  | 24.0        | 6.2      |      |
| Delay (s)                         | 53.9 | 42.0       | 26.7  | 76.6  | 26.3                   | 20.5      | 57.6   | 42.8     | 43.9 | 61.2        | 42.1     |      |
| Level of Service                  | D    | D          | С     | Е     | С                      | С         | Е      | D        | D    | Е           | D        |      |
| Approach Delay (s)                |      | 40.9       |       |       | 36.2                   |           |        | 48.5     |      |             | 51.5     |      |
| Approach LOS                      |      | D          |       |       | D                      |           |        | D        |      |             | D        |      |
| Intersection Summary              |      |            |       |       |                        |           |        |          |      |             |          |      |
| HCM Average Control Delay         |      |            | 42.8  | H     | ICM Le                 | vel of Se | ervice |          | D    |             |          |      |
| HCM Volume to Capacit             | ,    |            | 0.85  |       |                        |           |        |          |      |             |          |      |
| Actuated Cycle Length (           |      |            | 106.0 |       |                        | ost time  |        |          | 12.0 |             |          |      |
| Intersection Capacity Utilization |      |            | 77.1% | Į(    | ICU Level of Service D |           |        |          |      |             |          |      |
| Analysis Period (min)             |      |            | 15    |       |                        |           |        |          |      |             |          |      |
| c Critical Lane Group             |      |            |       |       |                        |           |        |          |      |             |          |      |

|                              | ۶        | <b>→</b> | •     | •     | •         | •         | 4      | <b>†</b> | <b>/</b> | <b>/</b> | ļ    | 4    |
|------------------------------|----------|----------|-------|-------|-----------|-----------|--------|----------|----------|----------|------|------|
| Movement                     | EBL      | EBT      | EBR   | WBL   | WBT       | WBR       | NBL    | NBT      | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations          |          | 4        |       |       | 4         |           | J.     | ĵ»       |          | 7        | f)   |      |
| Ideal Flow (vphpl)           | 1900     | 1900     | 1900  | 1900  | 1900      | 1900      | 1900   | 1900     | 1900     | 1900     | 1900 | 1900 |
| Total Lost time (s)          |          | 4.0      |       |       | 4.0       |           | 4.0    | 4.0      |          | 4.0      | 4.0  |      |
| Lane Util. Factor            |          | 1.00     |       |       | 1.00      |           | 1.00   | 1.00     |          | 1.00     | 1.00 |      |
| Frt                          |          | 0.94     |       |       | 1.00      |           | 1.00   | 0.98     |          | 1.00     | 1.00 |      |
| Flt Protected                |          | 1.00     |       |       | 0.97      |           | 0.95   | 1.00     |          | 0.95     | 1.00 |      |
| Satd. Flow (prot)            |          | 1741     |       |       | 1798      |           | 1770   | 1829     |          | 1770     | 1859 |      |
| Flt Permitted                |          | 1.00     |       |       | 0.97      |           | 0.95   | 1.00     |          | 0.95     | 1.00 |      |
| Satd. Flow (perm)            |          | 1741     |       |       | 1798      |           | 1770   | 1829     |          | 1770     | 1859 |      |
| Volume (vph)                 | 7        | 31       | 31    | 61    | 26        | 1         | 53     | 692      | 94       | 1        | 396  | 6    |
| Peak-hour factor, PHF        | 0.84     | 0.84     | 0.84  | 0.90  | 0.90      | 0.90      | 0.92   | 0.92     | 0.92     | 0.87     | 0.87 | 0.87 |
| Adj. Flow (vph)              | 8        | 37       | 37    | 68    | 29        | 1         | 58     | 752      | 102      | 1        | 455  | 7    |
| RTOR Reduction (vph)         | 0        | 34       | 0     | 0     | 1         | 0         | 0      | 4        | 0        | 0        | 0    | 0    |
| Lane Group Flow (vph)        | 0        | 48       | 0     | 0     | 97        | 0         | 58     | 850      | 0        | 1        | 462  | 0    |
| Turn Type                    | Split    |          |       | Split |           |           | Prot   |          |          | Prot     |      |      |
| Protected Phases             | 4        | 4        |       | 8     | 8         |           | 5      | 2        |          | 1        | 6    |      |
| Permitted Phases             |          |          |       |       |           |           |        |          |          |          |      |      |
| Actuated Green, G (s)        |          | 7.3      |       |       | 9.0       |           | 4.8    | 52.0     |          | 0.8      | 48.0 |      |
| Effective Green, g (s)       |          | 7.3      |       |       | 9.0       |           | 4.8    | 52.0     |          | 0.8      | 48.0 |      |
| Actuated g/C Ratio           |          | 0.09     |       |       | 0.11      |           | 0.06   | 0.61     |          | 0.01     | 0.56 |      |
| Clearance Time (s)           |          | 4.0      |       |       | 4.0       |           | 4.0    | 4.0      |          | 4.0      | 4.0  |      |
| Vehicle Extension (s)        |          | 3.0      |       |       | 3.0       |           | 3.0    | 3.0      |          | 3.0      | 3.0  |      |
| Lane Grp Cap (vph)           |          | 149      |       |       | 190       |           | 100    | 1118     |          | 17       | 1049 |      |
| v/s Ratio Prot               |          | c0.03    |       |       | c0.05     |           | c0.03  | c0.46    |          | 0.00     | 0.25 |      |
| v/s Ratio Perm               |          |          |       |       |           |           |        |          |          |          |      |      |
| v/c Ratio                    |          | 0.32     |       |       | 0.51      |           | 0.58   | 0.76     |          | 0.06     | 0.44 |      |
| Uniform Delay, d1            |          | 36.6     |       |       | 36.0      |           | 39.2   | 12.0     |          | 41.8     | 10.8 |      |
| Progression Factor           |          | 1.00     |       |       | 1.00      |           | 1.00   | 1.00     |          | 1.00     | 1.00 |      |
| Incremental Delay, d2        |          | 1.3      |       |       | 2.3       |           | 7.9    | 3.1      |          | 1.5      | 0.3  |      |
| Delay (s)                    |          | 37.8     |       |       | 38.3      |           | 47.1   | 15.1     |          | 43.2     | 11.1 |      |
| Level of Service             |          | D        |       |       | D         |           | D      | В        |          | D        | В    |      |
| Approach Delay (s)           |          | 37.8     |       |       | 38.3      |           |        | 17.2     |          |          | 11.1 |      |
| Approach LOS                 |          | D        |       |       | D         |           |        | В        |          |          | В    |      |
| Intersection Summary         |          |          |       |       |           |           |        |          |          |          |      |      |
| HCM Average Control Delay    |          |          | 17.8  | H     | ICM Le    | vel of Se | ervice |          | В        |          |      |      |
| <b>HCM Volume to Capacit</b> | y ratio  |          | 0.69  |       |           |           |        |          |          |          |      |      |
| Actuated Cycle Length (s     |          |          | 85.1  | S     | Sum of le | ost time  | (s)    |          | 16.0     |          |      |      |
| Intersection Capacity Uti    | lization |          | 62.2% | [0    | CU Leve   | el of Ser | vice   |          | В        |          |      |      |
| Analysis Period (min)        |          |          | 15    |       |           |           |        |          |          |          |      |      |
| c Critical Lane Group        |          |          |       |       |           |           |        |          |          |          |      |      |

|                              | ۶                        | <b>→</b>   | •     | •     | <b>←</b> | •         | 4      | <b>†</b> | /    | <b>&gt;</b> | ļ        | 4    |
|------------------------------|--------------------------|------------|-------|-------|----------|-----------|--------|----------|------|-------------|----------|------|
| Movement                     | EBL                      | EBT        | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations          | ሻ                        | <b>†</b> † | 7     | ሻ     | <b>^</b> | 7         | ሻ      | <b>1</b> | 7    | ሻ           | <b>^</b> |      |
| Ideal Flow (vphpl)           | 1900                     | 1900       | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900 | 1900        | 1900     | 1900 |
| Total Lost time (s)          | 4.0                      | 4.0        | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0  | 4.0         | 4.0      |      |
| Lane Util. Factor            | 1.00                     | 0.95       | 1.00  | 1.00  | 0.95     | 1.00      | 1.00   | 1.00     | 1.00 | 1.00        | 1.00     |      |
| Frt                          | 1.00                     | 1.00       | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85 | 1.00        | 0.92     |      |
| Flt Protected                | 0.95                     | 1.00       | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00 | 0.95        | 1.00     |      |
| Satd. Flow (prot)            | 1770                     | 3539       | 1583  | 1770  | 3539     | 1346      | 1770   | 1863     | 1524 | 1770        | 1603     |      |
| Flt Permitted                | 0.95                     | 1.00       | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00 | 0.95        | 1.00     |      |
| Satd. Flow (perm)            | 1770                     | 3539       | 1583  | 1770  | 3539     | 1346      | 1770   | 1863     | 1524 | 1770        | 1603     |      |
| Volume (vph)                 | 224                      | 1094       | 207   | 354   | 1023     | 386       | 170    | 173      | 315  | 219         | 109      | 136  |
| Peak-hour factor, PHF        | 0.94                     | 0.94       | 0.94  | 0.97  | 0.97     | 0.97      | 0.92   | 0.92     | 0.92 | 0.87        | 0.87     | 0.87 |
| Adj. Flow (vph)              | 238                      | 1164       | 220   | 365   | 1055     | 398       | 185    | 188      | 342  | 252         | 125      | 156  |
| RTOR Reduction (vph)         | 0                        | 0          | 118   | 0     | 0        | 233       | 0      | 0        | 246  | 0           | 37       | 0    |
| Lane Group Flow (vph)        | 238                      | 1164       | 102   | 365   | 1055     | 165       | 185    | 188      | 96   | 252         | 244      | 0    |
| Heavy Vehicles (%)           | 2%                       | 2%         | 2%    | 2%    | 2%       | 20%       | 2%     | 2%       | 6%   | 2%          | 17%      | 2%   |
| Turn Type                    | Prot                     |            | Perm  | Prot  |          | Perm      | Prot   |          | Perm | Prot        |          |      |
| Protected Phases             | 7                        | 4          |       | 3     | 8        |           | 5      | 2        |      | 1           | 6        |      |
| Permitted Phases             |                          |            | 4     |       |          | 8         |        |          | 2    |             |          |      |
| Actuated Green, G (s)        | 18.7                     | 37.0       | 37.0  | 23.0  | 41.3     | 41.3      | 15.2   | 28.0     | 28.0 | 16.0        | 28.8     |      |
| Effective Green, g (s)       | 18.7                     | 37.0       | 37.0  | 23.0  | 41.3     | 41.3      | 15.2   | 28.0     | 28.0 | 16.0        | 28.8     |      |
| Actuated g/C Ratio           | 0.16                     | 0.31       | 0.31  | 0.19  | 0.34     | 0.34      | 0.13   | 0.23     | 0.23 | 0.13        | 0.24     |      |
| Clearance Time (s)           | 4.0                      | 4.0        | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0  | 4.0         | 4.0      |      |
| Vehicle Extension (s)        | 3.0                      | 3.0        | 3.0   | 3.0   | 3.0      | 3.0       | 3.0    | 3.0      | 3.0  | 3.0         | 3.0      |      |
| Lane Grp Cap (vph)           | 276                      | 1091       | 488   | 339   | 1218     | 463       | 224    | 435      | 356  | 236         | 385      |      |
| v/s Ratio Prot               | 0.13                     | c0.33      |       | c0.21 | 0.30     |           | 0.10   | 0.10     |      | c0.14       | c0.15    |      |
| v/s Ratio Perm               |                          |            | 0.06  |       |          | 0.12      |        |          | 0.06 |             |          |      |
| v/c Ratio                    | 0.86                     | 1.07       | 0.21  | 1.08  | 0.87     | 0.36      | 0.83   | 0.43     | 0.27 | 1.07        | 0.63     |      |
| Uniform Delay, d1            | 49.4                     | 41.5       | 30.7  | 48.5  | 36.8     | 29.4      | 51.1   | 39.2     | 37.6 | 52.0        | 40.9     |      |
| Progression Factor           | 1.00                     | 1.00       | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00 | 1.00        | 1.00     |      |
| Incremental Delay, d2        | 23.1                     | 47.0       | 0.2   | 70.8  | 6.7      | 0.5       | 21.3   | 3.1      | 1.9  | 77.7        | 7.7      |      |
| Delay (s)                    | 72.5                     | 88.5       | 30.9  | 119.3 | 43.4     | 29.9      | 72.4   | 42.3     | 39.5 | 129.7       | 48.6     |      |
| Level of Service             | Е                        | F          | С     | F     | D        | С         | Е      | D        | D    | F           | D        |      |
| Approach Delay (s)           |                          | 78.3       |       |       | 55.7     |           |        | 48.8     |      |             | 86.9     |      |
| Approach LOS                 |                          | Е          |       |       | Е        |           |        | D        |      |             | F        |      |
| Intersection Summary         | mmary                    |            |       |       |          |           |        |          |      |             |          |      |
| <b>HCM Average Control D</b> | verage Control Delay 66  |            |       |       | HCM Le   | vel of Se | ervice |          | Е    |             |          |      |
| ·                            | Volume to Capacity ratio |            |       |       |          |           |        |          |      |             |          |      |
| Actuated Cycle Length (      | ated Cycle Length (s)    |            |       |       |          | ost time  |        |          | 12.0 |             |          |      |
| Intersection Capacity Uti    | ilization                |            | 86.7% | I     | CU Leve  | el of Ser | vice   |          | Е    |             |          |      |
| Analysis Period (min)        |                          |            | 15    |       |          |           |        |          |      |             |          |      |
| c Critical Lane Group        |                          |            |       |       |          |           |        |          |      |             |          |      |

|                               | ۶        | <b>→</b> | •           | €     | +         | •         | •      | <b>†</b> | <b>/</b> | <b>/</b> | <b>↓</b> | 4    |
|-------------------------------|----------|----------|-------------|-------|-----------|-----------|--------|----------|----------|----------|----------|------|
| Movement                      | EBL      | EBT      | EBR         | WBL   | WBT       | WBR       | NBL    | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations           |          | 4        |             |       | 4         |           | Ţ      | f)       |          | Ţ        | f)       |      |
| Ideal Flow (vphpl)            | 1900     | 1900     | 1900        | 1900  | 1900      | 1900      | 1900   | 1900     | 1900     | 1900     | 1900     | 1900 |
| Total Lost time (s)           |          | 4.0      |             |       | 4.0       |           | 4.0    | 4.0      |          |          | 4.0      |      |
| Lane Util. Factor             |          | 1.00     |             |       | 1.00      |           | 1.00   | 1.00     |          |          | 1.00     |      |
| Frt                           |          | 0.91     |             |       | 1.00      |           | 1.00   | 0.98     |          |          | 1.00     |      |
| Flt Protected                 |          | 1.00     |             |       | 0.96      |           | 0.95   | 1.00     |          |          | 1.00     |      |
| Satd. Flow (prot)             |          | 1689     |             |       | 1759      |           | 1626   | 1826     |          |          | 1861     |      |
| Flt Permitted                 |          | 1.00     |             |       | 0.96      |           | 0.95   | 1.00     |          |          | 1.00     |      |
| Satd. Flow (perm)             |          | 1689     |             |       | 1759      |           | 1626   | 1826     |          |          | 1861     |      |
| Volume (vph)                  | 2        | 19       | 45          | 75    | 18        | 1         | 18     | 172      | 26       | 0        | 583      | 5    |
| Peak-hour factor, PHF         | 0.73     | 0.73     | 0.73        | 0.86  | 0.86      | 0.86      | 0.87   | 0.87     | 0.87     | 0.92     | 0.92     | 0.92 |
| Adj. Flow (vph)               | 3        | 26       | 62          | 87    | 21        | 1         | 21     | 198      | 30       | 0        | 634      | 5    |
| RTOR Reduction (vph)          | 0        | 57       | 0           | 0     | 0         | 0         | 0      | 3        | 0        | 0        | 0        | 0    |
| Lane Group Flow (vph)         | 0        | 34       | 0           | 0     | 109       | 0         | 21     | 225      | 0        | 0        | 639      | 0    |
| Heavy Vehicles (%)            | 2%       | 2%       | 2%          | 2%    | 11%       | 2%        | 11%    | 2%       | 2%       | 2%       | 2%       | 2%   |
| Turn Type                     | Split    |          |             | Split |           |           | Prot   |          |          | Prot     |          |      |
| Protected Phases              | 4        | 4        |             | 8     | 8         |           | 5      | 2        |          | 1        | 6        |      |
| Permitted Phases              |          |          |             |       |           |           |        |          |          |          |          |      |
| Actuated Green, G (s)         |          | 5.8      |             |       | 7.0       |           | 1.4    | 50.1     |          |          | 44.7     |      |
| Effective Green, g (s)        |          | 5.8      |             |       | 7.0       |           | 1.4    | 50.1     |          |          | 44.7     |      |
| Actuated g/C Ratio            |          | 0.08     |             |       | 0.09      |           | 0.02   | 0.67     |          |          | 0.60     |      |
| Clearance Time (s)            |          | 4.0      |             |       | 4.0       |           | 4.0    | 4.0      |          |          | 4.0      |      |
| Vehicle Extension (s)         |          | 3.0      |             |       | 3.0       |           | 3.0    | 3.0      |          |          | 3.0      |      |
| Lane Grp Cap (vph)            |          | 131      |             |       | 164       |           | 30     | 1221     |          |          | 1111     |      |
| v/s Ratio Prot                |          | c0.02    |             |       | c0.06     |           | c0.01  | 0.12     |          |          | c0.34    |      |
| v/s Ratio Perm                |          |          |             |       |           |           |        |          |          |          |          |      |
| v/c Ratio                     |          | 0.26     |             |       | 0.66      |           | 0.70   | 0.18     |          |          | 0.57     |      |
| Uniform Delay, d1             |          | 32.5     |             |       | 32.8      |           | 36.5   | 4.7      |          |          | 9.3      |      |
| Progression Factor            |          | 1.00     |             |       | 1.00      |           | 1.00   | 1.00     |          |          | 1.00     |      |
| Incremental Delay, d2         |          | 1.0      |             |       | 9.7       |           | 52.7   | 0.1      |          |          | 0.7      |      |
| Delay (s)                     |          | 33.6     |             |       | 42.5      |           | 89.3   | 4.8      |          |          | 10.0     |      |
| Level of Service              |          | С        |             |       | D         |           | F      | Α        |          |          | Α        |      |
| Approach Delay (s)            |          | 33.6     |             |       | 42.5      |           |        | 11.9     |          |          | 10.0     |      |
| Approach LOS                  |          | С        |             |       | D         |           |        | В        |          |          | Α        |      |
| Intersection Summary          |          |          |             |       |           |           |        |          |          |          |          |      |
| <b>HCM Average Control De</b> |          |          | 15.7        | H     | ICM Le    | vel of Se | ervice |          | В        |          |          |      |
| HCM Volume to Capacity        |          |          | 0.56        |       |           |           |        |          |          |          |          |      |
| Actuated Cycle Length (s      | s)       |          | 74.9        | S     | Sum of le | ost time  |        |          | 16.0     |          |          |      |
| Intersection Capacity Util    |          |          |             |       |           |           |        |          |          |          |          |      |
| Analysis Period (min)         | lization |          | 49.5%<br>15 | IC    | CU Leve   | el of Ser | vice   |          | Α        |          |          |      |

c Critical Lane Group

|                         | ۶                            | <b>→</b> | •              | •     | <b>←</b> | •         | •      | <b>†</b> | /    | <b>&gt;</b> | ţ     | 4    |
|-------------------------|------------------------------|----------|----------------|-------|----------|-----------|--------|----------|------|-------------|-------|------|
| Movement                | EBL                          | EBT      | EBR            | WBL   | WBT      | WBR       | NBL    | NBT      | NBR  | SBL         | SBT   | SBR  |
| Lane Configurations     | ,                            | <b>^</b> | 7              | ,     | <b>†</b> | 7         | J.     | <b>†</b> | 7    | J.          | f)    |      |
| Ideal Flow (vphpl)      | 1900                         | 1900     | 1900           | 1900  | 1900     | 1900      | 1900   | 1900     | 1900 | 1900        | 1900  | 1900 |
| Total Lost time (s)     | 4.0                          | 4.0      | 4.0            | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0  | 4.0         | 4.0   |      |
| Lane Util. Factor       | 1.00                         | 0.95     | 1.00           | 1.00  | 0.95     | 1.00      | 1.00   | 1.00     | 1.00 | 1.00        | 1.00  |      |
| Frt                     | 1.00                         | 1.00     | 0.85           | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85 | 1.00        | 0.91  |      |
| Flt Protected           | 0.95                         | 1.00     | 1.00           | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00 | 0.95        | 1.00  |      |
| Satd. Flow (prot)       | 1597                         | 3471     | 1583           | 1656  | 3505     | 1583      | 1770   | 1743     | 1568 | 1444        | 1704  |      |
| Flt Permitted           | 0.95                         | 1.00     | 1.00           | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00 | 0.95        | 1.00  |      |
| Satd. Flow (perm)       | 1597                         | 3471     | 1583           | 1656  | 3505     | 1583      | 1770   | 1743     | 1568 | 1444        | 1704  |      |
| Volume (vph)            | 59                           | 784      | 103            | 211   | 742      | 96        | 159    | 43       | 252  | 346         | 151   | 199  |
| Peak-hour factor, PHF   | 0.93                         | 0.93     | 0.93           | 0.93  | 0.93     | 0.93      | 0.93   | 0.93     | 0.93 | 0.92        | 0.92  | 0.92 |
| Adj. Flow (vph)         | 63                           | 843      | 111            | 227   | 798      | 103       | 171    | 46       | 271  | 376         | 164   | 216  |
| RTOR Reduction (vph)    | 0                            | 0        | 78             | 0     | 0        | 63        | 0      | 0        | 229  | 0           | 43    | 0    |
| Lane Group Flow (vph)   | 63                           | 843      | 33             | 227   | 798      | 40        | 171    | 46       | 42   | 376         | 337   | 0    |
| Heavy Vehicles (%)      | 13%                          | 4%       | 2%             | 9%    | 3%       | 2%        | 2%     | 9%       | 3%   | 25%         | 2%    | 2%   |
| Turn Type               | Prot                         |          | Perm           | Prot  |          | Perm      | Prot   |          | Perm | Prot        |       |      |
| Protected Phases        | 7                            | 4        |                | 3     | 8        |           | 5      | 2        |      | 1           | 6     |      |
| Permitted Phases        |                              |          | 4              |       |          | 8         |        |          | 2    |             |       |      |
| Actuated Green, G (s)   | 5.5                          | 30.0     | 30.0           | 16.1  | 40.6     | 40.6      | 14.7   | 12.4     | 12.4 | 31.2        | 28.9  |      |
| Effective Green, g (s)  | 5.5                          | 30.0     | 30.0           | 16.1  | 40.6     | 40.6      | 14.7   | 12.4     | 12.4 | 31.2        | 28.9  |      |
| Actuated g/C Ratio      | 0.05                         | 0.28     | 0.28           | 0.15  | 0.38     | 0.38      | 0.14   | 0.12     | 0.12 | 0.30        | 0.27  |      |
| Clearance Time (s)      | 4.0                          | 4.0      | 4.0            | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0  | 4.0         | 4.0   |      |
| Vehicle Extension (s)   | 3.0                          | 3.0      | 3.0            | 3.0   | 3.0      | 3.0       | 3.0    | 3.0      | 3.0  | 3.0         | 3.0   |      |
| Lane Grp Cap (vph)      | 83                           | 985      | 449            | 252   | 1346     | 608       | 246    | 204      | 184  | 426         | 466   |      |
| v/s Ratio Prot          | 0.04                         | c0.24    |                | c0.14 | 0.23     |           | 0.10   | 0.03     |      | c0.26       | c0.20 |      |
| v/s Ratio Perm          |                              |          | 0.02           |       |          | 0.02      |        |          | 0.03 |             |       |      |
| v/c Ratio               | 0.76                         | 0.86     | 0.07           | 0.90  | 0.59     | 0.07      | 0.70   | 0.23     | 0.23 | 0.88        | 0.72  |      |
| Uniform Delay, d1       | 49.4                         | 35.8     | 27.7           | 44.0  | 26.0     | 20.6      | 43.4   | 42.3     | 42.3 | 35.5        | 34.8  |      |
| Progression Factor      | 1.00                         | 1.00     | 1.00           | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00 | 1.00        | 1.00  |      |
| Incremental Delay, d2   | 32.1                         | 7.4      | 0.1            | 31.8  | 0.7      | 0.0       | 8.2    | 0.6      | 0.6  | 18.9        | 5.5   |      |
| Delay (s)               | 81.6                         | 43.2     | 27.8           | 75.8  | 26.7     | 20.6      | 51.6   | 42.9     | 42.9 | 54.4        | 40.3  |      |
| Level of Service        | F                            | D        | С              | E     | С        | С         | D      | D        | D    | D           | D     |      |
| Approach Delay (s)      |                              | 43.9     |                |       | 36.0     |           |        | 46.0     |      |             | 47.3  |      |
| Approach LOS            |                              | D        |                |       | D        |           |        | D        |      |             | D     |      |
| Intersection Summary    | •                            |          |                |       |          |           |        |          |      |             |       |      |
| •                       | M Average Control Delay      |          |                |       | ICM Lev  | vel of Se | ervice |          | D    |             |       |      |
| HCM Volume to Capacit   | •                            |          | 0.84           |       |          |           |        |          |      |             |       |      |
| Actuated Cycle Length ( |                              |          | 105.7<br>75.6% |       |          | ost time  |        |          | 12.0 |             |       |      |
|                         | section Capacity Utilization |          |                |       | CU Leve  | el of Ser | vice   |          | D    |             |       |      |
| Analysis Period (min)   |                              |          | 15             |       |          |           |        |          |      |             |       |      |

|                              | ٠                        | <b>→</b> | •     | •     | +       | •         | •      | <b>†</b> | <b>/</b> | <b>/</b> | <b>+</b> | 4    |
|------------------------------|--------------------------|----------|-------|-------|---------|-----------|--------|----------|----------|----------|----------|------|
| Movement                     | EBL                      | EBT      | EBR   | WBL   | WBT     | WBR       | NBL    | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations          |                          | 4        |       |       | 4       |           | *      | f)       |          | *        | f)       |      |
| Ideal Flow (vphpl)           | 1900                     | 1900     | 1900  | 1900  | 1900    | 1900      | 1900   | 1900     | 1900     | 1900     | 1900     | 1900 |
| Total Lost time (s)          |                          | 4.0      |       |       | 4.0     |           | 4.0    | 4.0      |          | 4.0      | 4.0      |      |
| Lane Util. Factor            |                          | 1.00     |       |       | 1.00    |           | 1.00   | 1.00     |          | 1.00     | 1.00     |      |
| Frt                          |                          | 0.94     |       |       | 1.00    |           | 1.00   | 0.98     |          | 1.00     | 1.00     |      |
| Flt Protected                |                          | 1.00     |       |       | 0.97    |           | 0.95   | 1.00     |          | 0.95     | 1.00     |      |
| Satd. Flow (prot)            |                          | 1740     |       |       | 1799    |           | 1770   | 1828     |          | 1770     | 1859     |      |
| Flt Permitted                |                          | 1.00     |       |       | 0.97    |           | 0.95   | 1.00     |          | 0.95     | 1.00     |      |
| Satd. Flow (perm)            |                          | 1740     |       |       | 1799    |           | 1770   | 1828     |          | 1770     | 1859     |      |
| Volume (vph)                 | 6                        | 31       | 31    | 56    | 26      | 1         | 53     | 641      | 90       | 1        | 365      | 5    |
| Peak-hour factor, PHF        | 0.84                     | 0.84     | 0.84  | 0.90  | 0.90    | 0.90      | 0.92   | 0.92     | 0.92     | 0.87     | 0.87     | 0.87 |
| Adj. Flow (vph)              | 7                        | 37       | 37    | 62    | 29      | 1         | 58     | 697      | 98       | 1        | 420      | 6    |
| RTOR Reduction (vph)         | 0                        | 34       | 0     | 0     | 1       | 0         | 0      | 4        | 0        | 0        | 0        | 0    |
| Lane Group Flow (vph)        | 0                        | 47       | 0     | 0     | 91      | 0         | 58     | 791      | 0        | 1        | 426      | 0    |
| Turn Type                    | Split                    |          |       | Split |         |           | Prot   |          |          | Prot     |          |      |
| Protected Phases             | 4                        | 4        |       | 8     | 8       |           | 5      | 2        |          | 1        | 6        |      |
| Permitted Phases             |                          |          |       |       |         |           |        |          |          |          |          |      |
| Actuated Green, G (s)        |                          | 8.2      |       |       | 9.3     |           | 4.7    | 52.5     |          | 0.7      | 48.5     |      |
| Effective Green, g (s)       |                          | 8.2      |       |       | 9.3     |           | 4.7    | 52.5     |          | 0.7      | 48.5     |      |
| Actuated g/C Ratio           |                          | 0.09     |       |       | 0.11    |           | 0.05   | 0.61     |          | 0.01     | 0.56     |      |
| Clearance Time (s)           |                          | 4.0      |       |       | 4.0     |           | 4.0    | 4.0      |          | 4.0      | 4.0      |      |
| Vehicle Extension (s)        |                          | 3.0      |       |       | 3.0     |           | 3.0    | 3.0      |          | 3.0      | 3.0      |      |
| Lane Grp Cap (vph)           |                          | 165      |       |       | 193     |           | 96     | 1107     |          | 14       | 1040     |      |
| v/s Ratio Prot               |                          | c0.03    |       |       | c0.05   |           | c0.03  | c0.43    |          | 0.00     | 0.23     |      |
| v/s Ratio Perm               |                          |          |       |       |         |           |        |          |          |          |          |      |
| v/c Ratio                    |                          | 0.29     |       |       | 0.47    |           | 0.60   | 0.71     |          | 0.07     | 0.41     |      |
| Uniform Delay, d1            |                          | 36.5     |       |       | 36.4    |           | 40.1   | 11.9     |          | 42.7     | 10.9     |      |
| Progression Factor           |                          | 1.00     |       |       | 1.00    |           | 1.00   | 1.00     |          | 1.00     | 1.00     |      |
| Incremental Delay, d2        |                          | 1.0      |       |       | 1.8     |           | 10.3   | 2.2      |          | 2.2      | 0.3      |      |
| Delay (s)                    |                          | 37.5     |       |       | 38.2    |           | 50.4   | 14.1     |          | 44.8     | 11.2     |      |
| Level of Service             |                          | D        |       |       | D       |           | D      | В        |          | D        | В        |      |
| Approach Delay (s)           |                          | 37.5     |       |       | 38.2    |           |        | 16.6     |          |          | 11.3     |      |
| Approach LOS                 |                          | D        |       |       | D       |           |        | В        |          |          | В        |      |
| Intersection Summary         |                          |          |       |       |         |           |        |          |          |          |          |      |
|                              | Average Control Delay 17 |          |       |       | ICM Lev | vel of Se | ervice |          | В        |          |          |      |
| <b>HCM Volume to Capacit</b> |                          |          | 0.65  |       |         |           |        |          |          |          |          |      |
| Actuated Cycle Length (      |                          |          | 86.7  |       |         | ost time  |        |          | 16.0     |          |          |      |
| Intersection Capacity Ut     | ilization                |          | 61.9% | 10    | CU Leve | el of Ser | vice   |          | В        |          |          |      |
| Analysis Period (min)        |                          |          | 15    |       |         |           |        |          |          |          |          |      |
| c Critical Lane Group        |                          |          |       |       |         |           |        |          |          |          |          |      |

|                           | ۶    | <b>→</b> | •     | •     | <b>←</b> | •         | •      | <b>†</b> | /    | <b>/</b> | ţ     | ✓    |
|---------------------------|------|----------|-------|-------|----------|-----------|--------|----------|------|----------|-------|------|
| Movement                  | EBL  | EBT      | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR  | SBL      | SBT   | SBR  |
| Lane Configurations       | J.   | <b>^</b> | 7     | Ţ     | <b>^</b> | 7         | Ť      | <b>†</b> | 7    | 7        | ĵ»    |      |
| Ideal Flow (vphpl)        | 1900 | 1900     | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900 | 1900     | 1900  | 1900 |
| Total Lost time (s)       | 4.0  | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0  | 4.0      | 4.0   |      |
| Lane Util. Factor         | 1.00 | 0.95     | 1.00  | 1.00  | 0.95     | 1.00      | 1.00   | 1.00     | 1.00 | 1.00     | 1.00  |      |
| Frt                       | 1.00 | 1.00     | 0.85  | 1.00  | 1.00     | 0.85      | 1.00   | 1.00     | 0.85 | 1.00     | 0.91  |      |
| Flt Protected             | 0.95 | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00 | 0.95     | 1.00  |      |
| Satd. Flow (prot)         | 1770 | 3539     | 1583  | 1770  | 3539     | 1346      | 1770   | 1863     | 1524 | 1770     | 1602  |      |
| Flt Permitted             | 0.95 | 1.00     | 1.00  | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     | 1.00 | 0.95     | 1.00  |      |
| Satd. Flow (perm)         | 1770 | 3539     | 1583  | 1770  | 3539     | 1346      | 1770   | 1863     | 1524 | 1770     | 1602  |      |
| Volume (vph)              | 220  | 1072     | 190   | 329   | 949      | 382       | 149    | 164      | 301  | 214      | 96    | 130  |
| Peak-hour factor, PHF     | 0.94 | 0.94     | 0.94  | 0.97  | 0.97     | 0.97      | 0.92   | 0.92     | 0.92 | 0.87     | 0.87  | 0.87 |
| Adj. Flow (vph)           | 234  | 1140     | 202   | 339   | 978      | 394       | 162    | 178      | 327  | 246      | 110   | 149  |
| RTOR Reduction (vph)      | 0    | 0        | 111   | 0     | 0        | 248       | 0      | 0        | 252  | 0        | 41    | 0    |
| Lane Group Flow (vph)     | 234  | 1140     | 91    | 339   | 978      | 146       | 162    | 178      | 75   | 246      | 218   | 0    |
| Heavy Vehicles (%)        | 2%   | 2%       | 2%    | 2%    | 2%       | 20%       | 2%     | 2%       | 6%   | 2%       | 17%   | 2%   |
| Turn Type                 | Prot |          | Perm  | Prot  |          | Perm      | Prot   |          | Perm | Prot     |       |      |
| Protected Phases          | 7    | 4        |       | 3     | 8        |           | 5      | 2        |      | 1        | 6     |      |
| Permitted Phases          |      |          | 4     |       |          | 8         |        |          | 2    |          |       |      |
| Actuated Green, G (s)     | 18.6 | 38.0     | 38.0  | 23.0  | 42.4     | 42.4      | 13.4   | 27.0     | 27.0 | 16.0     | 29.6  |      |
| Effective Green, g (s)    | 18.6 | 38.0     | 38.0  | 23.0  | 42.4     | 42.4      | 13.4   | 27.0     | 27.0 | 16.0     | 29.6  |      |
| Actuated g/C Ratio        | 0.16 | 0.32     | 0.32  | 0.19  | 0.35     | 0.35      | 0.11   | 0.22     | 0.22 | 0.13     | 0.25  |      |
| Clearance Time (s)        | 4.0  | 4.0      | 4.0   | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      | 4.0  | 4.0      | 4.0   |      |
| Vehicle Extension (s)     | 3.0  | 3.0      | 3.0   | 3.0   | 3.0      | 3.0       | 3.0    | 3.0      | 3.0  | 3.0      | 3.0   |      |
| Lane Grp Cap (vph)        | 274  | 1121     | 501   | 339   | 1250     | 476       | 198    | 419      | 343  | 236      | 395   |      |
| v/s Ratio Prot            | 0.13 | c0.32    |       | c0.19 | 0.28     |           | 0.09   | 0.10     |      | c0.14    | c0.14 |      |
| v/s Ratio Perm            |      |          | 0.06  |       |          | 0.11      |        |          | 0.05 |          |       |      |
| v/c Ratio                 | 0.85 | 1.02     | 0.18  | 1.00  | 0.78     | 0.31      | 0.82   | 0.42     | 0.22 | 1.04     | 0.55  |      |
| Uniform Delay, d1         | 49.4 | 41.0     | 29.7  | 48.5  | 34.7     | 28.1      | 52.1   | 39.8     | 37.9 | 52.0     | 39.4  |      |
| Progression Factor        | 1.00 | 1.00     | 1.00  | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     | 1.00 | 1.00     | 1.00  |      |
| Incremental Delay, d2     | 21.9 | 31.2     | 0.2   | 48.9  | 3.3      | 0.4       | 22.4   | 3.1      | 1.5  | 70.1     | 5.5   |      |
| Delay (s)                 | 71.3 | 72.2     | 29.9  | 97.4  | 37.9     | 28.5      | 74.5   | 43.0     | 39.4 | 122.1    | 44.9  |      |
| Level of Service          | Е    | Е        | С     | F     | D        | С         | Е      | D        | D    | F        | D     |      |
| Approach Delay (s)        |      | 66.6     |       |       | 47.5     |           |        | 48.9     |      |          | 82.5  |      |
| Approach LOS              |      | Е        |       |       | D        |           |        | D        |      |          | F     |      |
| Intersection Summary      |      |          |       |       |          |           |        |          |      |          |       |      |
| HCM Average Control D     | •    |          |       | F     | ICM Le   | vel of Se | ervice |          | Е    |          |       |      |
| HCM Volume to Capacit     |      |          | 0.90  |       |          |           |        |          |      |          |       |      |
| Actuated Cycle Length (   | s)   |          | 120.0 | S     | Sum of I | ost time  | (s)    |          | 16.0 |          |       |      |
| Intersection Capacity Uti |      |          | 82.5% | 10    | CU Leve  | el of Ser | vice   |          | Е    |          |       |      |
| Analysis Period (min)     |      |          | 15    |       |          |           |        |          |      |          |       |      |
| o Critical Lana Group     |      |          |       |       |          |           |        |          |      |          |       |      |

|                          | ۶                                        | <b>→</b>   | •     | •     | <b>←</b>   | •         | •      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ţ       | 4     |
|--------------------------|------------------------------------------|------------|-------|-------|------------|-----------|--------|----------|-------------|-------------|---------|-------|
| Movement                 | EBL                                      | EBT        | EBR   | WBL   | WBT        | WBR       | NBL    | NBT      | NBR         | SBL         | SBT     | SBR   |
| Lane Configurations      | لولولو                                   | <b>†</b> † | 7     | ሻ     | <b>†</b> † | 77        | ሻ      | <b>1</b> | 7           | 14.14       | <u></u> | 7     |
| Ideal Flow (vphpl)       | 1900                                     | 1900       | 1900  | 1900  | 1900       | 1900      | 1900   | 1900     | 1900        | 1900        | 1900    | 1900  |
| Total Lost time (s)      | 4.0                                      | 4.0        | 4.0   | 4.0   | 4.0        | 4.0       | 4.0    | 4.0      | 4.0         | 4.0         | 4.0     | 4.0   |
| Lane Util. Factor        | 0.94                                     | 0.95       | 1.00  | 1.00  | 0.95       | 0.88      | 1.00   | 1.00     | 1.00        | 0.97        | 1.00    | 1.00  |
| Frt                      | 1.00                                     | 1.00       | 0.85  | 1.00  | 1.00       | 0.85      | 1.00   | 1.00     | 0.85        | 1.00        | 1.00    | 0.85  |
| Flt Protected            | 0.95                                     | 1.00       | 1.00  | 0.95  | 1.00       | 1.00      | 0.95   | 1.00     | 1.00        | 0.95        | 1.00    | 1.00  |
| Satd. Flow (prot)        | 4505                                     | 3471       | 1583  | 1656  | 3505       | 2787      | 1770   | 1743     | 1568        | 2801        | 1863    | 1583  |
| Flt Permitted            | 0.95                                     | 1.00       | 1.00  | 0.95  | 1.00       | 1.00      | 0.95   | 1.00     | 1.00        | 0.95        | 1.00    | 1.00  |
| Satd. Flow (perm)        | 4505                                     | 3471       | 1583  | 1656  | 3505       | 2787      | 1770   | 1743     | 1568        | 2801        | 1863    | 1583  |
| Volume (vph)             | 182                                      | 331        | 105   | 71    | 424        | 254       | 76     | 160      | 111         | 1005        | 605     | 697   |
| Peak-hour factor, PHF    | 0.93                                     | 0.93       | 0.93  | 0.93  | 0.93       | 0.93      | 0.93   | 0.93     | 0.93        | 0.92        | 0.92    | 0.92  |
| Adj. Flow (vph)          | 196                                      | 356        | 113   | 76    | 456        | 273       | 82     | 172      | 119         | 1092        | 658     | 758   |
| RTOR Reduction (vph)     | 0                                        | 0          | 93    | 0     | 0          | 224       | 0      | 0        | 98          | 0           | 0       | 114   |
| Lane Group Flow (vph)    | 196                                      | 356        | 20    | 76    | 456        | 49        | 82     | 172      | 21          | 1092        | 658     | 644   |
| Heavy Vehicles (%)       | 13%                                      | 4%         | 2%    | 9%    | 3%         | 2%        | 2%     | 9%       | 3%          | 25%         | 2%      | 2%    |
| Turn Type                | Prot                                     |            | Perm  | Prot  |            | Perm      | Prot   |          | Perm        | Prot        |         | Perm  |
| Protected Phases         | 7                                        | 4          |       | 3     | 8          |           | 5      | 2        |             | 1           | 6       |       |
| Permitted Phases         |                                          |            | 4     |       |            | 8         |        |          | 2           |             |         | 6     |
| Actuated Green, G (s)    | 5.1                                      | 17.5       | 17.5  | 5.1   | 17.5       | 17.5      | 6.2    | 16.8     | 16.8        | 41.5        | 52.1    | 52.1  |
| Effective Green, g (s)   | Phases Green, G (s) 5.1 Green, g (s) 5.1 |            |       | 5.1   | 17.5       | 17.5      | 6.2    | 16.8     | 16.8        | 41.5        | 52.1    | 52.1  |
| Actuated g/C Ratio       |                                          | 0.18       | 0.18  | 0.05  | 0.18       | 0.18      | 0.06   | 0.17     | 0.17        | 0.43        | 0.54    | 0.54  |
| Clearance Time (s)       | 4.0                                      | 4.0        | 4.0   | 4.0   | 4.0        | 4.0       | 4.0    | 4.0      | 4.0         | 4.0         | 4.0     | 4.0   |
| Vehicle Extension (s)    | 3.0                                      | 3.0        | 3.0   | 3.0   | 3.0        | 3.0       | 3.0    | 3.0      | 3.0         | 3.0         | 3.0     | 3.0   |
| Lane Grp Cap (vph)       | 237                                      | 627        | 286   | 87    | 633        | 503       | 113    | 302      | 272         | 1200        | 1002    | 851   |
| v/s Ratio Prot           | 0.04                                     | 0.10       |       | c0.05 | c0.13      |           | 0.05   | 0.10     |             | c0.39       | 0.35    |       |
| v/s Ratio Perm           |                                          |            | 0.01  |       |            | 0.02      |        |          | 0.01        |             |         | c0.41 |
| v/c Ratio                | 0.83                                     | 0.57       | 0.07  | 0.87  | 0.72       | 0.10      | 0.73   | 0.57     | 0.08        | 0.91        | 0.66    | 0.76  |
| Uniform Delay, d1        | 45.5                                     | 36.2       | 33.0  | 45.6  | 37.4       | 33.1      | 44.5   | 36.7     | 33.5        | 26.0        | 16.0    | 17.5  |
| Progression Factor       | 1.00                                     | 1.00       | 1.00  | 1.00  | 1.00       | 1.00      | 1.00   | 1.00     | 1.00        | 1.00        | 1.00    | 1.00  |
| Incremental Delay, d2    | 20.5                                     | 1.2        | 0.1   | 56.7  | 4.0        | 0.1       | 20.5   | 2.5      | 0.1         | 10.3        | 1.6     | 3.9   |
| Delay (s)                | 65.9                                     | 37.4       | 33.1  | 102.3 | 41.4       | 33.2      | 65.0   | 39.2     | 33.7        | 36.3        | 17.6    | 21.3  |
| Level of Service         | E                                        | D          | С     | F     | D          | С         | Е      | D        | С           | D           | В       | С     |
| Approach Delay (s)       |                                          | 45.1       |       |       | 44.4       |           |        | 43.1     |             |             | 26.9    |       |
| Approach LOS             |                                          | D          |       |       | D          |           |        | D        |             |             | С       |       |
| Intersection Summary     |                                          |            |       |       |            |           |        |          |             |             |         |       |
| HCM Average Control D    | •                                        |            | 34.3  | H     | HCM Lev    | vel of Se | ervice |          | С           |             |         |       |
| HCM Volume to Capacit    | •                                        |            | 0.82  |       |            |           |        |          |             |             |         |       |
| Actuated Cycle Length (  |                                          |            | 96.9  |       |            | ost time  |        |          | 12.0        |             |         |       |
| Intersection Capacity Ut | ilization                                |            | 69.1% | Į.    | CU Leve    | el of Ser | vice   |          | С           |             |         |       |
| Analysis Period (min)    |                                          |            | 15    |       |            |           |        |          |             |             |         |       |

|                          | ۶         | -    | •     | •    | <b>←</b> | •         | •      | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ        | 4     |
|--------------------------|-----------|------|-------|------|----------|-----------|--------|----------|----------|-------------|----------|-------|
| Movement                 | EBL       | EBT  | EBR   | WBL  | WBT      | WBR       | NBL    | NBT      | NBR      | SBL         | SBT      | SBR   |
| Lane Configurations      | 7         | 4î   |       | 7    | f)       |           | Ţ      | f)       |          | 7           | <b>†</b> | 7     |
| Ideal Flow (vphpl)       | 1900      | 1900 | 1900  | 1900 | 1900     | 1900      | 1900   | 1900     | 1900     | 1900        | 1900     | 1900  |
| Total Lost time (s)      | 4.0       | 4.0  |       | 4.0  | 4.0      |           | 4.0    | 4.0      |          | 4.0         | 4.0      | 4.0   |
| Lane Util. Factor        | 1.00      | 1.00 |       | 1.00 | 1.00     |           | 1.00   | 1.00     |          | 1.00        | 1.00     | 1.00  |
| Frt                      | 1.00      | 0.91 |       | 1.00 | 0.90     |           | 1.00   | 0.99     |          | 1.00        | 1.00     | 0.85  |
| Flt Protected            | 0.95      | 1.00 |       | 0.95 | 1.00     |           | 0.95   | 1.00     |          | 0.95        | 1.00     | 1.00  |
| Satd. Flow (prot)        | 1752      | 1695 |       | 1770 | 1685     |           | 1770   | 1701     |          | 1770        | 1863     | 1482  |
| Flt Permitted            | 0.95      | 1.00 |       | 0.95 | 1.00     |           | 0.95   | 1.00     |          | 0.95        | 1.00     | 1.00  |
| Satd. Flow (perm)        | 1752      | 1695 |       | 1770 | 1685     |           | 1770   | 1701     |          | 1770        | 1863     | 1482  |
| Volume (vph)             | 148       | 2    | 3     | 6    | 3        | 5         | 1      | 77       | 7        | 5           | 289      | 499   |
| Peak-hour factor, PHF    | 0.88      | 0.88 | 0.88  | 0.67 | 0.67     | 0.67      | 0.92   | 0.92     | 0.92     | 0.87        | 0.87     | 0.87  |
| Adj. Flow (vph)          | 168       | 2    | 3     | 9    | 4        | 7         | 1      | 84       | 8        | 6           | 332      | 574   |
| RTOR Reduction (vph)     | 0         | 2    | 0     | 0    | 7        | 0         | 0      | 6        | 0        | 0           | 0        | 256   |
| Lane Group Flow (vph)    | 168       | 3    | 0     | 9    | 4        | 0         | 1      | 86       | 0        | 6           | 332      | 318   |
| Heavy Vehicles (%)       | 3%        | 2%   | 2%    | 2%   | 2%       | 2%        | 2%     | 11%      | 2%       | 2%          | 2%       | 9%    |
| Turn Type                | Prot      |      |       | Prot |          |           | Prot   |          |          | Prot        |          | om+ov |
| Protected Phases         | 7         | 4    |       | 3    | 8        |           | 5      | 2        |          | 1           | 6        | 7     |
| Permitted Phases         |           |      |       |      |          |           |        |          |          |             |          | 6     |
| Actuated Green, G (s)    | 10.5      | 11.7 |       | 0.4  | 1.6      |           | 0.4    | 11.8     |          | 0.4         | 11.8     | 22.3  |
| Effective Green, g (s)   | 10.5      | 11.7 |       | 0.4  | 1.6      |           | 0.4    | 11.8     |          | 0.4         | 11.8     | 22.3  |
| Actuated g/C Ratio       | 0.26      | 0.29 |       | 0.01 | 0.04     |           | 0.01   | 0.29     |          | 0.01        | 0.29     | 0.55  |
| Clearance Time (s)       | 4.0       | 4.0  |       | 4.0  | 4.0      |           | 4.0    | 4.0      |          | 4.0         | 4.0      | 4.0   |
| Vehicle Extension (s)    | 3.0       | 3.0  |       | 3.0  | 3.0      |           | 3.0    | 3.0      |          | 3.0         | 3.0      | 3.0   |
| Lane Grp Cap (vph)       | 456       | 492  |       | 18   | 67       |           | 18     | 498      |          | 18          | 545      | 967   |
| v/s Ratio Prot           | c0.10     | 0.00 |       | 0.01 | c0.00    |           | 0.00   | 0.05     |          | c0.00       | c0.18    | c0.09 |
| v/s Ratio Perm           |           |      |       |      |          |           |        |          |          |             |          | 0.13  |
| v/c Ratio                | 0.37      | 0.01 |       | 0.50 | 0.06     |           | 0.06   | 0.17     |          | 0.33        | 0.61     | 0.33  |
| Uniform Delay, d1        | 12.2      | 10.2 |       | 19.9 | 18.6     |           | 19.8   | 10.6     |          | 19.8        | 12.3     | 4.9   |
| Progression Factor       | 1.00      | 1.00 |       | 1.00 | 1.00     |           | 1.00   | 1.00     |          | 1.00        | 1.00     | 1.00  |
| Incremental Delay, d2    | 0.5       | 0.0  |       | 20.2 | 0.4      |           | 1.3    | 0.2      |          | 10.6        | 1.9      | 0.2   |
| Delay (s)                | 12.7      | 10.2 |       | 40.0 | 19.0     |           | 21.1   | 10.8     |          | 30.4        | 14.2     | 5.1   |
| Level of Service         | В         | В    |       | D    | В        |           | С      | В        |          | С           | В        | Α     |
| Approach Delay (s)       |           | 12.6 |       |      | 28.5     |           |        | 10.9     |          |             | 8.6      |       |
| Approach LOS             |           | В    |       |      | С        |           |        | В        |          |             | Α        |       |
| Intersection Summary     |           |      |       |      |          |           |        |          |          |             |          |       |
| HCM Average Control D    | elay      |      | 9.7   | H    | ICM Lev  | el of Se  | ervice |          | Α        |             |          |       |
| HCM Volume to Capacit    | •         |      | 0.43  |      |          |           |        |          |          |             |          |       |
| Actuated Cycle Length (  |           |      | 40.3  |      | Sum of l |           |        |          | 12.0     |             |          |       |
| Intersection Capacity Ut | ilization |      | 47.6% | 10   | CU Leve  | el of Ser | vice   |          | Α        |             |          |       |
| Analysis Period (min)    |           |      | 15    |      |          |           |        |          |          |             |          |       |

|                          | ۶                    | <b>→</b>   | •    | •    | •        | •         | <b>1</b> | <b>†</b> | <b>/</b> | -    | ţ        | 4     |
|--------------------------|----------------------|------------|------|------|----------|-----------|----------|----------|----------|------|----------|-------|
| Movement                 | EBL                  | EBT        | EBR  | WBL  | WBT      | WBR       | NBL      | NBT      | NBR      | SBL  | SBT      | SBR   |
| Lane Configurations      | 444                  | <b>†</b> † | 7    | ¥    | <b>^</b> | 77        | 7        | <b>†</b> | 7        | 44   | <b>†</b> | 7     |
| Ideal Flow (vphpl)       | 1900                 | 1900       | 1900 | 1900 | 1900     | 1900      | 1900     | 1900     | 1900     | 1900 | 1900     | 1900  |
| Total Lost time (s)      | 4.0                  | 4.0        | 4.0  | 4.0  | 4.0      | 4.0       | 4.0      | 4.0      | 4.0      | 4.0  | 4.0      | 4.0   |
| Lane Util. Factor        | 0.94                 | 0.95       | 1.00 | 1.00 | 0.95     | 0.88      | 1.00     | 1.00     | 1.00     | 0.97 | 1.00     | 1.00  |
| Frt                      | 1.00                 | 1.00       | 0.85 | 1.00 | 1.00     | 0.85      | 1.00     | 1.00     | 0.85     | 1.00 | 1.00     | 0.85  |
| Flt Protected            | 0.95                 | 1.00       | 1.00 | 0.95 | 1.00     | 1.00      | 0.95     | 1.00     | 1.00     | 0.95 | 1.00     | 1.00  |
| Satd. Flow (prot)        | 4990                 | 3539       | 1583 | 1770 | 3539     | 2369      | 1770     | 1863     | 1524     | 3433 | 1624     | 1583  |
| Flt Permitted            | 0.95                 | 1.00       | 1.00 | 0.95 | 1.00     | 1.00      | 0.95     | 1.00     | 1.00     | 0.95 | 1.00     | 1.00  |
| Satd. Flow (perm)        | 4990                 | 3539       | 1583 | 1770 | 3539     | 2369      | 1770     | 1863     | 1524     | 3433 | 1624     | 1583  |
| Volume (vph)             | 728                  | 601        | 107  | 142  | 383      | 1050      | 119      | 627      | 114      | 567  | 347      | 401   |
| Peak-hour factor, PHF    | 0.94                 | 0.94       | 0.94 | 0.97 | 0.97     | 0.97      | 0.92     | 0.92     | 0.92     | 0.87 | 0.87     | 0.87  |
| Adj. Flow (vph)          | 774                  | 639        | 114  | 146  | 395      | 1082      | 129      | 682      | 124      | 652  | 399      | 461   |
| RTOR Reduction (vph)     | 0                    | 0          | 88   | 0    | 0        | 64        | 0        | 0        | 53       | 0    | 0        | 77    |
| Lane Group Flow (vph)    | 774                  | 639        | 26   | 146  | 395      | 1018      | 129      | 682      | 71       | 652  | 399      | 384   |
| Heavy Vehicles (%)       | 2%                   | 2%         | 2%   | 2%   | 2%       | 20%       | 2%       | 2%       | 6%       | 2%   | 17%      | 2%    |
| Turn Type                | Prot                 |            | Perm | Prot |          | pm+ov     | Prot     |          | Perm     | Prot |          | pm+ov |
| Protected Phases         | 7                    | 4          |      | 3    | 8        | 1         | 5        | 2        |          | 1    | 6        | 7     |
| Permitted Phases         |                      |            | 4    |      |          | 8         |          |          | 2        |      |          | 6     |
| Actuated Green, G (s)    | 16.0                 | 24.0       | 24.0 | 10.0 | 18.0     | 37.0      | 12.2     | 37.0     | 37.0     | 19.0 | 43.8     | 59.8  |
| Effective Green, g (s)   | 16.0                 | 24.0       | 24.0 | 10.0 | 18.0     | 37.0      | 12.2     | 37.0     | 37.0     | 19.0 | 43.8     | 59.8  |
| Actuated g/C Ratio       | 0.15                 | 0.23       | 0.23 | 0.09 | 0.17     | 0.35      | 0.12     | 0.35     | 0.35     | 0.18 | 0.41     | 0.56  |
| Clearance Time (s)       | 4.0                  | 4.0        | 4.0  | 4.0  | 4.0      | 4.0       | 4.0      | 4.0      | 4.0      | 4.0  | 4.0      | 4.0   |
| Vehicle Extension (s)    | 3.0                  | 3.0        | 3.0  | 3.0  | 3.0      | 3.0       | 3.0      | 3.0      | 3.0      | 3.0  | 3.0      | 3.0   |
| Lane Grp Cap (vph)       | 753                  | 801        | 358  | 167  | 601      | 916       | 204      | 650      | 532      | 615  | 671      | 953   |
| v/s Ratio Prot           | c0.16                | 0.18       |      | 0.08 | 0.11     | c0.20     | 0.07     | c0.37    |          | 0.19 | 0.25     | 0.06  |
| v/s Ratio Perm           |                      |            | 0.02 |      |          | 0.23      |          |          | 0.05     |      |          | 0.18  |
| v/c Ratio                | 1.03                 | 0.80       | 0.07 | 0.87 | 0.66     | 1.11      | 0.63     | 1.05     | 0.13     | 1.06 | 0.59     | 0.40  |
| Uniform Delay, d1        | 45.0                 | 38.7       | 32.2 | 47.4 | 41.1     | 34.5      | 44.8     | 34.5     | 23.6     | 43.5 | 24.2     | 13.0  |
| Progression Factor       | 1.00                 | 1.00       | 1.00 | 1.00 | 1.00     | 1.00      | 1.00     | 1.00     | 1.00     | 1.00 | 1.00     | 1.00  |
| Incremental Delay, d2    | 40.1                 | 5.6        | 0.1  | 36.2 | 2.6      | 65.3      | 6.3      | 48.9     | 0.1      | 53.3 | 1.4      | 0.3   |
| Delay (s)                | 85.1                 | 44.3       | 32.3 | 83.6 | 43.7     | 99.8      | 51.0     | 83.4     | 23.7     | 96.8 | 25.6     | 13.3  |
| Level of Service         | F                    | D          | С    | F    | D        | F         | D        | F        | С        | F    | С        | В     |
| Approach Delay (s)       |                      | 64.1       |      |      | 84.7     |           |          | 71.0     |          |      | 52.6     |       |
| Approach LOS             |                      | Е          |      |      | F        |           |          | Е        |          |      | D        |       |
| Intersection Summary     |                      |            |      |      |          |           |          |          |          |      |          |       |
| HCM Average Control D    | elay                 |            | 68.1 | H    | ICM Le   | vel of Se | ervice   |          | Е        |      |          |       |
| HCM Volume to Capacit    | Capacity ratio 1.07  |            |      |      |          |           |          |          |          |      |          |       |
| Actuated Cycle Length (  | Cycle Length (s) 106 |            |      |      | Sum of I | ost time  | (s)      |          | 12.0     |      |          |       |
| Intersection Capacity Ut |                      |            |      |      | CU Leve  | el of Ser | vice     |          | F        |      |          |       |
| Analysis Period (min)    |                      |            | 15   |      |          |           |          |          |          |      |          |       |
| o Critical Lana Craun    |                      |            |      |      |          |           |          |          |          |      |          |       |

|                          | ۶                              | -    | $\rightarrow$ | •     | <b>←</b> | •         | •      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ        | 4     |
|--------------------------|--------------------------------|------|---------------|-------|----------|-----------|--------|----------|-------------|-------------|----------|-------|
| Movement                 | EBL                            | EBT  | EBR           | WBL   | WBT      | WBR       | NBL    | NBT      | NBR         | SBL         | SBT      | SBR   |
| Lane Configurations      | 7                              | 4î   |               | 7     | f)       |           | ሻ      | f)       |             | 7           | <b>^</b> | 7     |
| Ideal Flow (vphpl)       | 1900                           | 1900 | 1900          | 1900  | 1900     | 1900      | 1900   | 1900     | 1900        | 1900        | 1900     | 1900  |
| Total Lost time (s)      | 4.0                            | 4.0  |               | 4.0   | 4.0      |           | 4.0    | 4.0      |             | 4.0         | 4.0      | 4.0   |
| Lane Util. Factor        | 1.00                           | 1.00 |               | 1.00  | 1.00     |           | 1.00   | 1.00     |             | 1.00        | 1.00     | 1.00  |
| Frt                      | 1.00                           | 0.93 |               | 1.00  | 0.91     |           | 1.00   | 1.00     |             | 1.00        | 1.00     | 0.85  |
| Flt Protected            | 0.95                           | 1.00 |               | 0.95  | 1.00     |           | 0.95   | 1.00     |             | 0.95        | 1.00     | 1.00  |
| Satd. Flow (prot)        | 1736                           | 1583 |               | 1770  | 1480     |           | 1770   | 1856     |             | 1770        | 1863     | 1553  |
| Flt Permitted            | 0.95                           | 1.00 |               | 0.95  | 1.00     |           | 0.95   | 1.00     |             | 0.95        | 1.00     | 1.00  |
| Satd. Flow (perm)        | 1736                           | 1583 |               | 1770  | 1480     |           | 1770   | 1856     |             | 1770        | 1863     | 1553  |
| Volume (vph)             | 536                            | 5    | 5             | 7     | 2        | 4         | 2      | 300      | 8           | 8           | 181      | 311   |
| Peak-hour factor, PHF    | 0.87                           | 0.87 | 0.87          | 0.75  | 0.75     | 0.75      | 0.87   | 0.87     | 0.87        | 0.92        | 0.92     | 0.92  |
| Adj. Flow (vph)          | 616                            | 6    | 6             | 9     | 3        | 5         | 2      | 345      | 9           | 9           | 197      | 338   |
| RTOR Reduction (vph)     | 0                              | 3    | 0             | 0     | 5        | 0         | 0      | 1        | 0           | 0           | 0        | 101   |
| Lane Group Flow (vph)    | 616                            | 9    | 0             | 9     | 3        | 0         | 2      | 353      | 0           | 9           | 197      | 237   |
| Heavy Vehicles (%)       | 4%                             | 2%   | 20%           | 2%    | 2%       | 25%       | 2%     | 2%       | 2%          | 2%          | 2%       | 4%    |
| Turn Type                | Prot                           |      |               | Prot  |          |           | Prot   |          |             | Prot        | ı        | om+ov |
| Protected Phases         | 7                              | 4    |               | 3     | 8        |           | 5      | 2        |             | 1           | 6        | 7     |
| Permitted Phases         |                                |      |               |       |          |           |        |          |             |             |          | 6     |
| Actuated Green, G (s)    | 27.1                           | 28.6 |               | 0.5   | 2.0      |           | 0.5    | 16.1     |             | 0.5         | 16.1     | 43.2  |
| Effective Green, g (s)   | 27.1                           | 28.6 |               | 0.5   | 2.0      |           | 0.5    | 16.1     |             | 0.5         | 16.1     | 43.2  |
| Actuated g/C Ratio       | 0.44                           | 0.46 |               | 0.01  | 0.03     |           | 0.01   | 0.26     |             | 0.01        | 0.26     | 0.70  |
| Clearance Time (s)       | 4.0                            | 4.0  |               | 4.0   | 4.0      |           | 4.0    | 4.0      |             | 4.0         | 4.0      | 4.0   |
| Vehicle Extension (s)    | 3.0                            | 3.0  |               | 3.0   | 3.0      |           | 3.0    | 3.0      |             | 3.0         | 3.0      | 3.0   |
| Lane Grp Cap (vph)       | 762                            | 734  |               | 14    | 48       |           | 14     | 484      |             | 14          | 486      | 1188  |
| v/s Ratio Prot           | c0.35                          | 0.01 |               | 0.01  | c0.00    |           | 0.00   | c0.19    |             | c0.01       | 0.11     | 0.09  |
| v/s Ratio Perm           |                                |      |               |       |          |           |        |          |             |             |          | 0.06  |
| v/c Ratio                | 0.81                           | 0.01 |               | 0.64  | 0.07     |           | 0.14   | 0.73     |             | 0.64        | 0.41     | 0.20  |
| Uniform Delay, d1        | 15.0                           | 8.9  |               | 30.5  | 28.9     |           | 30.4   | 20.8     |             | 30.5        | 18.8     | 3.2   |
| Progression Factor       | 1.00                           | 1.00 |               | 1.00  | 1.00     |           | 1.00   | 1.00     |             | 1.00        | 1.00     | 1.00  |
| Incremental Delay, d2    | 6.3                            | 0.0  |               | 71.2  | 0.6      |           | 4.7    | 5.5      |             | 71.2        | 0.6      | 0.1   |
| Delay (s)                | 21.4                           | 8.9  |               | 101.7 | 29.5     |           | 35.0   | 26.3     |             | 101.7       | 19.4     | 3.3   |
| Level of Service         | С                              | Α    |               | F     | С        |           | D      | С        |             | F           | В        | Α     |
| Approach Delay (s)       |                                | 21.1 |               |       | 67.7     |           |        | 26.3     |             |             | 10.8     |       |
| Approach LOS             |                                | С    |               |       | Е        |           |        | С        |             |             | В        |       |
| Intersection Summary     |                                |      |               |       |          |           |        |          |             |             |          |       |
| HCM Average Control D    | elay                           |      | 19.2          | F     | ICM Lev  | vel of Se | ervice |          | В           |             |          |       |
|                          | M Volume to Capacity ratio 0.7 |      |               |       |          |           |        |          |             |             |          |       |
| Actuated Cycle Length (  |                                |      | 61.7          |       |          | ost time  | ` '    |          | 16.0        |             |          |       |
| Intersection Capacity Ut | ilization                      |      | 59.3%         | I     | CU Leve  | el of Ser | vice   |          | В           |             |          |       |
| Analysis Period (min)    |                                |      | 15            |       |          |           |        |          |             |             |          |       |

HCM 2000 Basic Freeway Segments Capacity Analysis Jurisdiction Sacramento County
Analysis Year Existing Plus Pref. Alt. with Mitigation
Analyst F&P Agency or Company Caltrans
Date 10/4/2010
Project Description Elverta Specific Plan

| Genera | I Information | 1                            | ı           | Flow Rate C | alculatio | n     |         |        |      |                |     |          |                |                         | Speed Calcul | ation | Results    |          |
|--------|---------------|------------------------------|-------------|-------------|-----------|-------|---------|--------|------|----------------|-----|----------|----------------|-------------------------|--------------|-------|------------|----------|
|        | Freeway/      |                              | Analysis    | Volume      |           |       |         | Truck/ |      |                |     |          |                | Flow Rate               | Measured     | S     | Density, D | Level of |
|        | Direction     | From/To                      | Time Period | (vph)       | PHF       | Lanes | Terrain | Bus %  | RV % | E <sub>T</sub> | ER  | $f_{HV}$ | f <sub>P</sub> | v <sub>p</sub> (pcphpl) | FFS (mph)    | (mph) | (pcplpm)   | Service  |
| 1      | SR-99 SB      | Sankey Road to Riego Road    | AM          | 1,874       | 0.92      | 2     | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 1,054                   | 65.0         | 60.5  | 17.4       | В        |
| 2      | SR 99 SB      | Riego Road to Elverta Road   | AM          | 2,420       | 0.92      | 2     | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 1,361                   | 65.0         | 60.5  | 22.5       | С        |
| 3      | SR 99 SB      | Elverta Road to Elkhorn Blvd | AM          | 3,399       | 0.92      | 2     | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 1,912                   | 65.0         | 59.3  | 32.2       | D        |
| 4      | SR 99 SB      | Elkhorn Blvd to I-5          | AM          | 4,240       | 0.92      | 3     | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 1,590                   | 65.0         | 62.0  | 25.6       | С        |
| 5      | SR 99 NB      | I-5 to Elkhorn Blvd          | AM          | 1,327       | 0.92      | 3     | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 536                     | 65.0         | 62.0  | 8.6        | Α        |
| 6      | SR 99 NB      | Elkhorn Blvd to Elverta Road | AM          | 1,131       | 0.92      | 2     | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 685                     | 65.0         | 60.5  | 11.3       | В        |
| 7      | SR 99 NB      | Elverta Road to Riego Road   | AM          | 902         | 0.92      | 2     | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 547                     | 65.0         | 60.5  | 9.0        | Α        |
| 8      | SR 99 NB      | Riego Road to Sankey Road    | AM          | 745         | 0.92      | 2     | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 451                     | 65.0         | 60.5  | 7.5        | Α        |
| 1      | SR-99 SB      | Sankey Road to Riego Road    | PM          | 1,090       | 0.92      | 2     | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 607                     | 65.0         | 60.5  | 10.0       | Α        |
| 2      | SR 99 SB      | Riego Road to Elverta Road   | PM          | 1,239       | 0.92      | 2     | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 690                     | 65.0         | 60.5  | 11.4       | В        |
| 3      | SR 99 SB      | Elverta Road to Elkhorn Blvd | PM          | 1,722       | 0.92      | 2     | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 959                     | 65.0         | 60.5  | 15.9       | В        |
| 4      | SR 99 SB      | Elkhorn Blvd to I-5          | PM          | 2,052       | 0.92      | 3     | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 762                     | 65.0         | 62.0  | 12.3       | В        |
| 5      | SR 99 NB      | I-5 to Elkhorn Blvd          | PM          | 4,728       | 0.92      | 3     | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 1,824                   | 65.0         | 61.2  | 29.8       | D        |
| 6      | SR 99 NB      | Elkhorn Blvd to Elverta Road | PM          | 3,664       | 0.92      | 2     | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 2,121                   | 65.0         | 56.2  | 37.7       | E        |
| 7      | SR 99 NB      | Elverta Road to Riego Road   | PM          | 2,514       | 0.92      | 2     | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 1,455                   | 65.0         | 60.5  | 24.1       | С        |
| 8      | SR 99 NB      | Riego Road to Sankey Road    | PM          | 1,991       | 0.92      | 2     | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 1,152                   | 65.0         | 60.5  | 19.0       | С        |
|        |               |                              |             |             |           |       |         |        |      |                |     |          |                |                         |              |       |            |          |

Page 1 of 1 11/23/2010 Fehr & Peers

## **Appendix C-2: Cumulative Plus Project Mitigation**

Cumulative Plus Preferred Alternative Conditions

Cumulative Plus Approved Specific Plan Conditions

Cumulative Plus Minimal Impact Conditions

Cumulative Plus No Federal Action Conditions

|                              | -         | $\rightarrow$ | •     | •          | 4       | <b>/</b>      |    |  |
|------------------------------|-----------|---------------|-------|------------|---------|---------------|----|--|
| Movement                     | EBT       | EBR           | WBL   | WBT        | NBL     | NBR           |    |  |
| Lane Configurations          | ተተኈ       |               |       | <b>^</b> ^ | W       | #             |    |  |
| Ideal Flow (vphpl)           | 1900      | 1900          | 1900  | 1900       | 1900    | 1900          |    |  |
| Total Lost time (s)          | 4.0       |               |       | 4.0        | 4.0     | 4.0           |    |  |
| Lane Util. Factor            | 0.91      |               |       | 0.91       | 1.00    | 0.95          |    |  |
| Frt                          | 0.98      |               |       | 1.00       | 0.98    | 0.85          |    |  |
| Flt Protected                | 1.00      |               |       | 1.00       | 0.96    | 1.00          |    |  |
| Satd. Flow (prot)            | 4976      |               |       | 5085       | 1744    | 1504          |    |  |
| Flt Permitted                | 1.00      |               |       | 1.00       | 0.96    | 1.00          |    |  |
| Satd. Flow (perm)            | 4976      |               |       | 5085       | 1744    | 1504          |    |  |
| Volume (vph)                 | 780       | 130           | 0     | 2050       | 390     | 520           |    |  |
| Peak-hour factor, PHF        | 0.97      | 0.97          | 0.97  | 0.97       | 0.97    | 0.97          |    |  |
| Adj. Flow (vph)              | 804       | 134           | 0     | 2113       | 402     | 536           |    |  |
| RTOR Reduction (vph)         | 27        | 0             | 0     | 0          | 10      | 85            |    |  |
| Lane Group Flow (vph)        | 911       | 0             | 0     | 2113       | 471     | 372           |    |  |
| Turn Type                    |           |               |       |            |         | Perm          |    |  |
| Protected Phases             | 4         |               |       | 8          | 2       |               |    |  |
| Permitted Phases             |           |               |       |            |         | 2             |    |  |
| Actuated Green, G (s)        | 34.4      |               |       | 34.4       | 22.6    | 22.6          |    |  |
| Effective Green, g (s)       | 34.4      |               |       | 34.4       | 22.6    | 22.6          |    |  |
| Actuated g/C Ratio           | 0.53      |               |       | 0.53       | 0.35    | 0.35          |    |  |
| Clearance Time (s)           | 4.0       |               |       | 4.0        | 4.0     | 4.0           |    |  |
| Vehicle Extension (s)        | 3.0       |               |       | 3.0        | 3.0     | 3.0           |    |  |
| Lane Grp Cap (vph)           | 2633      |               |       | 2691       | 606     | 523           |    |  |
| v/s Ratio Prot               | 0.18      |               |       | c0.42      | c0.27   |               |    |  |
| v/s Ratio Perm               |           |               |       |            |         | 0.25          |    |  |
| v/c Ratio                    | 0.35      |               |       | 0.79       | 0.78    | 0.71          |    |  |
| Uniform Delay, d1            | 8.8       |               |       | 12.3       | 19.0    | 18.4          |    |  |
| Progression Factor           | 1.00      |               |       | 1.00       | 1.00    | 1.00          |    |  |
| Incremental Delay, d2        | 0.1       |               |       | 1.6        | 6.2     | 4.5           |    |  |
| Delay (s)                    | 8.9       |               |       | 13.9       | 25.2    | 22.9          |    |  |
| Level of Service             | Α         |               |       | В          | С       | С             |    |  |
| Approach Delay (s)           | 8.9       |               |       | 13.9       | 24.1    |               |    |  |
| Approach LOS                 | Α         |               |       | В          | С       |               |    |  |
| Intersection Summary         |           |               |       |            |         |               |    |  |
| HCM Average Control D        | ,         |               | 15.1  | F          | ICM Lev | vel of Servic | се |  |
| <b>HCM Volume to Capacit</b> |           |               | 0.78  |            |         |               |    |  |
| Actuated Cycle Length (      |           |               | 65.0  |            |         | ost time (s)  |    |  |
| Intersection Capacity Ut     | ilization |               | 78.5% | 10         | CU Leve | el of Service | •  |  |
| Analysis Period (min)        |           |               | 15    |            |         |               |    |  |
| c Critical Lane Group        |           |               |       |            |         |               |    |  |

|                              | ۶              | <b>→</b>   | •     | •        | +           | •         | •      | <b>†</b> | ~    | <b>/</b> | <b>+</b> | -√   |
|------------------------------|----------------|------------|-------|----------|-------------|-----------|--------|----------|------|----------|----------|------|
| Movement                     | EBL            | EBT        | EBR   | WBL      | WBT         | WBR       | NBL    | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations          | ች              | <b>∱</b> ∱ |       | <u>ነ</u> | <b>∱</b> î≽ |           | ሻ      | ₽.       |      | ሻ        | <b>₽</b> |      |
| Ideal Flow (vphpl)           | 1900           | 1900       | 1900  | 1900     | 1900        | 1900      | 1900   | 1900     | 1900 | 1900     | 1900     | 1900 |
| Total Lost time (s)          | 4.0            | 4.0        |       | 4.0      | 4.0         |           | 4.0    | 4.0      |      | 4.0      | 4.0      |      |
| Lane Util. Factor            | 1.00           | 0.95       |       | 1.00     | 0.95        |           | 1.00   | 1.00     |      | 1.00     | 1.00     |      |
| Frt                          | 1.00           | 1.00       |       | 1.00     | 1.00        |           | 1.00   | 0.88     |      | 1.00     | 0.97     |      |
| Flt Protected                | 0.95           | 1.00       |       | 0.95     | 1.00        |           | 0.95   | 1.00     |      | 0.95     | 1.00     |      |
| Satd. Flow (prot)            | 1770           | 3530       |       | 1770     | 3535        |           | 1770   | 1635     |      | 1770     | 1804     |      |
| Flt Permitted                | 0.95           | 1.00       |       | 0.95     | 1.00        |           | 0.95   | 1.00     |      | 0.95     | 1.00     |      |
| Satd. Flow (perm)            | 1770           | 3530       |       | 1770     | 3535        |           | 1770   | 1635     |      | 1770     | 1804     |      |
| Volume (vph)                 | 10             | 550        | 10    | 120      | 1280        | 10        | 20     | 20       | 90   | 140      | 150      | 40   |
| Peak-hour factor, PHF        | 0.97           | 0.97       | 0.97  | 0.97     | 0.97        | 0.97      | 0.97   | 0.97     | 0.97 | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)              | 10             | 567        | 10    | 124      | 1320        | 10        | 21     | 21       | 93   | 144      | 155      | 41   |
| RTOR Reduction (vph)         | 0              | 1          | 0     | 0        | 1           | 0         | 0      | 80       | 0    | 0        | 11       | 0    |
| Lane Group Flow (vph)        | 10             | 576        | 0     | 124      | 1329        | 0         | 21     | 34       | 0    | 144      | 185      | 0    |
| Turn Type                    | Prot           |            |       | Prot     |             |           | Prot   |          |      | Prot     |          |      |
| Protected Phases             | 7              | 4          |       | 3        | 8           |           | 5      | 2        |      | 1        | 6        |      |
| Permitted Phases             |                |            |       |          |             |           |        |          |      |          |          |      |
| Actuated Green, G (s)        | 0.5            | 23.4       |       | 6.9      | 29.8        |           | 0.6    | 8.9      |      | 6.7      | 15.0     |      |
| Effective Green, g (s)       | 0.5            | 23.4       |       | 6.9      | 29.8        |           | 0.6    | 8.9      |      | 6.7      | 15.0     |      |
| Actuated g/C Ratio           | 0.01           | 0.38       |       | 0.11     | 0.48        |           | 0.01   | 0.14     |      | 0.11     | 0.24     |      |
| Clearance Time (s)           | 4.0            | 4.0        |       | 4.0      | 4.0         |           | 4.0    | 4.0      |      | 4.0      | 4.0      |      |
| Vehicle Extension (s)        | 3.0            | 3.0        |       | 3.0      | 3.0         |           | 3.0    | 3.0      |      | 3.0      | 3.0      |      |
| Lane Grp Cap (vph)           | 14             | 1334       |       | 197      | 1702        |           | 17     | 235      |      | 192      | 437      |      |
| v/s Ratio Prot               | 0.01           | 0.16       |       | c0.07    | c0.38       |           | 0.01   | 0.02     |      | c0.08    | c0.10    |      |
| v/s Ratio Perm               |                |            |       |          |             |           |        |          |      |          |          |      |
| v/c Ratio                    | 0.71           | 0.43       |       | 0.63     | 0.78        |           | 1.24   | 0.15     |      | 0.75     | 0.42     |      |
| Uniform Delay, d1            | 30.6           | 14.3       |       | 26.3     | 13.3        |           | 30.6   | 23.2     |      | 26.8     | 19.8     |      |
| Progression Factor           | 1.00           | 1.00       |       | 1.00     | 1.00        |           | 1.00   | 1.00     |      | 1.00     | 1.00     |      |
| Incremental Delay, d2        | 100.1          | 0.2        |       | 6.2      | 2.4         |           | 301.3  | 0.3      |      | 15.1     | 0.7      |      |
| Delay (s)                    | 130.7          | 14.5       |       | 32.4     | 15.7        |           | 331.9  | 23.5     |      | 41.9     | 20.5     |      |
| Level of Service             | F              | В          |       | С        | В           |           | F      | С        |      | D        | С        |      |
| Approach Delay (s)           |                | 16.5       |       |          | 17.2        |           |        | 71.4     |      |          | 29.5     |      |
| Approach LOS                 |                | В          |       |          | В           |           |        | Е        |      |          | С        |      |
| Intersection Summary         | ection Summary |            |       |          |             |           |        |          |      |          |          |      |
| HCM Average Control D        |                |            | 21.6  | H        | ICM Lev     | vel of Se | ervice |          | С    |          |          |      |
| <b>HCM Volume to Capacit</b> |                |            | 0.64  |          |             |           |        |          |      |          |          |      |
| Actuated Cycle Length (      |                |            | 61.9  |          |             |           |        |          | 8.0  |          |          | _    |
| Intersection Capacity Ut     | ilization      |            | 65.7% | ŀ        | CU Leve     | el of Ser | vice   |          | С    |          |          |      |
| Analysis Period (min)        |                |            | 15    |          |             |           |        |          |      |          |          | _    |
| c Critical Lane Group        |                |            |       |          |             |           |        |          |      |          |          |      |

|                          | ۶          | -          | <b>←</b>        | •    | -       | 4          |       |      |
|--------------------------|------------|------------|-----------------|------|---------|------------|-------|------|
| Movement                 | EBL        | EBT        | WBT             | WBR  | SBL     | SBR        |       |      |
| Lane Configurations      | *          | <b>^</b> ^ | <del>ተ</del> ተኈ |      | ች       | 7          |       |      |
| Ideal Flow (vphpl)       | 1900       | 1900       | 1900            | 1900 | 1900    | 1900       |       |      |
| Total Lost time (s)      | 4.0        | 4.0        | 4.0             |      | 4.0     | 4.0        |       |      |
| Lane Util. Factor        | 1.00       | 0.91       | 0.91            |      | 1.00    | 1.00       |       |      |
| Frt                      | 1.00       | 1.00       | 1.00            |      | 1.00    | 0.85       |       |      |
| Flt Protected            | 0.95       | 1.00       | 1.00            |      | 0.95    | 1.00       |       |      |
| Satd. Flow (prot)        | 1770       | 5085       | 5073            |      | 1770    | 1583       |       |      |
| Flt Permitted            | 0.95       | 1.00       | 1.00            |      | 0.95    | 1.00       |       |      |
| Satd. Flow (perm)        | 1770       | 5085       | 5073            |      | 1770    | 1583       |       |      |
| Volume (vph)             | 90         | 600        | 1850            | 30   | 70      | 260        |       |      |
| Peak-hour factor, PHF    | 0.97       | 0.97       | 0.97            | 0.97 | 0.97    | 0.97       |       |      |
| Adj. Flow (vph)          | 93         | 619        | 1907            | 31   | 72      | 268        |       |      |
| RTOR Reduction (vph)     | 0          | 0          | 1               | 0    | 0       | 115        |       |      |
| Lane Group Flow (vph)    | 93         | 619        | 1937            | 0    | 72      | 153        |       |      |
| Turn Type                | Prot       |            |                 |      | C       | custom     |       |      |
| Protected Phases         | 7          | 4          | 8               |      |         |            |       |      |
| Permitted Phases         |            |            |                 |      | 6       | 6          |       |      |
| Actuated Green, G (s)    | 5.2        | 39.3       | 30.1            |      | 12.1    | 12.1       |       |      |
| Effective Green, g (s)   | 5.2        | 39.3       | 30.1            |      | 12.1    | 12.1       |       |      |
| Actuated g/C Ratio       | 0.09       | 0.66       | 0.51            |      | 0.20    | 0.20       |       |      |
| Clearance Time (s)       | 4.0        | 4.0        | 4.0             |      | 4.0     | 4.0        |       |      |
| Vehicle Extension (s)    | 3.0        | 3.0        | 3.0             |      | 3.0     | 3.0        |       |      |
| Lane Grp Cap (vph)       | 155        | 3364       | 2571            |      | 361     | 322        |       |      |
| v/s Ratio Prot           | c0.05      | 0.12       | c0.38           |      |         |            |       |      |
| v/s Ratio Perm           |            |            |                 |      | 0.04    | c0.10      |       |      |
| v/c Ratio                | 0.60       | 0.18       | 0.75            |      | 0.20    | 0.47       |       |      |
| Uniform Delay, d1        | 26.1       | 3.9        | 11.7            |      | 19.6    | 20.8       |       |      |
| Progression Factor       | 1.00       | 1.00       | 1.00            |      | 1.00    | 1.00       |       |      |
| Incremental Delay, d2    | 6.1        | 0.0        | 1.3             |      | 0.3     | 1.1        |       |      |
| Delay (s)                | 32.2       | 3.9        | 13.0            |      | 19.9    | 21.9       |       |      |
| Level of Service         | С          | Α          | В               |      | В       | С          |       |      |
| Approach Delay (s)       |            | 7.6        | 13.0            |      | 21.5    |            |       |      |
| Approach LOS             |            | Α          | В               |      | С       |            |       |      |
| Intersection Summary     |            |            |                 |      |         |            |       |      |
| HCM Average Control D    | Delay      |            | 12.7            | H    | ICM Lev | vel of Ser | rvice | В    |
| HCM Volume to Capaci     |            |            | 0.66            |      |         |            |       |      |
| Actuated Cycle Length (  | ` '        |            | 59.4            |      |         | ost time ( |       | 12.0 |
| Intersection Capacity Ut | tilization |            | 59.2%           | IC   | CU Leve | el of Serv | rice  | В    |
| Analysis Period (min)    |            |            | 15              |      |         |            |       |      |
| c Critical Lane Group    |            |            |                 |      |         |            |       |      |

|                              | ٠         | <b>→</b>   | •     | •     | <b>←</b>   | •         | 4      | †    | <i>&gt;</i> | <b>/</b> | ļ     | 4    |
|------------------------------|-----------|------------|-------|-------|------------|-----------|--------|------|-------------|----------|-------|------|
| Movement                     | EBL       | EBT        | EBR   | WBL   | WBT        | WBR       | NBL    | NBT  | NBR         | SBL      | SBT   | SBR  |
| Lane Configurations          | ¥         | <b>↑</b> ↑ |       | 7     | <b>↑</b> ↑ |           | J.     | f)   |             | ¥        | f)    |      |
| Ideal Flow (vphpl)           | 1900      | 1900       | 1900  | 1900  | 1900       | 1900      | 1900   | 1900 | 1900        | 1900     | 1900  | 1900 |
| Total Lost time (s)          | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0  |             | 4.0      | 4.0   |      |
| Lane Util. Factor            | 1.00      | 0.95       |       | 1.00  | 0.95       |           | 1.00   | 1.00 |             | 1.00     | 1.00  |      |
| Frt                          | 1.00      | 1.00       |       | 1.00  | 1.00       |           | 1.00   | 0.93 |             | 1.00     | 0.85  |      |
| Flt Protected                | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00 |             | 0.95     | 1.00  |      |
| Satd. Flow (prot)            | 1770      | 3531       |       | 1770  | 3535       |           | 1770   | 1723 |             | 1770     | 1592  |      |
| Flt Permitted                | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00 |             | 0.95     | 1.00  |      |
| Satd. Flow (perm)            | 1770      | 3531       |       | 1770  | 3535       |           | 1770   | 1723 |             | 1770     | 1592  |      |
| Volume (vph)                 | 170       | 600        | 10    | 10    | 1100       | 10        | 10     | 10   | 10          | 20       | 10    | 300  |
| Peak-hour factor, PHF        | 0.97      | 0.97       | 0.97  | 0.97  | 0.97       | 0.97      | 0.97   | 0.97 | 0.97        | 0.97     | 0.97  | 0.97 |
| Adj. Flow (vph)              | 175       | 619        | 10    | 10    | 1134       | 10        | 10     | 10   | 10          | 21       | 10    | 309  |
| RTOR Reduction (vph)         | 0         | 1          | 0     | 0     | 1          | 0         | 0      | 9    | 0           | 0        | 237   | 0    |
| Lane Group Flow (vph)        | 175       | 628        | 0     | 10    | 1143       | 0         | 10     | 11   | 0           | 21       | 82    | 0    |
| Turn Type                    | Prot      |            |       | Prot  |            |           | Prot   |      |             | Prot     |       |      |
| Protected Phases             | 7         | 4          |       | 3     | 8          |           | 5      | 2    |             | 1        | 6     |      |
| Permitted Phases             |           |            |       |       |            |           |        |      |             |          |       |      |
| Actuated Green, G (s)        | 7.0       | 34.7       |       | 0.5   | 28.2       |           | 0.5    | 7.3  |             | 0.5      | 7.3   |      |
| Effective Green, g (s)       | 7.0       | 34.7       |       | 0.5   | 28.2       |           | 0.5    | 7.3  |             | 0.5      | 7.3   |      |
| Actuated g/C Ratio           | 0.12      | 0.59       |       | 0.01  | 0.48       |           | 0.01   | 0.12 |             | 0.01     | 0.12  |      |
| Clearance Time (s)           | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0  |             | 4.0      | 4.0   |      |
| Vehicle Extension (s)        | 3.0       | 3.0        |       | 3.0   | 3.0        |           | 3.0    | 3.0  |             | 3.0      | 3.0   |      |
| Lane Grp Cap (vph)           | 210       | 2077       |       | 15    | 1690       |           | 15     | 213  |             | 15       | 197   |      |
| v/s Ratio Prot               | c0.10     | 0.18       |       | 0.01  | c0.32      |           | 0.01   | 0.01 |             | c0.01    | c0.05 |      |
| v/s Ratio Perm               |           |            |       |       |            |           |        |      |             |          |       |      |
| v/c Ratio                    | 0.83      | 0.30       |       | 0.67  | 0.68       |           | 0.67   | 0.05 |             | 1.40     | 0.41  |      |
| Uniform Delay, d1            | 25.4      | 6.1        |       | 29.2  | 11.9       |           | 29.2   | 22.8 |             | 29.2     | 23.9  |      |
| Progression Factor           | 1.00      | 1.00       |       | 1.00  | 1.00       |           | 1.00   | 1.00 |             | 1.00     | 1.00  |      |
| Incremental Delay, d2        | 23.7      | 0.1        |       | 75.9  | 1.1        |           | 75.9   | 0.1  |             | 379.3    | 1.4   |      |
| Delay (s)                    | 49.1      | 6.2        |       | 105.0 | 13.0       |           | 105.0  | 22.9 |             | 408.6    | 25.3  |      |
| Level of Service             | D         | Α          |       | F     | В          |           | F      | С    |             | F        | С     |      |
| Approach Delay (s)           |           | 15.5       |       |       | 13.8       |           |        | 50.3 |             |          | 49.0  |      |
| Approach LOS                 |           | В          |       |       | В          |           |        | D    |             |          | D     |      |
| Intersection Summary         |           |            |       |       |            |           |        |      |             |          |       |      |
| HCM Average Control D        | elay      |            | 20.0  | F     | ICM Le     | vel of Se | ervice |      | В           |          |       |      |
| <b>HCM Volume to Capacit</b> | ty ratio  |            | 0.67  |       |            |           |        |      |             |          |       |      |
| Actuated Cycle Length (      |           |            | 59.0  | 5     | Sum of l   | ost time  | (s)    |      | 16.0        |          |       |      |
| Intersection Capacity Ut     | ilization |            | 69.2% | ŀ     | CU Leve    | el of Ser | vice   |      | С           |          |       |      |
| Analysis Period (min)        |           |            | 15    |       |            |           |        |      |             |          |       |      |
| c Critical Lane Group        |           |            |       |       |            |           |        |      |             |          |       |      |

|                              | ۶         | <b>→</b>   | •     | •     | +          | •         | •      | <b>†</b> | ~    | <b>/</b> | <b></b> | 4    |
|------------------------------|-----------|------------|-------|-------|------------|-----------|--------|----------|------|----------|---------|------|
| Movement                     | EBL       | EBT        | EBR   | WBL   | WBT        | WBR       | NBL    | NBT      | NBR  | SBL      | SBT     | SBR  |
| Lane Configurations          | ř         | <b>↑</b> ↑ |       | ሻ     | <b>↑</b> ↑ |           | Ť      | f)       |      | Ţ        | ĵ»      |      |
| Ideal Flow (vphpl)           | 1900      | 1900       | 1900  | 1900  | 1900       | 1900      | 1900   | 1900     | 1900 | 1900     | 1900    | 1900 |
| Total Lost time (s)          | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0      |      | 4.0      | 4.0     |      |
| Lane Util. Factor            | 1.00      | 0.95       |       | 1.00  | 0.95       |           | 1.00   | 1.00     |      | 1.00     | 1.00    |      |
| Frt                          | 1.00      | 0.99       |       | 1.00  | 0.96       |           | 1.00   | 0.95     |      | 1.00     | 0.97    |      |
| Flt Protected                | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00     |      | 0.95     | 1.00    |      |
| Satd. Flow (prot)            | 1770      | 3492       |       | 1770  | 3414       |           | 1770   | 1779     |      | 1770     | 1805    |      |
| Flt Permitted                | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00     |      | 0.95     | 1.00    |      |
| Satd. Flow (perm)            | 1770      | 3492       |       | 1770  | 3414       |           | 1770   | 1779     |      | 1770     | 1805    |      |
| Volume (vph)                 | 10        | 520        | 50    | 160   | 1140       | 350       | 20     | 70       | 30   | 330      | 270     | 70   |
| Peak-hour factor, PHF        | 0.97      | 0.97       | 0.97  | 0.97  | 0.97       | 0.97      | 0.97   | 0.97     | 0.97 | 0.97     | 0.97    | 0.97 |
| Adj. Flow (vph)              | 10        | 536        | 52    | 165   | 1175       | 361       | 21     | 72       | 31   | 340      | 278     | 72   |
| RTOR Reduction (vph)         | 0         | 6          | 0     | 0     | 24         | 0         | 0      | 16       | 0    | 0        | 9       | 0    |
| Lane Group Flow (vph)        | 10        | 582        | 0     | 165   | 1512       | 0         | 21     | 87       | 0    | 340      | 341     | 0    |
| Turn Type                    | Prot      |            |       | Prot  |            |           | Prot   |          |      | Prot     |         |      |
| Protected Phases             | 7         | 4          |       | 3     | 8          |           | 5      | 2        |      | 1        | 6       |      |
| Permitted Phases             |           |            |       |       |            |           |        |          |      |          |         |      |
| Actuated Green, G (s)        | 0.7       | 35.0       |       | 13.1  | 47.4       |           | 1.9    | 13.4     |      | 21.2     | 32.7    |      |
| Effective Green, g (s)       | 0.7       | 35.0       |       | 13.1  | 47.4       |           | 1.9    | 13.4     |      | 21.2     | 32.7    |      |
| Actuated g/C Ratio           | 0.01      | 0.35       |       | 0.13  | 0.48       |           | 0.02   | 0.14     |      | 0.21     | 0.33    |      |
| Clearance Time (s)           | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0      |      | 4.0      | 4.0     |      |
| Vehicle Extension (s)        | 3.0       | 3.0        |       | 3.0   | 3.0        |           | 3.0    | 3.0      |      | 3.0      | 3.0     |      |
| Lane Grp Cap (vph)           | 13        | 1238       |       | 235   | 1640       |           | 34     | 242      |      | 380      | 598     |      |
| v/s Ratio Prot               | 0.01      | 0.17       |       | c0.09 | c0.44      |           | 0.01   | 0.05     |      | c0.19    | c0.19   |      |
| v/s Ratio Perm               |           |            |       |       |            |           |        |          |      |          |         |      |
| v/c Ratio                    | 0.77      | 0.47       |       | 0.70  | 0.92       |           | 0.62   | 0.36     |      | 0.89     | 0.57    |      |
| Uniform Delay, d1            | 48.9      | 24.7       |       | 40.9  | 23.9       |           | 48.0   | 38.8     |      | 37.7     | 27.2    |      |
| Progression Factor           | 1.00      | 1.00       |       | 1.00  | 1.00       |           | 1.00   | 1.00     |      | 1.00     | 1.00    |      |
| Incremental Delay, d2        | 128.6     | 0.3        |       | 9.1   | 9.0        |           | 29.0   | 0.9      |      | 22.5     | 1.3     |      |
| Delay (s)                    | 177.6     | 25.0       |       | 50.1  | 32.9       |           | 77.0   | 39.7     |      | 60.2     | 28.5    |      |
| Level of Service             | F         | С          |       | D     | С          |           | Е      | D        |      | Е        | С       |      |
| Approach Delay (s)           |           | 27.5       |       |       | 34.6       |           |        | 46.0     |      |          | 44.1    |      |
| Approach LOS                 |           | С          |       |       | С          |           |        | D        |      |          | D       |      |
| Intersection Summary         |           |            |       |       |            |           |        |          |      |          |         |      |
| HCM Average Control D        |           |            | 35.8  | H     | ICM Le     | vel of Se | ervice |          | D    |          |         |      |
| <b>HCM Volume to Capacit</b> |           |            | 0.85  |       |            |           |        |          |      |          |         |      |
| Actuated Cycle Length (      |           |            | 98.7  |       |            | ost time  | ` '    |          | 12.0 |          |         |      |
| Intersection Capacity Ut     | ilization |            | 81.0% | I     | CU Leve    | el of Ser | vice   |          | D    |          |         |      |
| Analysis Period (min)        |           |            | 15    |       |            |           |        |          |      |          |         |      |
| c Critical Lane Group        |           |            |       |       |            |           |        |          |      |          |         |      |

|                           | -          | •    | •     | ←        | 1        | ~               |     |  |
|---------------------------|------------|------|-------|----------|----------|-----------------|-----|--|
| Movement                  | EBT        | EBR  | WBL   | WBT      | NBL      | NBR             |     |  |
| Lane Configurations       | <b>↑</b> ↑ |      | ች     | <b>^</b> | ች        | #               |     |  |
| Ideal Flow (vphpl)        | 1900       | 1900 | 1900  | 1900     | 1900     | 1900            |     |  |
| Total Lost time (s)       | 4.0        |      | 4.0   | 4.0      | 4.0      | 4.0             |     |  |
| Lane Util. Factor         | 0.95       |      | 1.00  | 0.95     | 1.00     | 1.00            |     |  |
| Frt                       | 0.97       |      | 1.00  | 1.00     | 1.00     | 0.85            |     |  |
| Flt Protected             | 1.00       |      | 0.95  | 1.00     | 0.95     | 1.00            |     |  |
| Satd. Flow (prot)         | 3442       |      | 1770  | 3539     | 1770     | 1583            |     |  |
| Flt Permitted             | 1.00       |      | 0.95  | 1.00     | 0.95     | 1.00            |     |  |
| Satd. Flow (perm)         | 3442       |      | 1770  | 3539     | 1770     | 1583            |     |  |
| Volume (vph)              | 710        | 160  | 100   | 1440     | 180      | 40              |     |  |
| Peak-hour factor, PHF     | 0.97       | 0.97 | 0.97  | 0.97     | 0.97     | 0.97            |     |  |
| Adj. Flow (vph)           | 732        | 165  | 103   | 1485     | 186      | 41              |     |  |
| RTOR Reduction (vph)      | 24         | 0    | 0     | 0        | 0        | 34              |     |  |
| Lane Group Flow (vph)     | 873        | 0    | 103   | 1485     | 186      | 7               |     |  |
| Turn Type                 | - 0,0      |      | Prot  | 00       |          | Perm            |     |  |
| Protected Phases          | 4          |      | 3     | 8        | 2        | . 01111         |     |  |
| Permitted Phases          | •          |      | •     | J        | _        | 2               |     |  |
| Actuated Green, G (s)     | 22.5       |      | 4.6   | 31.1     | 8.4      | 8.4             |     |  |
| Effective Green, g (s)    | 22.5       |      | 4.6   | 31.1     | 8.4      | 8.4             |     |  |
| Actuated g/C Ratio        | 0.47       |      | 0.10  | 0.65     | 0.18     | 0.18            |     |  |
| Clearance Time (s)        | 4.0        |      | 4.0   | 4.0      | 4.0      | 4.0             |     |  |
| Vehicle Extension (s)     | 3.0        |      | 3.0   | 3.0      | 3.0      | 3.0             |     |  |
| Lane Grp Cap (vph)        | 1630       |      | 171   | 2317     | 313      | 280             |     |  |
| v/s Ratio Prot            | 0.25       |      | 0.06  | c0.42    | c0.11    | 200             |     |  |
| v/s Ratio Perm            | 0.20       |      | 0.00  | 00.42    | 00.11    | 0.00            |     |  |
| v/c Ratio                 | 0.54       |      | 0.60  | 0.64     | 0.59     | 0.03            |     |  |
| Uniform Delay, d1         | 8.8        |      | 20.6  | 4.9      | 18.0     | 16.2            |     |  |
| Progression Factor        | 1.00       |      | 1.00  | 1.00     | 1.00     | 1.00            |     |  |
| Incremental Delay, d2     | 0.3        |      | 5.9   | 0.6      | 3.0      | 0.0             |     |  |
| Delay (s)                 | 9.2        |      | 26.4  | 5.5      | 21.0     | 16.2            |     |  |
| Level of Service          | A          |      | C     | Α        | C        | В               |     |  |
| Approach Delay (s)        | 9.2        |      |       | 6.9      | 20.1     |                 |     |  |
| Approach LOS              | A          |      |       | Α        | C        |                 |     |  |
|                           | , ,        |      |       | , ,      |          |                 |     |  |
| Intersection Summary      | olov:      |      | 0.7   | ı        | IOMALia  | rol of Comit-   | ^   |  |
| HCM Values to Caracit     |            |      | 8.7   | F        | 10IVI Le | vel of Servic   | e A |  |
| HCM Volume to Capacit     |            |      | 0.63  |          | )a. =£ ! | a at time = /s\ | 0.0 |  |
| Actuated Cycle Length (   |            |      | 47.5  |          |          | ost time (s)    | 8.0 |  |
| Intersection Capacity Uti | ilization  |      | 56.4% | 10       | CU Leve  | el of Service   | В   |  |
| Analysis Period (min)     |            |      | 15    |          |          |                 |     |  |
| c Critical Lane Group     |            |      |       |          |          |                 |     |  |

|                          | -          | •    | •     | ←        | 1        | <b>/</b>                     |                |          |
|--------------------------|------------|------|-------|----------|----------|------------------------------|----------------|----------|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL      | NBR                          |                |          |
| Lane Configurations      | <b>∱</b> ∱ |      | *     | <b>^</b> | *        | 1                            |                |          |
| Ideal Flow (vphpl)       | 1900       | 1900 | 1900  | 1900     | 1900     | 1900                         |                |          |
| Total Lost time (s)      | 4.0        |      | 4.0   | 4.0      | 4.0      | 4.0                          |                |          |
| Lane Util. Factor        | 0.95       |      | 1.00  | 0.95     | 1.00     | 1.00                         |                |          |
| Frt                      | 0.99       |      | 1.00  | 1.00     | 1.00     | 0.85                         |                |          |
| Flt Protected            | 1.00       |      | 0.95  | 1.00     | 0.95     | 1.00                         |                |          |
| Satd. Flow (prot)        | 3496       |      | 1770  | 3539     | 1770     | 1583                         |                |          |
| Flt Permitted            | 1.00       |      | 0.95  | 1.00     | 0.95     | 1.00                         |                |          |
| Satd. Flow (perm)        | 3496       |      | 1770  | 3539     | 1770     | 1583                         |                |          |
| Volume (vph)             | 680        | 60   | 330   | 1160     | 10       | 90                           |                |          |
| Peak-hour factor, PHF    | 0.97       | 0.97 | 0.97  | 0.97     | 0.97     | 0.97                         |                |          |
| Adj. Flow (vph)          | 701        | 62   | 340   | 1196     | 10       | 93                           |                |          |
| RTOR Reduction (vph)     | 9          | 0    | 0     | 0        | 0        | 83                           |                |          |
| Lane Group Flow (vph)    | 754        | 0    | 340   | 1196     | 10       | 10                           |                |          |
| Turn Type                |            |      | Prot  |          |          | Perm                         |                |          |
| Protected Phases         | 4          |      | 3     | 8        | 2        | . 01111                      |                |          |
| Permitted Phases         |            |      |       |          |          | 2                            |                |          |
| Actuated Green, G (s)    | 15.3       |      | 13.3  | 32.6     | 4.8      | 4.8                          |                |          |
| Effective Green, g (s)   | 15.3       |      | 13.3  | 32.6     | 4.8      | 4.8                          |                |          |
| Actuated g/C Ratio       | 0.34       |      | 0.29  | 0.72     | 0.11     | 0.11                         |                |          |
| Clearance Time (s)       | 4.0        |      | 4.0   | 4.0      | 4.0      | 4.0                          |                |          |
| Vehicle Extension (s)    | 3.0        |      | 3.0   | 3.0      | 3.0      | 3.0                          |                |          |
| Lane Grp Cap (vph)       | 1178       |      | 519   | 2541     | 187      | 167                          |                |          |
| v/s Ratio Prot           | c0.22      |      | c0.19 | 0.34     | 0.01     | 107                          |                |          |
| v/s Ratio Perm           | 50.22      |      | 00.10 | 0.0-1    | 0.01     | c0.01                        |                |          |
| v/c Ratio                | 0.64       |      | 0.66  | 0.47     | 0.05     | 0.06                         |                |          |
| Uniform Delay, d1        | 12.7       |      | 14.0  | 2.7      | 18.3     | 18.3                         |                |          |
| Progression Factor       | 1.00       |      | 1.00  | 1.00     | 1.00     | 1.00                         |                |          |
| Incremental Delay, d2    | 1.2        |      | 3.0   | 0.1      | 0.1      | 0.1                          |                |          |
| Delay (s)                | 13.9       |      | 17.0  | 2.9      | 18.4     | 18.4                         |                |          |
| Level of Service         | В          |      | В     | Α        | В        | В                            |                |          |
| Approach Delay (s)       | 13.9       |      |       | 6.0      | 18.4     |                              |                |          |
| Approach LOS             | В          |      |       | A        | В        |                              |                |          |
| Intersection Summary     |            |      |       |          |          |                              |                |          |
| HCM Average Control D    | )olav      |      | 9.0   | L        | ICM Lo   | vel of Servi                 | 00             | A        |
| HCM Volume to Capaci     |            |      | 0.56  |          | IOW LEV  | vei oi seivi                 | C <del>C</del> | Α        |
| Actuated Cycle Length (  |            |      | 45.4  | C        | tum of b | act time (a)                 | 12             | 0        |
| Intersection Capacity Ut |            |      | 52.3% |          |          | ost time (s)<br>el of Servic |                | .0<br>A  |
| Analysis Period (min)    | mzaliuii   |      | 15    | 10       | OU LEVE  | or Servic                    | <del>-</del>   | $\wedge$ |
| c Critical Lane Group    |            |      | 10    |          |          |                              |                |          |
| c Childar Larie Group    |            |      |       |          |          |                              |                |          |

|                              | ۶         | <b>→</b> | •     | •     | +       | •         | •      | <b>†</b> | ~    | <b>/</b> | ţ     | 4    |
|------------------------------|-----------|----------|-------|-------|---------|-----------|--------|----------|------|----------|-------|------|
| Movement                     | EBL       | EBT      | EBR   | WBL   | WBT     | WBR       | NBL    | NBT      | NBR  | SBL      | SBT   | SBR  |
| Lane Configurations          | ሻ         | f)       |       | ሻ     | f.      |           | ሻ      | f)       |      | ሻ        | ĵ»    |      |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900  | 1900  | 1900    | 1900      | 1900   | 1900     | 1900 | 1900     | 1900  | 1900 |
| Total Lost time (s)          | 4.0       | 4.0      |       | 4.0   | 4.0     |           | 4.0    | 4.0      |      | 4.0      | 4.0   |      |
| Lane Util. Factor            | 1.00      | 1.00     |       | 1.00  | 1.00    |           | 1.00   | 1.00     |      | 1.00     | 1.00  |      |
| Frt                          | 1.00      | 0.95     |       | 1.00  | 0.99    |           | 1.00   | 0.97     |      | 1.00     | 0.96  |      |
| Flt Protected                | 0.95      | 1.00     |       | 0.95  | 1.00    |           | 0.95   | 1.00     |      | 0.95     | 1.00  |      |
| Satd. Flow (prot)            | 1770      | 1764     |       | 1770  | 1850    |           | 1770   | 1812     |      | 1770     | 1796  |      |
| Flt Permitted                | 0.95      | 1.00     |       | 0.95  | 1.00    |           | 0.95   | 1.00     |      | 0.95     | 1.00  |      |
| Satd. Flow (perm)            | 1770      | 1764     |       | 1770  | 1850    |           | 1770   | 1812     |      | 1770     | 1796  |      |
| Volume (vph)                 | 30        | 110      | 60    | 200   | 200     | 10        | 50     | 270      | 60   | 20       | 380   | 120  |
| Peak-hour factor, PHF        | 0.97      | 0.97     | 0.97  | 0.97  | 0.97    | 0.97      | 0.97   | 0.97     | 0.97 | 0.97     | 0.97  | 0.97 |
| Adj. Flow (vph)              | 31        | 113      | 62    | 206   | 206     | 10        | 52     | 278      | 62   | 21       | 392   | 124  |
| RTOR Reduction (vph)         | 0         | 32       | 0     | 0     | 3       | 0         | 0      | 11       | 0    | 0        | 16    | 0    |
| Lane Group Flow (vph)        | 31        | 143      | 0     | 206   | 213     | 0         | 52     | 329      | 0    | 21       | 500   | 0    |
| Turn Type                    | Prot      |          |       | Prot  |         |           | Prot   |          |      | Prot     |       |      |
| Protected Phases             | 7         | 4        |       | 3     | 8       |           | 5      | 2        |      | 1        | 6     |      |
| Permitted Phases             |           |          |       |       |         |           |        |          |      |          |       |      |
| Actuated Green, G (s)        | 1.6       | 8.0      |       | 10.4  | 16.8    |           | 1.9    | 20.5     |      | 0.6      | 19.2  |      |
| Effective Green, g (s)       | 1.6       | 8.0      |       | 10.4  | 16.8    |           | 1.9    | 20.5     |      | 0.6      | 19.2  |      |
| Actuated g/C Ratio           | 0.03      | 0.14     |       | 0.19  | 0.30    |           | 0.03   | 0.37     |      | 0.01     | 0.35  |      |
| Clearance Time (s)           | 4.0       | 4.0      |       | 4.0   | 4.0     |           | 4.0    | 4.0      |      | 4.0      | 4.0   |      |
| Vehicle Extension (s)        | 3.0       | 3.0      |       | 3.0   | 3.0     |           | 3.0    | 3.0      |      | 3.0      | 3.0   |      |
| Lane Grp Cap (vph)           | 51        | 254      |       | 332   | 560     |           | 61     | 669      |      | 19       | 621   |      |
| v/s Ratio Prot               | 0.02      | c0.08    |       | c0.12 | 0.12    |           | c0.03  | 0.18     |      | 0.01     | c0.28 |      |
| v/s Ratio Perm               |           |          |       |       |         |           |        |          |      |          |       |      |
| v/c Ratio                    | 0.61      | 0.56     |       | 0.62  | 0.38    |           | 0.85   | 0.49     |      | 1.11     | 0.80  |      |
| Uniform Delay, d1            | 26.6      | 22.1     |       | 20.7  | 15.3    |           | 26.7   | 13.5     |      | 27.4     | 16.4  |      |
| Progression Factor           | 1.00      | 1.00     |       | 1.00  | 1.00    |           | 1.00   | 1.00     |      | 1.00     | 1.00  |      |
| Incremental Delay, d2        | 18.8      | 2.9      |       | 3.6   | 0.4     |           | 65.3   | 0.6      |      | 242.0    | 7.5   |      |
| Delay (s)                    | 45.4      | 25.0     |       | 24.3  | 15.7    |           | 92.0   | 14.1     |      | 269.5    | 23.9  |      |
| Level of Service             | D         | С        |       | С     | В       |           | F      | В        |      | F        | С     |      |
| Approach Delay (s)           |           | 28.1     |       |       | 19.9    |           |        | 24.4     |      |          | 33.5  |      |
| Approach LOS                 |           | С        |       |       | В       |           |        | С        |      |          | С     |      |
| Intersection Summary         |           |          |       |       |         |           |        |          |      |          |       |      |
| HCM Average Control D        |           |          | 26.8  | H     | ICM Le  | vel of Se | ervice |          | С    |          |       |      |
| <b>HCM Volume to Capacit</b> |           |          | 0.71  |       |         |           |        |          |      |          |       |      |
| Actuated Cycle Length (      |           |          | 55.5  |       |         | ost time  |        |          | 16.0 |          |       |      |
| Intersection Capacity Uti    | ilization |          | 64.5% | 10    | CU Leve | el of Ser | vice   |          | С    |          |       |      |
| Analysis Period (min)        |           |          | 15    |       |         |           |        |          |      |          |       |      |
| c Critical Lane Group        |           |          |       |       |         |           |        |          |      |          |       |      |

|                          | -          | •    | •     | ←        | 1       | <b>/</b>      |   |  |
|--------------------------|------------|------|-------|----------|---------|---------------|---|--|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL     | NBR           |   |  |
| Lane Configurations      | <b>↑</b> ↑ |      | ሻ     | <b>^</b> | *       | #             |   |  |
| Ideal Flow (vphpl)       | 1900       | 1900 | 1900  | 1900     | 1900    | 1900          |   |  |
| Total Lost time (s)      | 4.0        |      | 4.0   | 4.0      | 4.0     | 4.0           |   |  |
| Lane Util. Factor        | 0.95       |      | 1.00  | 0.95     | 1.00    | 1.00          |   |  |
| Frt                      | 0.97       |      | 1.00  | 1.00     | 1.00    | 0.85          |   |  |
| Flt Protected            | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00          |   |  |
| Satd. Flow (prot)        | 3444       |      | 1770  | 3539     | 1770    | 1583          |   |  |
| Flt Permitted            | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00          |   |  |
| Satd. Flow (perm)        | 3444       |      | 1770  | 3539     | 1770    | 1583          |   |  |
| Volume (vph)             | 1510       | 330  | 300   | 1360     | 80      | 240           |   |  |
| Peak-hour factor, PHF    | 0.97       | 0.97 | 0.97  | 0.97     | 0.97    | 0.97          |   |  |
| Adj. Flow (vph)          | 1557       | 340  | 309   | 1402     | 82      | 247           |   |  |
| RTOR Reduction (vph)     | 11         | 0    | 0     | 0        | 0       | 233           |   |  |
| Lane Group Flow (vph)    | 1886       | 0    | 309   | 1402     | 82      | 14            |   |  |
| Turn Type                |            |      | Prot  |          |         | Perm          |   |  |
| Protected Phases         | 2          |      | 1     | 6        | 3       |               |   |  |
| Permitted Phases         |            |      |       |          |         | 3             |   |  |
| Actuated Green, G (s)    | 84.7       |      | 27.1  | 116.8    | 8.4     | 8.4           |   |  |
| Effective Green, g (s)   | 85.7       |      | 27.9  | 117.6    | 7.9     | 7.9           |   |  |
| Actuated g/C Ratio       | 0.61       |      | 0.20  | 0.84     | 0.06    | 0.06          |   |  |
| Clearance Time (s)       | 5.0        |      | 4.8   | 4.8      | 3.5     | 3.5           |   |  |
| Vehicle Extension (s)    | 6.8        |      | 6.3   | 6.3      | 2.0     | 2.0           |   |  |
| Lane Grp Cap (vph)       | 2117       |      | 354   | 2986     | 100     | 90            |   |  |
| v/s Ratio Prot           | c0.55      |      | c0.17 | 0.40     | c0.05   |               |   |  |
| v/s Ratio Perm           |            |      |       |          |         | 0.01          |   |  |
| v/c Ratio                | 0.89       |      | 0.87  | 0.47     | 0.82    | 0.16          |   |  |
| Uniform Delay, d1        | 22.9       |      | 54.0  | 2.8      | 65.0    | 62.6          |   |  |
| Progression Factor       | 1.00       |      | 1.00  | 1.00     | 1.00    | 1.00          |   |  |
| Incremental Delay, d2    | 5.9        |      | 22.9  | 0.4      | 37.0    | 0.3           |   |  |
| Delay (s)                | 28.8       |      | 76.9  | 3.2      | 102.1   | 62.9          |   |  |
| Level of Service         | С          |      | Е     | Α        | F       | E             |   |  |
| Approach Delay (s)       | 28.8       |      |       | 16.5     | 72.6    |               |   |  |
| Approach LOS             | С          |      |       | В        | Е       |               |   |  |
| Intersection Summary     |            |      |       |          |         |               |   |  |
| HCM Average Control D    |            |      | 27.1  | H        | ICM Lev | vel of Servic | е |  |
| HCM Volume to Capaci     | •          |      | 0.88  |          |         |               |   |  |
| Actuated Cycle Length (  |            |      | 139.4 |          |         | ost time (s)  |   |  |
| Intersection Capacity Ut | ilization  |      | 83.3% | 10       | CU Leve | el of Service | ) |  |
| Analysis Period (min)    |            |      | 15    |          |         |               |   |  |
| c Critical Lane Group    |            |      |       |          |         |               |   |  |

|                              | ᄼ         | <b>→</b> | •     | •    | <b>←</b> | •         | 4      | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ     | 4    |
|------------------------------|-----------|----------|-------|------|----------|-----------|--------|----------|-------------|-------------|-------|------|
| Movement                     | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL    | NBT      | NBR         | SBL         | SBT   | SBR  |
| Lane Configurations          | 1,4       | ተተተ      | 7     | 1,1  | ተተተ      | 7         | ሻሻ     | ተተተ      | 7           | 1,1         | ተተተ   | 7    |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900  | 1900 | 1900     | 1900      | 1900   | 1900     | 1900        | 1900        | 1900  | 1900 |
| Total Lost time (s)          | 4.0       | 4.0      | 4.0   | 4.0  | 4.0      | 4.0       | 4.0    | 4.0      | 4.0         | 4.0         | 4.0   | 4.0  |
| Lane Util. Factor            | 0.97      | 0.91     | 1.00  | 0.97 | 0.91     | 1.00      | 0.97   | 0.91     | 1.00        | 0.97        | 0.91  | 1.00 |
| Frt                          | 1.00      | 1.00     | 0.85  | 1.00 | 1.00     | 0.85      | 1.00   | 1.00     | 0.85        | 1.00        | 1.00  | 0.85 |
| Flt Protected                | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95        | 1.00  | 1.00 |
| Satd. Flow (prot)            | 3433      | 5085     | 1583  | 3433 | 5085     | 1583      | 3433   | 5085     | 1583        | 3433        | 5085  | 1583 |
| Flt Permitted                | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00     | 1.00        | 0.95        | 1.00  | 1.00 |
| Satd. Flow (perm)            | 3433      | 5085     | 1583  | 3433 | 5085     | 1583      | 3433   | 5085     | 1583        | 3433        | 5085  | 1583 |
| Volume (vph)                 | 580       | 220      | 930   | 430  | 440      | 350       | 910    | 1290     | 90          | 120         | 1890  | 520  |
| Peak-hour factor, PHF        | 0.97      | 0.97     | 0.97  | 0.97 | 0.97     | 0.97      | 0.97   | 0.97     | 0.97        | 0.97        | 0.97  | 0.97 |
| Adj. Flow (vph)              | 598       | 227      | 959   | 443  | 454      | 361       | 938    | 1330     | 93          | 124         | 1948  | 536  |
| RTOR Reduction (vph)         | 0         | 0        | 2     | 0    | 0        | 11        | 0      | 0        | 46          | 0           | 0     | 190  |
| Lane Group Flow (vph)        | 598       | 227      | 957   | 443  | 454      | 350       | 938    | 1330     | 47          | 124         | 1948  | 346  |
| Turn Type                    | Prot      |          | pm+ov | Prot |          | pm+ov     | Prot   |          | Perm        | Prot        |       | Perm |
| Protected Phases             | 7         | 4        | 5     | 3    | 8        | 1         | 5      | 2        |             | 1           | 6     |      |
| Permitted Phases             |           |          | 4     |      |          | 8         |        |          | 2           |             |       | 6    |
| Actuated Green, G (s)        | 18.7      | 23.8     | 51.4  | 17.7 | 22.7     | 30.4      | 27.6   | 66.6     | 66.6        | 7.7         | 46.3  | 46.3 |
| Effective Green, g (s)       | 20.2      | 25.4     | 54.5  | 19.2 | 24.4     | 33.6      | 29.1   | 68.1     | 68.1        | 9.2         | 48.2  | 48.2 |
| Actuated g/C Ratio           | 0.15      | 0.18     | 0.40  | 0.14 | 0.18     | 0.24      | 0.21   | 0.49     | 0.49        | 0.07        | 0.35  | 0.35 |
| Clearance Time (s)           | 5.5       | 5.6      | 5.5   | 5.5  | 5.7      | 5.5       | 5.5    | 5.5      | 5.5         | 5.5         | 5.9   | 5.9  |
| Vehicle Extension (s)        | 1.0       | 5.0      | 1.0   | 1.0  | 5.9      | 1.0       | 1.0    | 5.4      | 5.4         | 1.0         | 5.4   | 5.4  |
| Lane Grp Cap (vph)           | 503       | 937      | 672   | 478  | 900      | 432       | 724    | 2511     | 782         | 229         | 1777  | 553  |
| v/s Ratio Prot               | c0.17     | 0.04     | c0.30 | 0.13 | 0.09     | 0.05      | 0.27   | 0.26     |             | 0.04        | c0.38 |      |
| v/s Ratio Perm               |           |          | 0.30  |      |          | 0.17      |        |          | 0.03        |             |       | 0.22 |
| v/c Ratio                    | 1.19      | 0.24     | 1.42  | 0.93 | 0.50     | 0.81      | 1.30   | 0.53     | 0.06        | 0.54        | 1.10  | 0.63 |
| Uniform Delay, d1            | 58.9      | 48.0     | 41.7  | 58.7 | 51.3     | 49.1      | 54.4   | 23.9     | 18.2        | 62.3        | 44.9  | 37.3 |
| Progression Factor           | 1.00      | 1.00     | 1.00  | 1.00 | 1.00     | 1.00      | 1.00   | 1.00     | 1.00        | 1.00        | 1.00  | 1.00 |
| Incremental Delay, d2        | 103.5     | 0.3      | 199.6 | 23.7 | 1.2      | 10.1      | 143.1  | 0.4      | 0.1         | 1.4         | 52.8  | 3.4  |
| Delay (s)                    | 162.3     | 48.3     | 241.3 | 82.4 | 52.5     | 59.3      | 197.5  | 24.4     | 18.3        | 63.7        | 97.6  | 40.7 |
| Level of Service             | F         | D        | F     | F    | D        | Е         | F      | С        | В           | Е           | F     | D    |
| Approach Delay (s)           |           | 190.3    |       |      | 65.0     |           |        | 92.9     |             |             | 84.3  |      |
| Approach LOS                 |           | F        |       |      | E        |           |        | F        |             |             | F     |      |
| Intersection Summary         |           |          |       |      |          |           |        |          |             |             |       |      |
| HCM Average Control D        |           |          | 107.4 | H    | ICM Le   | vel of Se | ervice |          | F           |             |       |      |
| <b>HCM Volume to Capacit</b> |           |          | 1.23  |      |          |           |        |          |             |             |       |      |
| Actuated Cycle Length (      |           |          | 137.9 |      | Sum of l |           |        |          | 8.0         |             |       |      |
| Intersection Capacity Ut     | ilization | 1        | 16.4% | [(   | CU Leve  | el of Sei | vice   |          | Н           |             |       |      |
| Analysis Period (min)        |           |          | 15    |      |          |           |        |          |             |             |       |      |
| c Critical Lane Group        |           |          |       |      |          |           |        |          |             |             |       |      |

|                              | -         | $\rightarrow$ | •     | ←    | 4       | <b>/</b>       |   |  |
|------------------------------|-----------|---------------|-------|------|---------|----------------|---|--|
| Movement                     | EBT       | EBR           | WBL   | WBT  | NBL     | NBR            |   |  |
| Lane Configurations          | ተተኈ       |               |       | ተተተ  | W       | 7              |   |  |
| Ideal Flow (vphpl)           | 1900      | 1900          | 1900  | 1900 | 1900    | 1900           |   |  |
| Total Lost time (s)          | 4.0       |               |       | 4.0  | 4.0     | 4.0            |   |  |
| Lane Util. Factor            | 0.91      |               |       | 0.91 | 1.00    | 0.95           |   |  |
| Frt                          | 0.98      |               |       | 1.00 | 0.90    | 0.85           |   |  |
| Flt Protected                | 1.00      |               |       | 1.00 | 0.98    | 1.00           |   |  |
| Satd. Flow (prot)            | 5002      |               |       | 5085 | 1646    | 1504           |   |  |
| Flt Permitted                | 1.00      |               |       | 1.00 | 0.98    | 1.00           |   |  |
| Satd. Flow (perm)            | 5002      |               |       | 5085 | 1646    | 1504           |   |  |
| Volume (vph)                 | 1140      | 140           | 0     | 1050 | 290     | 1390           |   |  |
| Peak-hour factor, PHF        | 0.97      | 0.97          | 0.97  | 0.97 | 0.97    | 0.97           |   |  |
| Adj. Flow (vph)              | 1175      | 144           | 0     | 1082 | 299     | 1433           |   |  |
| RTOR Reduction (vph)         | 19        | 0             | 0     | 0    | 1       | 1              |   |  |
| Lane Group Flow (vph)        | 1300      | 0             | 0     | 1082 | 935     | 795            |   |  |
| Turn Type                    |           |               |       |      |         | Perm           |   |  |
| Protected Phases             | 4         |               |       | 8    | 2       |                |   |  |
| Permitted Phases             |           |               |       |      |         | 2              |   |  |
| Actuated Green, G (s)        | 21.7      |               |       | 21.7 | 46.1    | 46.1           |   |  |
| Effective Green, g (s)       | 21.7      |               |       | 21.7 | 46.1    | 46.1           |   |  |
| Actuated g/C Ratio           | 0.29      |               |       | 0.29 | 0.61    | 0.61           |   |  |
| Clearance Time (s)           | 4.0       |               |       | 4.0  | 4.0     | 4.0            |   |  |
| Vehicle Extension (s)        | 3.0       |               |       | 3.0  | 3.0     | 3.0            |   |  |
| Lane Grp Cap (vph)           | 1432      |               |       | 1456 | 1001    | 915            |   |  |
| v/s Ratio Prot               | c0.26     |               |       | 0.21 | c0.57   |                |   |  |
| v/s Ratio Perm               |           |               |       |      |         | 0.53           |   |  |
| v/c Ratio                    | 0.91      |               |       | 0.74 | 0.93    | 0.87           |   |  |
| Uniform Delay, d1            | 26.1      |               |       | 24.5 | 13.5    | 12.3           |   |  |
| Progression Factor           | 1.00      |               |       | 1.00 | 1.00    | 1.00           |   |  |
| Incremental Delay, d2        | 8.6       |               |       | 2.1  | 15.0    | 8.8            |   |  |
| Delay (s)                    | 34.7      |               |       | 26.6 | 28.5    | 21.1           |   |  |
| Level of Service             | С         |               |       | С    | С       | С              |   |  |
| Approach Delay (s)           | 34.7      |               |       | 26.6 | 25.1    |                |   |  |
| Approach LOS                 | С         |               |       | С    | С       |                |   |  |
| Intersection Summary         |           |               |       |      |         |                |   |  |
| HCM Average Control D        |           |               | 28.6  | H    | ICM Lev | vel of Service | Э |  |
| <b>HCM Volume to Capacit</b> |           |               | 0.93  |      |         |                |   |  |
| Actuated Cycle Length (      | ,         |               | 75.8  |      |         | ost time (s)   |   |  |
| Intersection Capacity Ut     | ilization |               | 89.2% | 10   | CU Leve | el of Service  |   |  |
| Analysis Period (min)        |           |               | 15    |      |         |                |   |  |
| c Critical Lane Group        |           |               |       |      |         |                |   |  |

|                           | ۶        | <b>→</b>   | •     | •     | <b>←</b>   | •         | 4      | †     | <i>&gt;</i> | <b>&gt;</b> | ļ    | ✓    |
|---------------------------|----------|------------|-------|-------|------------|-----------|--------|-------|-------------|-------------|------|------|
| Movement                  | EBL      | EBT        | EBR   | WBL   | WBT        | WBR       | NBL    | NBT   | NBR         | SBL         | SBT  | SBR  |
| Lane Configurations       | 7        | <b>↑</b> ↑ |       | Ţ     | <b>↑</b> ↑ |           | 7      | ĵ»    |             | Ť           | f)   |      |
| Ideal Flow (vphpl)        | 1900     | 1900       | 1900  | 1900  | 1900       | 1900      | 1900   | 1900  | 1900        | 1900        | 1900 | 1900 |
| Total Lost time (s)       | 4.0      | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0   |             | 4.0         | 4.0  |      |
| Lane Util. Factor         | 1.00     | 0.95       |       | 1.00  | 0.95       |           | 1.00   | 1.00  |             | 1.00        | 1.00 |      |
| Frt                       | 1.00     | 1.00       |       | 1.00  | 0.98       |           | 1.00   | 0.92  |             | 1.00        | 0.97 |      |
| Flt Protected             | 0.95     | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00  |             | 0.95        | 1.00 |      |
| Satd. Flow (prot)         | 1770     | 3532       |       | 1770  | 3455       |           | 1770   | 1718  |             | 1770        | 1808 |      |
| Flt Permitted             | 0.95     | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00  |             | 0.95        | 1.00 |      |
| Satd. Flow (perm)         | 1770     | 3532       |       | 1770  | 3455       |           | 1770   | 1718  |             | 1770        | 1808 |      |
| Volume (vph)              | 60       | 1410       | 20    | 130   | 690        | 130       | 10     | 130   | 140         | 10          | 40   | 10   |
| Peak-hour factor, PHF     | 0.97     | 0.97       | 0.97  | 0.97  | 0.97       | 0.97      | 0.97   | 0.97  | 0.97        | 0.97        | 0.97 | 0.97 |
| Adj. Flow (vph)           | 62       | 1454       | 21    | 134   | 711        | 134       | 10     | 134   | 144         | 10          | 41   | 10   |
| RTOR Reduction (vph)      | 0        | 1          | 0     | 0     | 14         | 0         | 0      | 47    | 0           | 0           | 8    | 0    |
| Lane Group Flow (vph)     | 62       | 1474       | 0     | 134   | 831        | 0         | 10     | 231   | 0           | 10          | 43   | 0    |
| Turn Type                 | Prot     |            |       | Prot  |            |           | Prot   |       |             | Prot        |      |      |
| Protected Phases          | 7        | 4          |       | 3     | 8          |           | 5      | 2     |             | 1           | 6    |      |
| Permitted Phases          |          |            |       |       |            |           |        |       |             |             |      |      |
| Actuated Green, G (s)     | 4.3      | 37.5       |       | 8.1   | 41.3       |           | 0.6    | 14.0  |             | 0.6         | 14.0 |      |
| Effective Green, g (s)    | 4.3      | 37.5       |       | 8.1   | 41.3       |           | 0.6    | 14.0  |             | 0.6         | 14.0 |      |
| Actuated g/C Ratio        | 0.06     | 0.49       |       | 0.11  | 0.54       |           | 0.01   | 0.18  |             | 0.01        | 0.18 |      |
| Clearance Time (s)        | 4.0      | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0   |             | 4.0         | 4.0  |      |
| Vehicle Extension (s)     | 3.0      | 3.0        |       | 3.0   | 3.0        |           | 3.0    | 3.0   |             | 3.0         | 3.0  |      |
| Lane Grp Cap (vph)        | 100      | 1738       |       | 188   | 1873       |           | 14     | 316   |             | 14          | 332  |      |
| v/s Ratio Prot            | 0.04     | c0.42      |       | c0.08 | c0.24      |           | c0.01  | c0.13 |             | 0.01        | 0.02 |      |
| v/s Ratio Perm            |          |            |       |       |            |           |        |       |             |             |      |      |
| v/c Ratio                 | 0.62     | 0.85       |       | 0.71  | 0.44       |           | 0.71   | 0.73  |             | 0.71        | 0.13 |      |
| Uniform Delay, d1         | 35.2     | 16.9       |       | 32.9  | 10.5       |           | 37.7   | 29.3  |             | 37.7        | 26.0 |      |
| Progression Factor        | 1.00     | 1.00       |       | 1.00  | 1.00       |           | 1.00   | 1.00  |             | 1.00        | 1.00 |      |
| Incremental Delay, d2     | 10.9     | 4.1        |       | 12.0  | 0.2        |           | 100.1  | 8.5   |             | 100.1       | 0.2  |      |
| Delay (s)                 | 46.1     | 20.9       |       | 45.0  | 10.7       |           | 137.8  | 37.8  |             | 137.8       | 26.2 |      |
| Level of Service          | D        | С          |       | D     | В          |           | F      | D     |             | F           | С    |      |
| Approach Delay (s)        |          | 21.9       |       |       | 15.4       |           |        | 41.3  |             |             | 44.5 |      |
| Approach LOS              |          | С          |       |       | В          |           |        | D     |             |             | D    |      |
| Intersection Summary      |          |            |       |       |            |           |        |       |             |             |      |      |
| HCM Average Control D     |          |            | 22.1  | H     | ICM Lev    | vel of Se | ervice |       | С           |             |      |      |
| HCM Volume to Capacit     |          |            | 0.84  |       |            |           |        |       |             |             |      |      |
| Actuated Cycle Length (   |          |            | 76.2  |       | Sum of l   |           |        |       | 20.0        |             |      |      |
| Intersection Capacity Uti | lization |            | 72.2% | 10    | CU Leve    | el of Ser | vice   |       | С           |             |      |      |
| Analysis Period (min)     |          |            | 15    |       |            |           |        |       |             |             |      |      |
| c Critical Lane Group     |          |            |       |       |            |           |        |       |             |             |      |      |

|                           | ۶          | <b>→</b> | •               | •    | <b>\</b>  | ✓            |     |
|---------------------------|------------|----------|-----------------|------|-----------|--------------|-----|
| Movement                  | EBL        | EBT      | WBT             | WBR  | SBL       | SBR          |     |
| Lane Configurations       | ሻ          | <b>^</b> | <del>ተ</del> ተኈ |      | ሻ         | 7            |     |
| Ideal Flow (vphpl)        | 1900       | 1900     | 1900            | 1900 | 1900      | 1900         |     |
| Total Lost time (s)       | 4.0        | 4.0      | 4.0             |      | 4.0       | 4.0          |     |
| Lane Util. Factor         | 1.00       | 0.91     | 0.91            |      | 1.00      | 1.00         |     |
| Frt                       | 1.00       | 1.00     | 0.98            |      | 1.00      | 0.85         |     |
| Flt Protected             | 0.95       | 1.00     | 1.00            |      | 0.95      | 1.00         |     |
| Satd. Flow (prot)         | 1770       | 5085     | 5009            |      | 1770      | 1583         |     |
| Flt Permitted             | 0.95       | 1.00     | 1.00            |      | 0.95      | 1.00         |     |
| Satd. Flow (perm)         | 1770       | 5085     | 5009            |      | 1770      | 1583         |     |
| Volume (vph)              | 250        | 1990     | 810             | 90   | 40        | 150          |     |
| Peak-hour factor, PHF     | 0.97       | 0.97     | 0.97            | 0.97 | 0.97      | 0.97         |     |
| Adj. Flow (vph)           | 258        | 2052     | 835             | 93   | 41        | 155          |     |
| RTOR Reduction (vph)      | 0          | 0        | 13              | 0    | 0         | 131          |     |
| Lane Group Flow (vph)     | 258        | 2052     | 915             | 0    | 41        | 24           |     |
| Turn Type                 | Prot       |          |                 |      | С         | ustom        |     |
| Protected Phases          | 7          | 4        | 8               |      |           |              |     |
| Permitted Phases          |            |          |                 |      | 6         | 6            |     |
| Actuated Green, G (s)     | 9.4        | 31.7     | 18.3            |      | 7.4       | 7.4          |     |
| Effective Green, g (s)    | 9.4        | 31.7     | 18.3            |      | 7.4       | 7.4          |     |
| Actuated g/C Ratio        | 0.20       | 0.67     | 0.39            |      | 0.16      | 0.16         |     |
| Clearance Time (s)        | 4.0        | 4.0      | 4.0             |      | 4.0       | 4.0          |     |
| Vehicle Extension (s)     | 3.0        | 3.0      | 3.0             |      | 3.0       | 3.0          |     |
| Lane Grp Cap (vph)        | 353        | 3422     | 1946            |      | 278       | 249          |     |
| v/s Ratio Prot            | c0.15      | c0.40    | 0.18            |      |           |              |     |
| v/s Ratio Perm            |            |          |                 |      | c0.02     | 0.02         |     |
| v/c Ratio                 | 0.73       | 0.60     | 0.47            |      | 0.15      | 0.10         |     |
| Uniform Delay, d1         | 17.7       | 4.2      | 10.8            |      | 17.1      | 17.0         |     |
| Progression Factor        | 1.00       | 1.00     | 1.00            |      | 1.00      | 1.00         |     |
| Incremental Delay, d2     | 7.6        | 0.3      | 0.2             |      | 0.2       | 0.2          |     |
| Delay (s)                 | 25.2       | 4.5      | 11.0            |      | 17.4      | 17.2         |     |
| Level of Service          | С          | Α        | В               |      | В         | В            |     |
| Approach Delay (s)        |            | 6.8      | 11.0            |      | 17.2      |              |     |
| Approach LOS              |            | Α        | В               |      | В         |              |     |
| · ·                       |            |          |                 |      |           |              |     |
| Intersection Summary      | olov:      |          | 0.5             |      | ICM Let   | ral of Carri | ioc |
| HCM Volume to Consoit     | -          |          | 8.5             | Г    | icivi Lev | el of Serv   | ice |
| HCM Volume to Capacit     |            |          | 0.52            |      | um of le  | ant time (a) |     |
| Actuated Cycle Length (   |            |          | 47.1            |      |           | ost time (s) |     |
| Intersection Capacity Uti | ıııZaliUfi |          | 48.4%           | 10   | ou Leve   | a or servic  | ·e  |
| Analysis Period (min)     |            |          | 15              |      |           |              |     |
| c Critical Lane Group     |            |          |                 |      |           |              |     |

|                          | ۶         | <b>→</b>   | •     | •     | <b>←</b>   | •         | 4      | †    | <b>/</b> | <b>/</b> | ļ     | 4    |
|--------------------------|-----------|------------|-------|-------|------------|-----------|--------|------|----------|----------|-------|------|
| Movement                 | EBL       | EBT        | EBR   | WBL   | WBT        | WBR       | NBL    | NBT  | NBR      | SBL      | SBT   | SBR  |
| Lane Configurations      | 7         | <b>↑</b> ↑ |       | J.    | <b>↑</b> ↑ |           | J.     | f)   |          | J.       | ĵ»    |      |
| Ideal Flow (vphpl)       | 1900      | 1900       | 1900  | 1900  | 1900       | 1900      | 1900   | 1900 | 1900     | 1900     | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0  |          | 4.0      | 4.0   |      |
| Lane Util. Factor        | 1.00      | 0.95       |       | 1.00  | 0.95       |           | 1.00   | 1.00 |          | 1.00     | 1.00  |      |
| Frt                      | 1.00      | 1.00       |       | 1.00  | 1.00       |           | 1.00   | 0.93 |          | 1.00     | 0.86  |      |
| Flt Protected            | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00 |          | 0.95     | 1.00  |      |
| Satd. Flow (prot)        | 1770      | 3535       |       | 1770  | 3532       |           | 1770   | 1723 |          | 1770     | 1594  |      |
| Flt Permitted            | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00 |          | 0.95     | 1.00  |      |
| Satd. Flow (perm)        | 1770      | 3535       |       | 1770  | 3532       |           | 1770   | 1723 |          | 1770     | 1594  |      |
| Volume (vph)             | 330       | 1220       | 10    | 10    | 690        | 10        | 10     | 10   | 10       | 10       | 10    | 250  |
| Peak-hour factor, PHF    | 0.97      | 0.97       | 0.97  | 0.97  | 0.97       | 0.97      | 0.97   | 0.97 | 0.97     | 0.97     | 0.97  | 0.97 |
| Adj. Flow (vph)          | 340       | 1258       | 10    | 10    | 711        | 10        | 10     | 10   | 10       | 10       | 10    | 258  |
| RTOR Reduction (vph)     | 0         | 0          | 0     | 0     | 1          | 0         | 0      | 9    | 0        | 0        | 228   | 0    |
| Lane Group Flow (vph)    | 340       | 1268       | 0     | 10    | 720        | 0         | 10     | 11   | 0        | 10       | 40    | 0    |
| Turn Type                | Prot      |            |       | Prot  |            |           | Prot   |      |          | Prot     |       |      |
| Protected Phases         | 7         | 4          |       | 3     | 8          |           | 5      | 2    |          | 1        | 6     |      |
| Permitted Phases         |           |            |       |       |            |           |        |      |          |          |       |      |
| Actuated Green, G (s)    | 15.1      | 34.4       |       | 0.5   | 19.8       |           | 0.5    | 6.8  |          | 0.5      | 6.8   |      |
| Effective Green, g (s)   | 15.1      | 34.4       |       | 0.5   | 19.8       |           | 0.5    | 6.8  |          | 0.5      | 6.8   |      |
| Actuated g/C Ratio       | 0.26      | 0.59       |       | 0.01  | 0.34       |           | 0.01   | 0.12 |          | 0.01     | 0.12  |      |
| Clearance Time (s)       | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0  |          | 4.0      | 4.0   |      |
| Vehicle Extension (s)    | 3.0       | 3.0        |       | 3.0   | 3.0        |           | 3.0    | 3.0  |          | 3.0      | 3.0   |      |
| Lane Grp Cap (vph)       | 459       | 2089       |       | 15    | 1202       |           | 15     | 201  |          | 15       | 186   |      |
| v/s Ratio Prot           | c0.19     | c0.36      |       | 0.01  | 0.20       |           | c0.01  | 0.01 |          | 0.01     | c0.03 |      |
| v/s Ratio Perm           |           |            |       |       |            |           |        |      |          |          |       |      |
| v/c Ratio                | 0.74      | 0.61       |       | 0.67  | 0.60       |           | 0.67   | 0.06 |          | 0.67     | 0.22  |      |
| Uniform Delay, d1        | 19.8      | 7.6        |       | 28.8  | 15.9       |           | 28.8   | 22.8 |          | 28.8     | 23.3  |      |
| Progression Factor       | 1.00      | 1.00       |       | 1.00  | 1.00       |           | 1.00   | 1.00 |          | 1.00     | 1.00  |      |
| Incremental Delay, d2    | 6.3       | 0.5        |       | 75.9  | 0.8        |           | 75.9   | 0.1  |          | 75.9     | 0.6   |      |
| Delay (s)                | 26.1      | 8.1        |       | 104.6 | 16.7       |           | 104.6  | 23.0 |          | 104.6    | 23.9  |      |
| Level of Service         | С         | Α          |       | F     | В          |           | F      | С    |          | F        | С     |      |
| Approach Delay (s)       |           | 11.9       |       |       | 17.9       |           |        | 50.2 |          |          | 26.8  |      |
| Approach LOS             |           | В          |       |       | В          |           |        | D    |          |          | С     |      |
| Intersection Summary     |           |            |       |       |            |           |        |      |          |          |       |      |
| HCM Average Control D    |           |            | 15.6  | F     | ICM Le     | vel of Se | ervice |      | В        |          |       |      |
| HCM Volume to Capacit    | ty ratio  |            | 0.57  |       |            |           |        |      |          |          |       |      |
| Actuated Cycle Length (  |           |            | 58.2  |       |            | ost time  |        |      | 12.0     |          |       |      |
| Intersection Capacity Ut | ilization |            | 63.7% | [0    | CU Leve    | el of Ser | vice   |      | В        |          |       |      |
| Analysis Period (min)    |           |            | 15    |       |            |           |        |      |          |          |       |      |
| c Critical Lane Group    |           |            |       |       |            |           |        |      |          |          |       |      |

|                          | ۶         | <b>→</b>   | •     | •     | <b>←</b>   | •         | 4      | <b>†</b> | <b>/</b> | <b>/</b> | ţ    | 4    |
|--------------------------|-----------|------------|-------|-------|------------|-----------|--------|----------|----------|----------|------|------|
| Movement                 | EBL       | EBT        | EBR   | WBL   | WBT        | WBR       | NBL    | NBT      | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations      | 7         | <b>∱</b> } |       | Ţ     | <b>∱</b> } |           | 7      | f)       |          | 7        | £    |      |
| Ideal Flow (vphpl)       | 1900      | 1900       | 1900  | 1900  | 1900       | 1900      | 1900   | 1900     | 1900     | 1900     | 1900 | 1900 |
| Total Lost time (s)      | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0      |          | 4.0      | 4.0  |      |
| Lane Util. Factor        | 1.00      | 0.95       |       | 1.00  | 0.95       |           | 1.00   | 1.00     |          | 1.00     | 1.00 |      |
| Frt                      | 1.00      | 1.00       |       | 1.00  | 0.94       |           | 1.00   | 0.93     |          | 1.00     | 0.97 |      |
| Flt Protected            | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00     |          | 0.95     | 1.00 |      |
| Satd. Flow (prot)        | 1770      | 3530       |       | 1770  | 3341       |           | 1770   | 1736     |          | 1770     | 1806 |      |
| Flt Permitted            | 0.95      | 1.00       |       | 0.95  | 1.00       |           | 0.95   | 1.00     |          | 0.95     | 1.00 |      |
| Satd. Flow (perm)        | 1770      | 3530       |       | 1770  | 3341       |           | 1770   | 1736     |          | 1770     | 1806 |      |
| Volume (vph)             | 160       | 1150       | 20    | 30    | 620        | 370       | 50     | 230      | 190      | 380      | 80   | 20   |
| Peak-hour factor, PHF    | 0.97      | 0.97       | 0.97  | 0.97  | 0.97       | 0.97      | 0.97   | 0.97     | 0.97     | 0.97     | 0.97 | 0.97 |
| Adj. Flow (vph)          | 165       | 1186       | 21    | 31    | 639        | 381       | 52     | 237      | 196      | 392      | 82   | 21   |
| RTOR Reduction (vph)     | 0         | 1          | 0     | 0     | 79         | 0         | 0      | 27       | 0        | 0        | 8    | 0    |
| Lane Group Flow (vph)    | 165       | 1206       | 0     | 31    | 941        | 0         | 52     | 406      | 0        | 392      | 95   | 0    |
| Turn Type                | Prot      |            |       | Prot  |            |           | Prot   |          |          | Prot     |      |      |
| Protected Phases         | 7         | 4          |       | 3     | 8          |           | 5      | 2        |          | 1        | 6    |      |
| Permitted Phases         |           |            |       |       |            |           |        |          |          |          |      |      |
| Actuated Green, G (s)    | 11.0      | 41.2       |       | 2.4   | 32.6       |           | 6.2    | 27.5     |          | 25.0     | 46.3 |      |
| Effective Green, g (s)   | 11.0      | 41.2       |       | 2.4   | 32.6       |           | 6.2    | 27.5     |          | 25.0     | 46.3 |      |
| Actuated g/C Ratio       | 0.10      | 0.37       |       | 0.02  | 0.29       |           | 0.06   | 0.25     |          | 0.22     | 0.41 |      |
| Clearance Time (s)       | 4.0       | 4.0        |       | 4.0   | 4.0        |           | 4.0    | 4.0      |          | 4.0      | 4.0  |      |
| Vehicle Extension (s)    | 3.0       | 3.0        |       | 3.0   | 3.0        |           | 3.0    | 3.0      |          | 3.0      | 3.0  |      |
| Lane Grp Cap (vph)       | 174       | 1297       |       | 38    | 972        |           | 98     | 426      |          | 395      | 746  |      |
| v/s Ratio Prot           | c0.09     | c0.34      |       | 0.02  | 0.28       |           | 0.03   | c0.23    |          | c0.22    | 0.05 |      |
| v/s Ratio Perm           |           |            |       |       |            |           |        |          |          |          |      |      |
| v/c Ratio                | 0.95      | 0.93       |       | 0.82  | 0.97       |           | 0.53   | 0.95     |          | 0.99     | 0.13 |      |
| Uniform Delay, d1        | 50.3      | 34.1       |       | 54.6  | 39.2       |           | 51.5   | 41.7     |          | 43.5     | 20.4 |      |
| Progression Factor       | 1.00      | 1.00       |       | 1.00  | 1.00       |           | 1.00   | 1.00     |          | 1.00     | 1.00 |      |
| Incremental Delay, d2    | 52.6      | 11.7       |       | 76.1  | 21.3       |           | 5.4    | 31.5     |          | 43.1     | 0.1  |      |
| Delay (s)                | 102.9     | 45.7       |       | 130.7 | 60.5       |           | 57.0   | 73.2     |          | 86.5     | 20.5 |      |
| Level of Service         | F         | D          |       | F     | Е          |           | Е      | Е        |          | F        | С    |      |
| Approach Delay (s)       |           | 52.6       |       |       | 62.6       |           |        | 71.5     |          |          | 72.8 |      |
| Approach LOS             |           | D          |       |       | Е          |           |        | Е        |          |          | Е    |      |
| Intersection Summary     |           |            |       |       |            |           |        |          |          |          |      |      |
| HCM Average Control D    |           |            | 61.3  | F     | ICM Le     | vel of Se | ervice |          | E        |          |      |      |
| HCM Volume to Capacit    | ty ratio  |            | 0.94  |       |            |           |        |          |          |          |      |      |
| Actuated Cycle Length (  |           |            | 112.1 |       |            | ost time  |        |          | 12.0     |          |      |      |
| Intersection Capacity Ut | ilization |            | 96.0% | [0    | CU Leve    | el of Ser | vice   |          | F        |          |      |      |
| Analysis Period (min)    |           |            | 15    |       |            |           |        |          |          |          |      |      |
| c Critical Lane Group    |           |            |       |       |            |           |        |          |          |          |      |      |

|                          | -                  | •    | •         | ←        | 1        | <i>&gt;</i>   |   |     |  |
|--------------------------|--------------------|------|-----------|----------|----------|---------------|---|-----|--|
| Movement                 | EBT                | EBR  | WBL       | WBT      | NBL      | NBR           |   |     |  |
| Lane Configurations      | <b>↑</b> ↑         |      | *         | <b>^</b> | ሻ        | 1             |   |     |  |
| Ideal Flow (vphpl)       | 1900               | 1900 | 1900      | 1900     | 1900     | 1900          |   |     |  |
| Total Lost time (s)      | 4.0                |      | 4.0       | 4.0      | 4.0      | 4.0           |   |     |  |
| Lane Util. Factor        | 0.95               |      | 1.00      | 0.95     | 1.00     | 1.00          |   |     |  |
| Frt                      | 0.98               |      | 1.00      | 1.00     | 1.00     | 0.85          |   |     |  |
| Flt Protected            | 1.00               |      | 0.95      | 1.00     | 0.95     | 1.00          |   |     |  |
| Satd. Flow (prot)        | 3466               |      | 1770      | 3539     | 1770     | 1583          |   |     |  |
| Flt Permitted            | 1.00               |      | 0.95      | 1.00     | 0.95     | 1.00          |   |     |  |
| Satd. Flow (perm)        | 3466               |      | 1770      | 3539     | 1770     | 1583          |   |     |  |
| Volume (vph)             | 1440               | 230  | 70        | 810      | 180      | 100           |   |     |  |
| Peak-hour factor, PHF    | 0.97               | 0.97 | 0.97      | 0.97     | 0.97     | 0.97          |   |     |  |
| Adj. Flow (vph)          | 1485               | 237  | 72        | 835      | 186      | 103           |   |     |  |
| RTOR Reduction (vph)     | 14                 | 0    | 0         | 0        | 0        | 87            |   |     |  |
| Lane Group Flow (vph)    | 1708               | 0    | 72        | 835      | 186      | 16            |   |     |  |
| Turn Type                |                    |      | Prot      |          |          | Perm          |   |     |  |
| Protected Phases         | 4                  |      | 3         | 8        | 2        | . 01111       |   |     |  |
| Permitted Phases         |                    |      | - 0       | - 0      |          | 2             |   |     |  |
| Actuated Green, G (s)    | 36.5               |      | 2.8       | 43.3     | 9.7      | 9.7           |   |     |  |
| Effective Green, g (s)   | 36.5               |      | 2.8       | 43.3     | 9.7      | 9.7           |   |     |  |
| Actuated g/C Ratio       | 0.60               |      | 0.05      | 0.71     | 0.16     | 0.16          |   |     |  |
| Clearance Time (s)       | 4.0                |      | 4.0       | 4.0      | 4.0      | 4.0           |   |     |  |
| Vehicle Extension (s)    | 3.0                |      | 3.0       | 3.0      | 3.0      | 3.0           |   |     |  |
| Lane Grp Cap (vph)       | 2074               |      | 81        | 2512     | 281      | 252           |   |     |  |
| v/s Ratio Prot           | c0.49              |      | c0.04     | 0.24     | c0.11    | 202           |   |     |  |
| v/s Ratio Perm           | CU. <del>T</del> 3 |      | 60.04     | 0.24     | 00.11    | 0.01          |   |     |  |
| v/c Ratio                | 0.82               |      | 0.89      | 0.33     | 0.66     | 0.06          |   |     |  |
| Uniform Delay, d1        | 9.7                |      | 28.9      | 3.4      | 24.1     | 21.8          |   |     |  |
| Progression Factor       | 1.00               |      | 1.00      | 1.00     | 1.00     | 1.00          |   |     |  |
| Incremental Delay, d2    | 2.8                |      | 63.4      | 0.1      | 5.8      | 0.1           |   |     |  |
| Delay (s)                | 12.5               |      | 92.3      | 3.4      | 29.9     | 21.9          |   |     |  |
| Level of Service         | 12.3<br>B          |      | 52.5<br>F | A        | C        | C C           |   |     |  |
| Approach Delay (s)       | 12.5               |      |           | 10.5     | 27.0     |               |   |     |  |
| Approach LOS             | 12.3<br>B          |      |           | В        | C C      |               |   |     |  |
|                          |                    |      |           |          |          |               |   |     |  |
| Intersection Summary     | Valov:             |      | 10.0      | 1        | ICM L =: | ral of Camila |   | D   |  |
| HCM Values to Consoli    |                    |      | 13.3      | F        | 10IVI Le | vel of Servic | e | В   |  |
| HCM Volume to Capacit    |                    |      | 0.80      |          | )£!      | 1 + i (-)     |   | . 0 |  |
| Actuated Cycle Length (  |                    |      | 61.0      |          |          | ost time (s)  |   | 2.0 |  |
| Intersection Capacity Ut | ilization          |      | 71.0%     | 10       | SO Leve  | el of Service |   | С   |  |
| Analysis Period (min)    |                    |      | 15        |          |          |               |   |     |  |
| c Critical Lane Group    |                    |      |           |          |          |               |   |     |  |

|                          | -          | •    | •     | •        | •       | <b>/</b>      |   |  |
|--------------------------|------------|------|-------|----------|---------|---------------|---|--|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL     | NBR           |   |  |
| Lane Configurations      | <b>↑</b> ↑ |      | ች     | <b>^</b> | *       | 7             |   |  |
| Ideal Flow (vphpl)       | 1900       | 1900 | 1900  | 1900     | 1900    | 1900          |   |  |
| Total Lost time (s)      | 4.0        |      | 4.0   | 4.0      | 4.0     | 4.0           |   |  |
| Lane Util. Factor        | 0.95       |      | 1.00  | 0.95     | 1.00    | 1.00          |   |  |
| Frt                      | 1.00       |      | 1.00  | 1.00     | 1.00    | 0.85          |   |  |
| Flt Protected            | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00          |   |  |
| Satd. Flow (prot)        | 3523       |      | 1770  | 3539     | 1770    | 1583          |   |  |
| Flt Permitted            | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00          |   |  |
| Satd. Flow (perm)        | 3523       |      | 1770  | 3539     | 1770    | 1583          |   |  |
| Volume (vph)             | 1280       | 40   | 110   | 830      | 60      | 290           |   |  |
| Peak-hour factor, PHF    | 0.97       | 0.97 | 0.97  | 0.97     | 0.97    | 0.97          |   |  |
| Adj. Flow (vph)          | 1320       | 41   | 113   | 856      | 62      | 299           |   |  |
| RTOR Reduction (vph)     | 3          | 0    | 0     | 0        | 0       | 150           |   |  |
| Lane Group Flow (vph)    | 1358       | 0    | 113   | 856      | 62      | 149           |   |  |
| Turn Type                |            |      | Prot  |          |         | Perm          |   |  |
| Protected Phases         | 4          |      | 3     | 8        | 2       |               |   |  |
| Permitted Phases         |            |      |       |          |         | 2             |   |  |
| Actuated Green, G (s)    | 25.6       |      | 3.5   | 33.1     | 8.1     | 8.1           |   |  |
| Effective Green, g (s)   | 25.6       |      | 3.5   | 33.1     | 8.1     | 8.1           |   |  |
| Actuated g/C Ratio       | 0.52       |      | 0.07  | 0.67     | 0.16    | 0.16          |   |  |
| Clearance Time (s)       | 4.0        |      | 4.0   | 4.0      | 4.0     | 4.0           |   |  |
| Vehicle Extension (s)    | 3.0        |      | 3.0   | 3.0      | 3.0     | 3.0           |   |  |
| Lane Grp Cap (vph)       | 1833       |      | 126   | 2381     | 291     | 261           |   |  |
| v/s Ratio Prot           | c0.39      |      | c0.06 | 0.24     | 0.04    |               |   |  |
| v/s Ratio Perm           |            |      |       |          |         | c0.09         |   |  |
| v/c Ratio                | 0.74       |      | 0.90  | 0.36     | 0.21    | 0.57          |   |  |
| Uniform Delay, d1        | 9.2        |      | 22.7  | 3.5      | 17.8    | 19.0          |   |  |
| Progression Factor       | 1.00       |      | 1.00  | 1.00     | 1.00    | 1.00          |   |  |
| Incremental Delay, d2    | 1.7        |      | 49.5  | 0.1      | 0.4     | 3.0           |   |  |
| Delay (s)                | 10.9       |      | 72.2  | 3.6      | 18.2    | 22.0          |   |  |
| Level of Service         | В          |      | Е     | Α        | В       | С             |   |  |
| Approach Delay (s)       | 10.9       |      |       | 11.6     | 21.3    |               |   |  |
| Approach LOS             | В          |      |       | В        | С       |               |   |  |
| Intersection Summary     |            |      |       |          |         |               |   |  |
| HCM Average Control D    |            |      | 12.5  | H        | ICM Lev | vel of Servic | е |  |
| HCM Volume to Capaci     |            |      | 0.72  |          |         |               |   |  |
| Actuated Cycle Length (  | . ,        |      | 49.2  |          |         | ost time (s)  |   |  |
| Intersection Capacity Ut | ilization  |      | 61.3% | 10       | CU Leve | el of Service |   |  |
| Analysis Period (min)    |            |      | 15    |          |         |               |   |  |
| c Critical Lane Group    |            |      |       |          |         |               |   |  |

|                              | ۶         | <b>→</b> | •     | •    | <b>←</b> | •         | 4      | <b>†</b> | <b>/</b> | <b>&gt;</b> | ţ    | 4    |
|------------------------------|-----------|----------|-------|------|----------|-----------|--------|----------|----------|-------------|------|------|
| Movement                     | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL    | NBT      | NBR      | SBL         | SBT  | SBR  |
| Lane Configurations          | 7         | ĵ»       |       | J.   | f)       |           | ¥      | ĵ»       |          | J.          | f)   |      |
| Ideal Flow (vphpl)           | 1900      | 1900     | 1900  | 1900 | 1900     | 1900      | 1900   | 1900     | 1900     | 1900        | 1900 | 1900 |
| Total Lost time (s)          | 4.0       | 4.0      |       | 4.0  | 4.0      |           | 4.0    | 4.0      |          | 4.0         | 4.0  |      |
| Lane Util. Factor            | 1.00      | 1.00     |       | 1.00 | 1.00     |           | 1.00   | 1.00     |          | 1.00        | 1.00 |      |
| Frt                          | 1.00      | 0.96     |       | 1.00 | 0.98     |           | 1.00   | 0.94     |          | 1.00        | 0.98 |      |
| Flt Protected                | 0.95      | 1.00     |       | 0.95 | 1.00     |           | 0.95   | 1.00     |          | 0.95        | 1.00 |      |
| Satd. Flow (prot)            | 1770      | 1785     |       | 1770 | 1827     |           | 1770   | 1758     |          | 1770        | 1826 |      |
| Flt Permitted                | 0.95      | 1.00     |       | 0.95 | 1.00     |           | 0.95   | 1.00     |          | 0.95        | 1.00 |      |
| Satd. Flow (perm)            | 1770      | 1785     |       | 1770 | 1827     |           | 1770   | 1758     |          | 1770        | 1826 |      |
| Volume (vph)                 | 150       | 130      | 50    | 120  | 140      | 20        | 90     | 350      | 210      | 10          | 330  | 50   |
| Peak-hour factor, PHF        | 0.97      | 0.97     | 0.97  | 0.97 | 0.97     | 0.97      | 0.97   | 0.97     | 0.97     | 0.97        | 0.97 | 0.97 |
| Adj. Flow (vph)              | 155       | 134      | 52    | 124  | 144      | 21        | 93     | 361      | 216      | 10          | 340  | 52   |
| RTOR Reduction (vph)         | 0         | 22       | 0     | 0    | 9        | 0         | 0      | 27       | 0        | 0           | 7    | 0    |
| Lane Group Flow (vph)        | 155       | 164      | 0     | 124  | 156      | 0         | 93     | 550      | 0        | 10          | 385  | 0    |
| Turn Type                    | Prot      |          |       | Prot |          |           | Prot   |          |          | Prot        |      |      |
| Protected Phases             | 7         | 4        |       | 3    | 8        |           | 5      | 2        |          | 1           | 6    |      |
| Permitted Phases             |           |          |       |      |          |           |        |          |          |             |      |      |
| Actuated Green, G (s)        | 5.5       | 8.5      |       | 4.8  | 7.8      |           | 4.1    | 24.2     |          | 0.6         | 20.7 |      |
| Effective Green, g (s)       | 5.5       | 8.5      |       | 4.8  | 7.8      |           | 4.1    | 24.2     |          | 0.6         | 20.7 |      |
| Actuated g/C Ratio           | 0.10      | 0.16     |       | 0.09 | 0.14     |           | 0.08   | 0.45     |          | 0.01        | 0.38 |      |
| Clearance Time (s)           | 4.0       | 4.0      |       | 4.0  | 4.0      |           | 4.0    | 4.0      |          | 4.0         | 4.0  |      |
| Vehicle Extension (s)        | 3.0       | 3.0      |       | 3.0  | 3.0      |           | 3.0    | 3.0      |          | 3.0         | 3.0  |      |
| Lane Grp Cap (vph)           | 180       | 280      |       | 157  | 263      |           | 134    | 786      |          | 20          | 699  |      |
| v/s Ratio Prot               | c0.09     | c0.09    |       | 0.07 | 0.09     |           | c0.05  | c0.31    |          | 0.01        | 0.21 |      |
| v/s Ratio Perm               |           |          |       |      |          |           |        |          |          |             |      |      |
| v/c Ratio                    | 0.86      | 0.59     |       | 0.79 | 0.59     |           | 0.69   | 0.70     |          | 0.50        | 0.55 |      |
| Uniform Delay, d1            | 23.9      | 21.2     |       | 24.2 | 21.7     |           | 24.4   | 12.0     |          | 26.6        | 13.1 |      |
| Progression Factor           | 1.00      | 1.00     |       | 1.00 | 1.00     |           | 1.00   | 1.00     |          | 1.00        | 1.00 |      |
| Incremental Delay, d2        | 31.9      | 3.1      |       | 22.7 | 3.6      |           | 14.4   | 2.7      |          | 18.3        | 0.9  |      |
| Delay (s)                    | 55.8      | 24.3     |       | 46.8 | 25.3     |           | 38.8   | 14.8     |          | 44.9        | 14.0 |      |
| Level of Service             | Е         | С        |       | D    | С        |           | D      | В        |          | D           | В    |      |
| Approach Delay (s)           |           | 38.6     |       |      | 34.5     |           |        | 18.1     |          |             | 14.8 |      |
| Approach LOS                 |           | D        |       |      | С        |           |        | В        |          |             | В    |      |
| Intersection Summary         |           |          |       |      |          |           |        |          |          |             |      |      |
| HCM Average Control D        | ,         |          | 24.2  | F    | ICM Le   | vel of Se | ervice |          | С        |             |      |      |
| <b>HCM Volume to Capacit</b> |           |          | 0.67  |      |          |           |        |          |          |             |      |      |
| Actuated Cycle Length (      | ,         |          | 54.1  |      |          | ost time  |        |          | 12.0     |             |      |      |
| Intersection Capacity Ut     | ilization |          | 64.8% | [0   | CU Leve  | el of Ser | vice   |          | С        |             |      |      |
| Analysis Period (min)        |           |          | 15    |      |          |           |        |          |          |             |      |      |
| c Critical Lane Group        |           |          |       |      |          |           |        |          |          |             |      |      |

|                          | -           | •    | •     | •        | 4       | <i>&gt;</i>   |    |
|--------------------------|-------------|------|-------|----------|---------|---------------|----|
| Movement                 | EBT         | EBR  | WBL   | WBT      | NBL     | NBR           |    |
| Lane Configurations      | <b>4</b> 1> |      |       | <b>^</b> | *       | 1             |    |
| Ideal Flow (vphpl)       | 1900        | 1900 | 1900  | 1900     | 1900    | 1900          |    |
| Total Lost time (s)      | 4.0         |      | 4.0   | 4.0      | 4.0     | 4.0           |    |
| Lane Util. Factor        | 0.95        |      | 1.00  | 0.95     | 1.00    | 1.00          |    |
| Frt                      | 0.99        |      | 1.00  | 1.00     | 1.00    | 0.85          |    |
| Flt Protected            | 1.00        |      | 0.95  | 1.00     | 0.95    | 1.00          |    |
| Satd. Flow (prot)        | 3487        |      | 1770  | 3539     | 1770    | 1583          |    |
| Flt Permitted            | 1.00        |      | 0.95  | 1.00     | 0.95    | 1.00          |    |
| Satd. Flow (perm)        | 3487        |      | 1770  | 3539     | 1770    | 1583          |    |
| Volume (vph)             | 1560        | 170  | 290   | 1590     | 410     | 300           |    |
| Peak-hour factor, PHF    | 0.97        | 0.97 | 0.97  | 0.97     | 0.97    | 0.97          |    |
| Adj. Flow (vph)          | 1608        | 175  | 299   | 1639     | 423     | 309           |    |
| RTOR Reduction (vph)     | 5           | 0    | 0     | 0        | 0       | 189           |    |
| Lane Group Flow (vph)    | 1778        | 0    | 299   | 1639     | 423     | 120           |    |
| Turn Type                |             |      | Prot  |          |         | Perm          |    |
| Protected Phases         | 2           |      | 1     | 6        | 3       |               |    |
| Permitted Phases         |             |      |       |          |         | 3             |    |
| Actuated Green, G (s)    | 66.7        |      | 22.2  | 93.9     | 31.6    | 31.6          |    |
| Effective Green, g (s)   | 67.7        |      | 23.0  | 94.7     | 31.1    | 31.1          |    |
| Actuated g/C Ratio       | 0.48        |      | 0.16  | 0.68     | 0.22    | 0.22          |    |
| Clearance Time (s)       | 5.0         |      | 4.8   | 4.8      | 3.5     | 3.5           |    |
| Vehicle Extension (s)    | 6.8         |      | 6.3   | 6.3      | 2.0     | 2.0           |    |
| Lane Grp Cap (vph)       | 1690        |      | 291   | 2399     | 394     | 352           |    |
| v/s Ratio Prot           | c0.51       |      | c0.17 | 0.46     | c0.24   |               |    |
| v/s Ratio Perm           |             |      |       |          |         | 0.08          |    |
| v/c Ratio                | 1.05        |      | 1.03  | 0.68     | 1.07    | 0.34          |    |
| Uniform Delay, d1        | 36.0        |      | 58.3  | 13.5     | 54.3    | 45.7          |    |
| Progression Factor       | 1.00        |      | 1.00  | 1.00     | 1.00    | 1.00          |    |
| Incremental Delay, d2    | 37.0        |      | 60.0  | 1.3      | 66.4    | 0.2           |    |
| Delay (s)                | 73.0        |      | 118.4 | 14.8     | 120.7   | 45.9          |    |
| Level of Service         | Е           |      | F     | В        | F       | D             |    |
| Approach Delay (s)       | 73.0        |      |       | 30.8     | 89.1    |               |    |
| Approach LOS             | Е           |      |       | С        | F       |               |    |
| Intersection Summary     |             |      |       |          |         |               |    |
| HCM Average Control D    |             |      | 57.3  | H        | ICM Lev | el of Servic  | се |
| HCM Volume to Capaci     |             |      | 1.05  |          |         |               |    |
| Actuated Cycle Length (  | . ,         |      | 139.7 |          |         | ost time (s)  |    |
| Intersection Capacity Ut | ilization   |      | 97.3% | 10       | CU Leve | el of Service | Э  |
| Analysis Period (min)    |             |      | 15    |          |         |               |    |
| c Critical Lane Group    |             |      |       |          |         |               |    |

|                          | ۶         | <b>→</b> | •     | •    | <b>←</b> | •         | •      | †    | <b>/</b> | <b>/</b> | ţ     | 1    |
|--------------------------|-----------|----------|-------|------|----------|-----------|--------|------|----------|----------|-------|------|
| Movement                 | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL    | NBT  | NBR      | SBL      | SBT   | SBR  |
| Lane Configurations      | 77        | ተተተ      | 7     | ሻሻ   | ተተተ      | 7         | ሻሻ     | ተተተ  | 7        | ሻሻ       | ተተተ   | 7    |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900  | 1900 | 1900     | 1900      | 1900   | 1900 | 1900     | 1900     | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0      | 4.0   | 4.0  | 4.0      | 4.0       | 4.0    | 4.0  | 4.0      | 4.0      | 4.0   | 4.0  |
| Lane Util. Factor        | 0.97      | 0.91     | 1.00  | 0.97 | 0.91     | 1.00      | 0.97   | 0.91 | 1.00     | 0.97     | 0.91  | 1.00 |
| Frt                      | 1.00      | 1.00     | 0.85  | 1.00 | 1.00     | 0.85      | 1.00   | 1.00 | 0.85     | 1.00     | 1.00  | 0.85 |
| Flt Protected            | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00 | 1.00     | 0.95     | 1.00  | 1.00 |
| Satd. Flow (prot)        | 3433      | 5085     | 1583  | 3433 | 5085     | 1583      | 3433   | 5085 | 1583     | 3433     | 5085  | 1583 |
| Flt Permitted            | 0.95      | 1.00     | 1.00  | 0.95 | 1.00     | 1.00      | 0.95   | 1.00 | 1.00     | 0.95     | 1.00  | 1.00 |
| Satd. Flow (perm)        | 3433      | 5085     | 1583  | 3433 | 5085     | 1583      | 3433   | 5085 | 1583     | 3433     | 5085  | 1583 |
| Volume (vph)             | 530       | 500      | 960   | 270  | 360      | 90        | 1170   | 1420 | 280      | 140      | 1330  | 440  |
| Peak-hour factor, PHF    | 0.97      | 0.97     | 0.97  | 0.97 | 0.97     | 0.97      | 0.97   | 0.97 | 0.97     | 0.97     | 0.97  | 0.97 |
| Adj. Flow (vph)          | 546       | 515      | 990   | 278  | 371      | 93        | 1206   | 1464 | 289      | 144      | 1371  | 454  |
| RTOR Reduction (vph)     | 0         | 0        | 10    | 0    | 0        | 8         | 0      | 0    | 128      | 0        | 0     | 205  |
| Lane Group Flow (vph)    | 546       | 515      | 980   | 278  | 371      | 85        | 1206   | 1464 | 161      | 144      | 1371  | 249  |
| Turn Type                | Prot      |          | pm+ov | Prot | 1        | pm+ov     | Prot   |      | Perm     | Prot     |       | Perm |
| Protected Phases         | 7         | 4        | 5     | 3    | 8        | 1         | 5      | 2    |          | 1        | 6     |      |
| Permitted Phases         |           |          | 4     |      |          | 8         |        |      | 2        |          |       | 6    |
| Actuated Green, G (s)    | 17.5      | 24.9     | 63.5  | 13.9 | 21.2     | 29.6      | 38.6   | 67.2 | 67.2     | 8.4      | 36.6  | 36.6 |
| Effective Green, g (s)   | 19.0      | 26.5     | 66.6  | 15.4 | 22.9     | 32.8      | 40.1   | 68.7 | 68.7     | 9.9      | 38.5  | 38.5 |
| Actuated g/C Ratio       | 0.14      | 0.19     | 0.49  | 0.11 | 0.17     | 0.24      | 0.29   | 0.50 | 0.50     | 0.07     | 0.28  | 0.28 |
| Clearance Time (s)       | 5.5       | 5.6      | 5.5   | 5.5  | 5.7      | 5.5       | 5.5    | 5.5  | 5.5      | 5.5      | 5.9   | 5.9  |
| Vehicle Extension (s)    | 1.0       | 5.0      | 1.0   | 1.0  | 5.9      | 1.0       | 1.0    | 5.4  | 5.4      | 1.0      | 5.4   | 5.4  |
| Lane Grp Cap (vph)       | 478       | 987      | 819   | 387  | 853      | 427       | 1009   | 2559 | 797      | 249      | 1434  | 446  |
| v/s Ratio Prot           | c0.16     | 0.10     | c0.35 | 0.08 | 0.07     | 0.01      | 0.35   | 0.29 |          | 0.04     | c0.27 |      |
| v/s Ratio Perm           |           |          | 0.27  |      |          | 0.04      |        |      | 0.10     |          |       | 0.16 |
| v/c Ratio                | 1.14      | 0.52     | 1.20  | 0.72 | 0.43     | 0.20      | 1.20   | 0.57 | 0.20     | 0.58     | 0.96  | 0.56 |
| Uniform Delay, d1        | 58.8      | 49.3     | 35.0  | 58.5 | 51.0     | 41.4      | 48.2   | 23.6 | 18.7     | 61.3     | 48.2  | 41.8 |
| Progression Factor       | 1.00      | 1.00     | 1.00  | 1.00 | 1.00     | 1.00      | 1.00   | 1.00 | 1.00     | 1.00     | 1.00  | 1.00 |
| Incremental Delay, d2    | 86.4      | 1.0      | 100.4 | 5.2  | 1.0      | 0.1       | 97.7   | 0.5  | 0.3      | 2.0      | 14.9  | 2.9  |
| Delay (s)                | 145.2     | 50.3     | 135.4 | 63.7 | 52.0     | 41.5      | 145.9  | 24.2 | 19.0     | 63.3     | 63.1  | 44.6 |
| Level of Service         | F         | D        | F     | Е    | D        | D         | F      | С    | В        | E        | Е     | D    |
| Approach Delay (s)       |           | 116.6    |       |      | 55.0     |           |        | 73.3 |          |          | 58.8  |      |
| Approach LOS             |           | F        |       |      | Е        |           |        | Е    |          |          | Е     |      |
| Intersection Summary     |           |          |       |      |          |           |        |      |          |          |       |      |
| HCM Average Control D    | ,         |          | 79.4  | H    | ICM Lev  | vel of Se | ervice |      | Е        |          |       |      |
| HCM Volume to Capacit    |           |          | 1.13  |      |          |           |        |      |          |          |       |      |
| Actuated Cycle Length (  |           |          | 136.5 |      |          | ost time  |        |      | 12.0     |          |       |      |
| Intersection Capacity Ut | ilization | 1        | 02.8% | 10   | CU Leve  | el of Ser | vice   |      | G        |          |       |      |
| Analysis Period (min)    |           |          | 15    |      |          |           |        |      |          |          |       |      |
| c Critical Lane Group    |           |          |       |      |          |           |        |      |          |          |       |      |

|                          | -          | •    | •     | •        | 4       | <i>&gt;</i>  |    |
|--------------------------|------------|------|-------|----------|---------|--------------|----|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL     | NBR          |    |
| Lane Configurations      | <b>↑</b> ↑ |      | *     | <b>^</b> | ች       | 7            |    |
| Ideal Flow (vphpl)       | 1900       | 1900 | 1900  | 1900     | 1900    | 1900         |    |
| Total Lost time (s)      | 4.0        |      | 4.0   | 4.0      | 4.0     | 4.0          |    |
| Lane Util. Factor        | 0.95       |      | 1.00  | 0.95     | 1.00    | 1.00         |    |
| Frt                      | 0.99       |      | 1.00  | 1.00     | 1.00    | 0.85         |    |
| Flt Protected            | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00         |    |
| Satd. Flow (prot)        | 3490       |      | 1770  | 3539     | 1770    | 1583         |    |
| Flt Permitted            | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00         |    |
| Satd. Flow (perm)        | 3490       |      | 1770  | 3539     | 1770    | 1583         |    |
| Volume (vph)             | 680        | 70   | 320   | 1170     | 10      | 80           |    |
| Peak-hour factor, PHF    | 0.97       | 0.97 | 0.97  | 0.97     | 0.97    | 0.97         |    |
| Adj. Flow (vph)          | 701        | 72   | 330   | 1206     | 10      | 82           |    |
| RTOR Reduction (vph)     | 12         | 0    | 0     | 0        | 0       | 74           |    |
| Lane Group Flow (vph)    | 761        | 0    | 330   | 1206     | 10      | 8            |    |
| Turn Type                |            |      | Prot  |          |         | Perm         |    |
| Protected Phases         | 4          |      | 3     | 8        | 2       |              |    |
| Permitted Phases         |            |      |       |          |         | 2            |    |
| Actuated Green, G (s)    | 14.6       |      | 12.5  | 31.1     | 4.4     | 4.4          |    |
| Effective Green, g (s)   | 14.6       |      | 12.5  | 31.1     | 4.4     | 4.4          |    |
| Actuated g/C Ratio       | 0.34       |      | 0.29  | 0.71     | 0.10    | 0.10         |    |
| Clearance Time (s)       | 4.0        |      | 4.0   | 4.0      | 4.0     | 4.0          |    |
| Vehicle Extension (s)    | 3.0        |      | 3.0   | 3.0      | 3.0     | 3.0          |    |
| Lane Grp Cap (vph)       | 1171       |      | 509   | 2530     | 179     | 160          |    |
| v/s Ratio Prot           | c0.22      |      | c0.19 | 0.34     | c0.01   |              |    |
| v/s Ratio Perm           |            |      |       |          |         | 0.01         |    |
| v/c Ratio                | 0.65       |      | 0.65  | 0.48     | 0.06    | 0.05         |    |
| Uniform Delay, d1        | 12.3       |      | 13.6  | 2.7      | 17.7    | 17.7         |    |
| Progression Factor       | 1.00       |      | 1.00  | 1.00     | 1.00    | 1.00         |    |
| Incremental Delay, d2    | 1.3        |      | 2.8   | 0.1      | 0.1     | 0.1          |    |
| Delay (s)                | 13.5       |      | 16.4  | 2.8      | 17.8    | 17.8         |    |
| Level of Service         | В          |      | В     | Α        | В       | В            |    |
| Approach Delay (s)       | 13.5       |      |       | 5.7      | 17.8    |              |    |
| Approach LOS             | В          |      |       | Α        | В       |              |    |
| Intersection Summary     |            |      |       |          |         |              |    |
| HCM Average Control D    |            |      | 8.7   | H        | ICM Lev | el of Servi  | ce |
| HCM Volume to Capacit    |            |      | 0.57  |          |         |              |    |
| Actuated Cycle Length (  |            |      | 43.5  |          |         | ost time (s) |    |
| Intersection Capacity Ut | ilization  |      | 52.1% | 10       | CU Leve | el of Servic | е  |
| Analysis Period (min)    |            |      | 15    |          |         |              |    |
| c Critical Lane Group    |            |      |       |          |         |              |    |

|                          | -          | •    | •     | •        | 1       | <i>&gt;</i>   |   |  |
|--------------------------|------------|------|-------|----------|---------|---------------|---|--|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL     | NBR           |   |  |
| Lane Configurations      | <b>↑</b> ⊅ |      | ች     | <b>^</b> | ች       | 7             |   |  |
| Ideal Flow (vphpl)       | 1900       | 1900 | 1900  | 1900     | 1900    | 1900          |   |  |
| Total Lost time (s)      | 4.0        |      | 4.0   | 4.0      | 4.0     | 4.0           |   |  |
| Lane Util. Factor        | 0.95       |      | 1.00  | 0.95     | 1.00    | 1.00          |   |  |
| Frt                      | 1.00       |      | 1.00  | 1.00     | 1.00    | 0.85          |   |  |
| Flt Protected            | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00          |   |  |
| Satd. Flow (prot)        | 3523       |      | 1770  | 3539     | 1770    | 1583          |   |  |
| Flt Permitted            | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00          |   |  |
| Satd. Flow (perm)        | 3523       |      | 1770  | 3539     | 1770    | 1583          |   |  |
| Volume (vph)             | 1290       | 40   | 110   | 820      | 70      | 250           |   |  |
| Peak-hour factor, PHF    | 0.97       | 0.97 | 0.97  | 0.97     | 0.97    | 0.97          |   |  |
| Adj. Flow (vph)          | 1330       | 41   | 113   | 845      | 72      | 258           |   |  |
| RTOR Reduction (vph)     | 3          | 0    | 0     | 0        | 0       | 162           |   |  |
| Lane Group Flow (vph)    | 1368       | 0    | 113   | 845      | 72      | 96            |   |  |
| Turn Type                |            |      | Prot  |          |         | Perm          |   |  |
| Protected Phases         | 4          |      | 3     | 8        | 2       |               |   |  |
| Permitted Phases         |            |      |       |          |         | 2             |   |  |
| Actuated Green, G (s)    | 24.2       |      | 3.5   | 31.7     | 6.8     | 6.8           |   |  |
| Effective Green, g (s)   | 24.2       |      | 3.5   | 31.7     | 6.8     | 6.8           |   |  |
| Actuated g/C Ratio       | 0.52       |      | 0.08  | 0.68     | 0.15    | 0.15          |   |  |
| Clearance Time (s)       | 4.0        |      | 4.0   | 4.0      | 4.0     | 4.0           |   |  |
| Vehicle Extension (s)    | 3.0        |      | 3.0   | 3.0      | 3.0     | 3.0           |   |  |
| Lane Grp Cap (vph)       | 1833       |      | 133   | 2413     | 259     | 231           |   |  |
| v/s Ratio Prot           | c0.39      |      | c0.06 | 0.24     | 0.04    |               |   |  |
| v/s Ratio Perm           |            |      |       |          |         | c0.06         |   |  |
| v/c Ratio                | 0.75       |      | 0.85  | 0.35     | 0.28    | 0.41          |   |  |
| Uniform Delay, d1        | 8.7        |      | 21.2  | 3.1      | 17.7    | 18.0          |   |  |
| Progression Factor       | 1.00       |      | 1.00  | 1.00     | 1.00    | 1.00          |   |  |
| Incremental Delay, d2    | 1.7        |      | 36.8  | 0.1      | 0.6     | 1.2           |   |  |
| Delay (s)                | 10.4       |      | 58.1  | 3.2      | 18.3    | 19.3          |   |  |
| Level of Service         | В          |      | Е     | Α        | В       | В             |   |  |
| Approach Delay (s)       | 10.4       |      |       | 9.7      | 19.0    |               |   |  |
| Approach LOS             | В          |      |       | Α        | В       |               |   |  |
| Intersection Summary     |            |      |       |          |         |               |   |  |
| HCM Average Control D    |            |      | 11.2  | H        | ICM Lev | vel of Servic | е |  |
| HCM Volume to Capacit    | •          |      | 0.69  |          |         |               |   |  |
| Actuated Cycle Length (  |            |      | 46.5  |          |         | ost time (s)  |   |  |
| Intersection Capacity Ut | ilization  |      | 59.1% | IC       | CU Leve | el of Service |   |  |
| Analysis Period (min)    |            |      | 15    |          |         |               |   |  |
| c Critical Lane Group    |            |      |       |          |         |               |   |  |

| Movement         EBT         EBR         WBL         WBT         NBL         NBR           Lane Configurations         15         15         17         17         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         < |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Lane Configurations         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                           |  |
| Ideal Flow (vphpl)       1900       1900       1900       1900       1900       1900       1900         Total Lost time (s)       4.0       4.0       4.0       4.0       4.0         Lane Util. Factor       0.95       1.00       0.95       1.00       1.00         Frt       0.99       1.00       1.00       0.85         Flt Protected       1.00       0.95       1.00       0.95       1.00         Satd. Flow (prot)       3502       1770       3539       1770       1583         Flt Permitted       1.00       0.95       1.00       0.95       1.00         Satd. Flow (perm)       3502       1770       3539       1770       1583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Lane Util. Factor       0.95       1.00       0.95       1.00       1.00         Frt       0.99       1.00       1.00       1.00       0.85         Flt Protected       1.00       0.95       1.00       0.95       1.00         Satd. Flow (prot)       3502       1770       3539       1770       1583         Flt Permitted       1.00       0.95       1.00       0.95       1.00         Satd. Flow (perm)       3502       1770       3539       1770       1583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Frt       0.99       1.00       1.00       1.00       0.85         Flt Protected       1.00       0.95       1.00       0.95       1.00         Satd. Flow (prot)       3502       1770       3539       1770       1583         Flt Permitted       1.00       0.95       1.00       0.95       1.00         Satd. Flow (perm)       3502       1770       3539       1770       1583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Flt Protected       1.00       0.95       1.00       0.95       1.00         Satd. Flow (prot)       3502       1770       3539       1770       1583         Flt Permitted       1.00       0.95       1.00       0.95       1.00         Satd. Flow (perm)       3502       1770       3539       1770       1583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Satd. Flow (prot)       3502       1770       3539       1770       1583         Flt Permitted       1.00       0.95       1.00       0.95       1.00         Satd. Flow (perm)       3502       1770       3539       1770       1583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Flt Permitted       1.00       0.95       1.00       0.95       1.00         Satd. Flow (perm)       3502       1770       3539       1770       1583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Satd. Flow (perm) 3502 1770 3539 1770 1583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| u /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| (/-  / - -) 070 F0 040 4000 40 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Volume (vph) 670 50 340 1200 10 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Peak-hour factor, PHF 0.97 0.97 0.97 0.97 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Adj. Flow (vph) 691 52 351 1237 10 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| RTOR Reduction (vph) 9 0 0 0 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Lane Group Flow (vph) 734 0 351 1237 10 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Turn Type Prot Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Protected Phases 4 3 8 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Permitted Phases 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Actuated Green, G (s) 14.2 12.9 31.1 4.4 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Effective Green, g (s) 14.2 12.9 31.1 4.4 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Actuated g/C Ratio 0.33 0.30 0.71 0.10 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Clearance Time (s) 4.0 4.0 4.0 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Vehicle Extension (s) 3.0 3.0 3.0 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Lane Grp Cap (vph) 1143 525 2530 179 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| v/s Ratio Prot c0.21 c0.20 0.35 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| v/s Ratio Perm c0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| v/c Ratio 0.64 0.67 0.49 0.06 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Uniform Delay, d1 12.5 13.4 2.7 17.7 17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Progression Factor 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Incremental Delay, d2 1.2 3.2 0.1 0.1 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Delay (s) 13.7 16.6 2.9 17.8 17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Level of Service B B A B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Approach Delay (s) 13.7 5.9 17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Approach LOS B A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| HCM Average Control Delay 8.8 HCM Level of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| HCM Volume to Capacity ratio 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Actuated Cycle Length (s) 43.5 Sum of lost time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Intersection Capacity Utilization 52.3% ICU Level of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| c Critical Lane Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

|                          | -          | •    | •     | •        | •       | <b>/</b>      |          |  |
|--------------------------|------------|------|-------|----------|---------|---------------|----------|--|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL     | NBR           |          |  |
| Lane Configurations      | <b>↑</b> ↑ |      | ች     | <b>^</b> | *       | #             |          |  |
| Ideal Flow (vphpl)       | 1900       | 1900 | 1900  | 1900     | 1900    | 1900          |          |  |
| Total Lost time (s)      | 4.0        |      | 4.0   | 4.0      | 4.0     | 4.0           |          |  |
| Lane Util. Factor        | 0.95       |      | 1.00  | 0.95     | 1.00    | 1.00          |          |  |
| Frt                      | 1.00       |      | 1.00  | 1.00     | 1.00    | 0.85          |          |  |
| Flt Protected            | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00          |          |  |
| Satd. Flow (prot)        | 3527       |      | 1770  | 3539     | 1770    | 1583          |          |  |
| Flt Permitted            | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00          |          |  |
| Satd. Flow (perm)        | 3527       |      | 1770  | 3539     | 1770    | 1583          |          |  |
| Volume (vph)             | 1320       | 30   | 110   | 820      | 50      | 270           |          |  |
| Peak-hour factor, PHF    | 0.97       | 0.97 | 0.97  | 0.97     | 0.97    | 0.97          |          |  |
| Adj. Flow (vph)          | 1361       | 31   | 113   | 845      | 52      | 278           |          |  |
| RTOR Reduction (vph)     | 2          | 0    | 0     | 0        | 0       | 160           |          |  |
| Lane Group Flow (vph)    | 1390       | 0    | 113   | 845      | 52      | 118           |          |  |
| Turn Type                |            |      | Prot  |          |         | Perm          |          |  |
| Protected Phases         | 4          |      | 3     | 8        | 2       |               |          |  |
| Permitted Phases         |            |      |       |          |         | 2             |          |  |
| Actuated Green, G (s)    | 24.7       |      | 3.5   | 32.2     | 7.1     | 7.1           |          |  |
| Effective Green, g (s)   | 24.7       |      | 3.5   | 32.2     | 7.1     | 7.1           |          |  |
| Actuated g/C Ratio       | 0.52       |      | 0.07  | 0.68     | 0.15    | 0.15          |          |  |
| Clearance Time (s)       | 4.0        |      | 4.0   | 4.0      | 4.0     | 4.0           |          |  |
| Vehicle Extension (s)    | 3.0        |      | 3.0   | 3.0      | 3.0     | 3.0           |          |  |
| Lane Grp Cap (vph)       | 1842       |      | 131   | 2409     | 266     | 238           |          |  |
| v/s Ratio Prot           | c0.39      |      | c0.06 | 0.24     | 0.03    |               |          |  |
| v/s Ratio Perm           |            |      |       |          |         | c0.07         |          |  |
| v/c Ratio                | 0.75       |      | 0.86  | 0.35     | 0.20    | 0.50          |          |  |
| Uniform Delay, d1        | 8.9        |      | 21.7  | 3.2      | 17.6    | 18.5          |          |  |
| Progression Factor       | 1.00       |      | 1.00  | 1.00     | 1.00    | 1.00          |          |  |
| Incremental Delay, d2    | 1.8        |      | 40.5  | 0.1      | 0.4     | 1.6           |          |  |
| Delay (s)                | 10.7       |      | 62.1  | 3.3      | 18.0    | 20.1          |          |  |
| Level of Service         | В          |      | Е     | Α        | В       | С             |          |  |
| Approach Delay (s)       | 10.7       |      |       | 10.2     | 19.8    |               |          |  |
| Approach LOS             | В          |      |       | В        | В       |               |          |  |
| Intersection Summary     |            |      |       |          |         |               |          |  |
| HCM Average Control D    |            |      | 11.6  | H        | ICM Lev | vel of Servic | e        |  |
| HCM Volume to Capaci     |            |      | 0.71  |          |         |               |          |  |
| Actuated Cycle Length (  |            |      | 47.3  |          |         | ost time (s)  |          |  |
| Intersection Capacity Ut | ilization  |      | 60.8% | 10       | CU Leve | el of Service | <b>:</b> |  |
| Analysis Period (min)    |            |      | 15    |          |         |               |          |  |
| c Critical Lane Group    |            |      |       |          |         |               |          |  |

|                          | -          | •    | •     | ←        | •       | <b>/</b>       |    |
|--------------------------|------------|------|-------|----------|---------|----------------|----|
| Movement                 | EBT        | EBR  | WBL   | WBT      | NBL     | NBR            |    |
| Lane Configurations      | <b>↑</b> ↑ |      | ኻ     | <b>^</b> | *       | 7              |    |
| Ideal Flow (vphpl)       | 1900       | 1900 | 1900  | 1900     | 1900    | 1900           |    |
| Total Lost time (s)      | 4.0        |      | 4.0   | 4.0      | 4.0     | 4.0            |    |
| Lane Util. Factor        | 0.95       |      | 1.00  | 0.95     | 1.00    | 1.00           |    |
| Frt                      | 1.00       |      | 1.00  | 1.00     | 1.00    | 0.85           |    |
| Flt Protected            | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00           |    |
| Satd. Flow (prot)        | 3532       |      | 1770  | 3539     | 1770    | 1583           |    |
| Flt Permitted            | 1.00       |      | 0.95  | 1.00     | 0.95    | 1.00           |    |
| Satd. Flow (perm)        | 3532       |      | 1770  | 3539     | 1770    | 1583           |    |
| Volume (vph)             | 690        | 10   | 240   | 1190     | 10      | 70             |    |
| Peak-hour factor, PHF    | 0.97       | 0.97 | 0.97  | 0.97     | 0.97    | 0.97           |    |
| Adj. Flow (vph)          | 711        | 10   | 247   | 1227     | 10      | 72             |    |
| RTOR Reduction (vph)     | 1          | 0    | 0     | 0        | 0       | 59             |    |
| Lane Group Flow (vph)    | 720        | 0    | 247   | 1227     | 10      | 13             |    |
| Turn Type                |            |      | Prot  |          |         | Perm           |    |
| Protected Phases         | 4          |      | 3     | 8        | 2       |                |    |
| Permitted Phases         |            |      |       |          |         | 2              |    |
| Actuated Green, G (s)    | 14.7       |      | 8.6   | 27.3     | 7.8     | 7.8            |    |
| Effective Green, g (s)   | 14.7       |      | 8.6   | 27.3     | 7.8     | 7.8            |    |
| Actuated g/C Ratio       | 0.34       |      | 0.20  | 0.63     | 0.18    | 0.18           |    |
| Clearance Time (s)       | 4.0        |      | 4.0   | 4.0      | 4.0     | 4.0            |    |
| Vehicle Extension (s)    | 3.0        |      | 3.0   | 3.0      | 3.0     | 3.0            |    |
| Lane Grp Cap (vph)       | 1205       |      | 353   | 2242     | 320     | 286            |    |
| v/s Ratio Prot           | 0.20       |      | c0.14 | c0.35    | 0.01    |                |    |
| v/s Ratio Perm           |            |      |       |          |         | c0.01          |    |
| v/c Ratio                | 0.60       |      | 0.70  | 0.55     | 0.03    | 0.05           |    |
| Uniform Delay, d1        | 11.8       |      | 16.0  | 4.4      | 14.5    | 14.6           |    |
| Progression Factor       | 1.00       |      | 1.00  | 1.00     | 1.00    | 1.00           |    |
| Incremental Delay, d2    | 0.8        |      | 6.0   | 0.3      | 0.0     | 0.1            |    |
| Delay (s)                | 12.6       |      | 22.0  | 4.7      | 14.6    | 14.6           |    |
| Level of Service         | В          |      | С     | Α        | В       | В              |    |
| Approach Delay (s)       | 12.6       |      |       | 7.6      | 14.6    |                |    |
| Approach LOS             | В          |      |       | Α        | В       |                |    |
| Intersection Summary     |            |      |       |          |         |                |    |
| HCM Average Control D    |            |      | 9.4   | F        | ICM Lev | vel of Service | ce |
| HCM Volume to Capaci     |            |      | 0.45  |          |         |                |    |
| Actuated Cycle Length (  | ,          |      | 43.1  |          |         | ost time (s)   |    |
| Intersection Capacity Ut | ilization  |      | 46.0% | 10       | CU Leve | el of Service  | 9  |
| Analysis Period (min)    |            |      | 15    |          |         |                |    |
| c Critical Lane Group    |            |      |       |          |         |                |    |

|                          | ۶         | <b>→</b>    | •     | •     | <b>←</b> | •         | •      | †    | <i>&gt;</i> | <b>/</b> | ţ     | 4    |
|--------------------------|-----------|-------------|-------|-------|----------|-----------|--------|------|-------------|----------|-------|------|
| Movement                 | EBL       | EBT         | EBR   | WBL   | WBT      | WBR       | NBL    | NBT  | NBR         | SBL      | SBT   | SBR  |
| Lane Configurations      | 7         | <b>∱</b> î≽ |       | 7     | <b>^</b> | 7         | 7      | f)   |             | 7        | 1>    |      |
| Ideal Flow (vphpl)       | 1900      | 1900        | 1900  | 1900  | 1900     | 1900      | 1900   | 1900 | 1900        | 1900     | 1900  | 1900 |
| Total Lost time (s)      | 4.0       | 4.0         |       | 4.0   | 4.0      | 4.0       | 4.0    | 4.0  |             | 4.0      | 4.0   |      |
| Lane Util. Factor        | 1.00      | 0.95        |       | 1.00  | 0.95     | 1.00      | 1.00   | 1.00 |             | 1.00     | 1.00  |      |
| Frt                      | 1.00      | 0.99        |       | 1.00  | 1.00     | 0.85      | 1.00   | 0.95 |             | 1.00     | 0.93  |      |
| Flt Protected            | 0.95      | 1.00        |       | 0.95  | 1.00     | 1.00      | 0.95   | 1.00 |             | 0.95     | 1.00  |      |
| Satd. Flow (prot)        | 1770      | 3495        |       | 1770  | 3539     | 1583      | 1770   | 1776 |             | 1770     | 1728  |      |
| Flt Permitted            | 0.95      | 1.00        |       | 0.95  | 1.00     | 1.00      | 0.95   | 1.00 |             | 0.95     | 1.00  |      |
| Satd. Flow (perm)        | 1770      | 3495        |       | 1770  | 3539     | 1583      | 1770   | 1776 |             | 1770     | 1728  |      |
| Volume (vph)             | 190       | 660         | 60    | 160   | 860      | 290       | 40     | 220  | 100         | 520      | 480   | 450  |
| Peak-hour factor, PHF    | 0.97      | 0.97        | 0.97  | 0.97  | 0.97     | 0.97      | 0.97   | 0.97 | 0.97        | 0.97     | 0.97  | 0.97 |
| Adj. Flow (vph)          | 196       | 680         | 62    | 165   | 887      | 299       | 41     | 227  | 103         | 536      | 495   | 464  |
| RTOR Reduction (vph)     | 0         | 5           | 0     | 0     | 0        | 195       | 0      | 12   | 0           | 0        | 26    | 0    |
| Lane Group Flow (vph)    | 196       | 737         | 0     | 165   | 887      | 104       | 41     | 318  | 0           | 536      | 933   | 0    |
| Turn Type                | Prot      |             |       | Prot  |          | Perm      | Prot   |      |             | Prot     |       |      |
| Protected Phases         | 7         | 4           |       | 3     | 8        |           | 5      | 2    |             | 1        | 6     |      |
| Permitted Phases         |           |             |       |       |          | 8         |        |      |             |          |       |      |
| Actuated Green, G (s)    | 14.0      | 31.0        |       | 13.0  | 30.0     | 30.0      | 3.2    | 29.3 |             | 39.9     | 66.0  |      |
| Effective Green, g (s)   | 14.0      | 31.0        |       | 13.0  | 30.0     | 30.0      | 3.2    | 29.3 |             | 39.9     | 66.0  |      |
| Actuated g/C Ratio       | 0.11      | 0.24        |       | 0.10  | 0.23     | 0.23      | 0.02   | 0.23 |             | 0.31     | 0.51  |      |
| Clearance Time (s)       | 4.0       | 4.0         |       | 4.0   | 4.0      | 4.0       | 4.0    | 4.0  |             | 4.0      | 4.0   |      |
| Vehicle Extension (s)    | 3.0       | 3.0         |       | 3.0   | 3.0      | 3.0       | 3.0    | 3.0  |             | 3.0      | 3.0   |      |
| Lane Grp Cap (vph)       | 192       | 839         |       | 178   | 822      | 368       | 44     | 403  |             | 547      | 883   |      |
| v/s Ratio Prot           | c0.11     | 0.21        |       | 0.09  | c0.25    |           | 0.02   | 0.18 |             | c0.30    | c0.54 |      |
| v/s Ratio Perm           |           |             |       |       |          | 0.07      |        |      |             |          |       |      |
| v/c Ratio                | 1.02      | 0.88        |       | 0.93  | 1.08     | 0.28      | 0.93   | 0.79 |             | 0.98     | 1.06  |      |
| Uniform Delay, d1        | 57.6      | 47.3        |       | 57.6  | 49.6     | 40.8      | 62.9   | 47.0 |             | 44.3     | 31.6  |      |
| Progression Factor       | 1.00      | 1.00        |       | 1.00  | 1.00     | 1.00      | 1.00   | 1.00 |             | 1.00     | 1.00  |      |
| Incremental Delay, d2    | 70.5      | 10.3        |       | 46.4  | 54.9     | 0.4       | 109.0  | 9.8  |             | 32.9     | 46.4  |      |
| Delay (s)                | 128.1     | 57.6        |       | 104.0 | 104.5    | 41.2      | 171.9  | 56.9 |             | 77.2     | 78.0  |      |
| Level of Service         | F         | Е           |       | F     | F        | D         | F      | Е    |             | Е        | Е     |      |
| Approach Delay (s)       |           | 72.3        |       |       | 90.5     |           |        | 69.6 |             |          | 77.7  |      |
| Approach LOS             |           | Е           |       |       | F        |           |        | Е    |             |          | Е     |      |
| Intersection Summary     |           |             |       |       |          |           |        |      |             |          |       |      |
| HCM Average Control D    |           |             | 79.9  | F     | ICM Le   | vel of Se | ervice |      | Е           |          |       |      |
| HCM Volume to Capacit    |           |             | 1.07  |       |          |           |        |      |             |          |       |      |
| Actuated Cycle Length (  |           |             | 129.2 |       |          | ost time  |        |      | 16.0        |          |       |      |
| Intersection Capacity Ut | ilization | 1           | 03.7% | 10    | CU Leve  | el of Sei | vice   |      | G           |          |       |      |
| Analysis Period (min)    |           |             | 15    |       |          |           |        |      |             |          |       |      |
| c Critical Lane Group    |           |             |       |       |          |           |        |      |             |          |       |      |

|                           | ۶         | <b>→</b> | •     | •    | <b>←</b> | •         | 4    | <b>†</b> | <b>/</b> | <b>\</b> | <b>↓</b> | ✓    |
|---------------------------|-----------|----------|-------|------|----------|-----------|------|----------|----------|----------|----------|------|
| Movement                  | EBL       | EBT      | EBR   | WBL  | WBT      | WBR       | NBL  | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations       |           | 4        |       |      | 4        |           |      | 4        |          |          | ર્ન      | 7    |
| Sign Control              |           | Stop     |       |      | Stop     |           |      | Stop     |          |          | Stop     |      |
| Volume (vph)              | 230       | 10       | 40    | 30   | 10       | 10        | 10   | 70       | 10       | 10       | 390      | 350  |
| Peak Hour Factor          | 0.97      | 0.97     | 0.97  | 0.97 | 0.97     | 0.97      | 0.97 | 0.97     | 0.97     | 0.97     | 0.97     | 0.97 |
| Hourly flow rate (vph)    | 237       | 10       | 41    | 31   | 10       | 10        | 10   | 72       | 10       | 10       | 402      | 361  |
| Direction, Lane #         | EB 1      | WB 1     | NB 1  | SB 1 | SB 2     |           |      |          |          |          |          |      |
| Volume Total (vph)        | 289       | 52       | 93    | 412  | 361      |           |      |          |          |          |          |      |
| Volume Left (vph)         | 237       | 31       | 10    | 10   | 0        |           |      |          |          |          |          |      |
| Volume Right (vph)        | 41        | 10       | 10    | 0    | 361      |           |      |          |          |          |          |      |
| Hadj (s)                  | 0.11      | 0.03     | -0.01 | 0.05 | -0.67    |           |      |          |          |          |          |      |
| Departure Headway (s)     | 5.9       | 6.4      | 6.0   | 5.8  | 5.0      |           |      |          |          |          |          |      |
| Degree Utilization, x     | 0.47      | 0.09     | 0.15  | 0.66 | 0.51     |           |      |          |          |          |          |      |
| Capacity (veh/h)          | 582       | 509      | 557   | 611  | 700      |           |      |          |          |          |          |      |
| Control Delay (s)         | 14.1      | 10.0     | 10.1  | 18.0 | 11.9     |           |      |          |          |          |          |      |
| Approach Delay (s)        | 14.1      | 10.0     | 10.1  | 15.1 |          |           |      |          |          |          |          |      |
| Approach LOS              | В         | В        | В     | С    |          |           |      |          |          |          |          |      |
| Intersection Summary      |           |          |       |      |          |           |      |          |          |          |          |      |
| Delay                     |           |          | 14.3  |      |          |           |      |          |          |          |          |      |
| HCM Level of Service      |           |          | В     |      |          |           |      |          |          |          |          |      |
| Intersection Capacity Uti | ilization |          | 50.5% | l(   | CU Leve  | el of Ser | vice |          | Α        |          |          |      |
| Analysis Period (min)     |           |          | 15    |      |          |           |      |          |          |          |          |      |
|                           |           |          |       |      |          |           |      |          |          |          |          |      |

|                          | -           | •    | •     | ←        | •       | <b>/</b>      |    |  |
|--------------------------|-------------|------|-------|----------|---------|---------------|----|--|
| Movement                 | EBT         | EBR  | WBL   | WBT      | NBL     | NBR           |    |  |
| Lane Configurations      | <b>†</b> 1> |      | ች     | <b>^</b> | *       | #             |    |  |
| Ideal Flow (vphpl)       | 1900        | 1900 | 1900  | 1900     | 1900    | 1900          |    |  |
| Total Lost time (s)      | 4.0         |      | 4.0   | 4.0      | 4.0     | 4.0           |    |  |
| Lane Util. Factor        | 0.95        |      | 1.00  | 0.95     | 1.00    | 1.00          |    |  |
| Frt                      | 1.00        |      | 1.00  | 1.00     | 1.00    | 0.85          |    |  |
| Flt Protected            | 1.00        |      | 0.95  | 1.00     | 0.95    | 1.00          |    |  |
| Satd. Flow (prot)        | 3535        |      | 1770  | 3539     | 1770    | 1583          |    |  |
| Flt Permitted            | 1.00        |      | 0.95  | 1.00     | 0.95    | 1.00          |    |  |
| Satd. Flow (perm)        | 3535        |      | 1770  | 3539     | 1770    | 1583          |    |  |
| Volume (vph)             | 1210        | 10   | 80    | 830      | 10      | 260           |    |  |
| Peak-hour factor, PHF    | 0.97        | 0.97 | 0.97  | 0.97     | 0.97    | 0.97          |    |  |
| Adj. Flow (vph)          | 1247        | 10   | 82    | 856      | 10      | 268           |    |  |
| RTOR Reduction (vph)     | 1           | 0    | 0     | 0        | 0       | 155           |    |  |
| Lane Group Flow (vph)    | 1256        | 0    | 82    | 856      | 10      | 113           |    |  |
| Turn Type                |             |      | Prot  |          |         | Perm          |    |  |
| Protected Phases         | 4           |      | 3     | 8        | 2       |               |    |  |
| Permitted Phases         |             |      |       |          |         | 2             |    |  |
| Actuated Green, G (s)    | 21.1        |      | 2.4   | 27.5     | 9.0     | 9.0           |    |  |
| Effective Green, g (s)   | 21.1        |      | 2.4   | 27.5     | 9.0     | 9.0           |    |  |
| Actuated g/C Ratio       | 0.47        |      | 0.05  | 0.62     | 0.20    | 0.20          |    |  |
| Clearance Time (s)       | 4.0         |      | 4.0   | 4.0      | 4.0     | 4.0           |    |  |
| Vehicle Extension (s)    | 3.0         |      | 3.0   | 3.0      | 3.0     | 3.0           |    |  |
| Lane Grp Cap (vph)       | 1676        |      | 95    | 2187     | 358     | 320           |    |  |
| v/s Ratio Prot           | c0.36       |      | c0.05 | 0.24     | 0.01    |               |    |  |
| v/s Ratio Perm           |             |      |       |          |         | c0.07         |    |  |
| v/c Ratio                | 0.75        |      | 0.86  | 0.39     | 0.03    | 0.35          |    |  |
| Uniform Delay, d1        | 9.5         |      | 20.9  | 4.3      | 14.2    | 15.3          |    |  |
| Progression Factor       | 1.00        |      | 1.00  | 1.00     | 1.00    | 1.00          |    |  |
| Incremental Delay, d2    | 1.9         |      | 50.8  | 0.1      | 0.0     | 0.7           |    |  |
| Delay (s)                | 11.4        |      | 71.7  | 4.4      | 14.3    | 15.9          |    |  |
| Level of Service         | В           |      | Е     | Α        | В       | В             |    |  |
| Approach Delay (s)       | 11.4        |      |       | 10.3     | 15.9    |               |    |  |
| Approach LOS             | В           |      |       | В        | В       |               |    |  |
| Intersection Summary     |             |      | =     |          |         |               |    |  |
| HCM Average Control D    |             |      | 11.5  |          | ICM Lev | vel of Servi  | ce |  |
| HCM Volume to Capaci     | •           |      | 0.65  |          |         |               |    |  |
| Actuated Cycle Length (  |             |      | 44.5  |          |         | ost time (s)  |    |  |
| Intersection Capacity Ut | ilization   |      | 56.5% | 10       | CU Leve | el of Service | Э  |  |
| Analysis Period (min)    |             |      | 15    |          |         |               |    |  |
| c Critical Lane Group    |             |      |       |          |         |               |    |  |

|                              | ۶         | <b>→</b>   | •     | •     | +        | •         | 4      | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>+</b> | 4    |
|------------------------------|-----------|------------|-------|-------|----------|-----------|--------|----------|-------------|----------|----------|------|
| Movement                     | EBL       | EBT        | EBR   | WBL   | WBT      | WBR       | NBL    | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations          | 7         | <b>∱</b> ∱ |       | Ţ     | <b>^</b> | 7         | *      | f)       |             | 7        | f)       |      |
| Ideal Flow (vphpl)           | 1900      | 1900       | 1900  | 1900  | 1900     | 1900      | 1900   | 1900     | 1900        | 1900     | 1900     | 1900 |
| Total Lost time (s)          | 4.0       | 4.0        |       | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      |             | 4.0      | 4.0      |      |
| Lane Util. Factor            | 1.00      | 0.95       |       | 1.00  | 0.95     | 1.00      | 1.00   | 1.00     |             | 1.00     | 1.00     |      |
| Frt                          | 1.00      | 0.99       |       | 1.00  | 1.00     | 0.85      | 1.00   | 0.95     |             | 1.00     | 0.94     |      |
| Flt Protected                | 0.95      | 1.00       |       | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     |             | 0.95     | 1.00     |      |
| Satd. Flow (prot)            | 1770      | 3513       |       | 1770  | 3539     | 1583      | 1770   | 1771     |             | 1770     | 1743     |      |
| Flt Permitted                | 0.95      | 1.00       |       | 0.95  | 1.00     | 1.00      | 0.95   | 1.00     |             | 0.95     | 1.00     |      |
| Satd. Flow (perm)            | 1770      | 3513       |       | 1770  | 3539     | 1583      | 1770   | 1771     |             | 1770     | 1743     |      |
| Volume (vph)                 | 420       | 980        | 50    | 120   | 720      | 540       | 60     | 390      | 190         | 380      | 320      | 240  |
| Peak-hour factor, PHF        | 0.97      | 0.97       | 0.97  | 0.97  | 0.97     | 0.97      | 0.97   | 0.97     | 0.97        | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)              | 433       | 1010       | 52    | 124   | 742      | 557       | 62     | 402      | 196         | 392      | 330      | 247  |
| RTOR Reduction (vph)         | 0         | 3          | 0     | 0     | 0        | 306       | 0      | 13       | 0           | 0        | 20       | 0    |
| Lane Group Flow (vph)        | 433       | 1059       | 0     | 124   | 742      | 251       | 62     | 585      | 0           | 392      | 557      | 0    |
| Turn Type                    | Prot      |            |       | Prot  |          | Perm      | Prot   |          |             | Prot     |          |      |
| Protected Phases             | 7         | 4          |       | 3     | 8        |           | 5      | 2        |             | 1        | 6        |      |
| Permitted Phases             |           |            |       |       |          | 8         |        |          |             |          |          |      |
| Actuated Green, G (s)        | 27.0      | 41.0       |       | 10.0  | 24.0     | 24.0      | 5.6    | 39.8     |             | 24.0     | 58.2     |      |
| Effective Green, g (s)       | 27.0      | 41.0       |       | 10.0  | 24.0     | 24.0      | 5.6    | 39.8     |             | 24.0     | 58.2     |      |
| Actuated g/C Ratio           | 0.21      | 0.31       |       | 0.08  | 0.18     | 0.18      | 0.04   | 0.30     |             | 0.18     | 0.44     |      |
| Clearance Time (s)           | 4.0       | 4.0        |       | 4.0   | 4.0      | 4.0       | 4.0    | 4.0      |             | 4.0      | 4.0      |      |
| Vehicle Extension (s)        | 3.0       | 3.0        |       | 3.0   | 3.0      | 3.0       | 3.0    | 3.0      |             | 3.0      | 3.0      |      |
| Lane Grp Cap (vph)           | 365       | 1101       |       | 135   | 649      | 290       | 76     | 539      |             | 325      | 776      |      |
| v/s Ratio Prot               | c0.24     | 0.30       |       | 0.07  | c0.21    |           | 0.04   | c0.33    |             | c0.22    | 0.32     |      |
| v/s Ratio Perm               |           |            |       |       |          | 0.16      |        |          |             |          |          |      |
| v/c Ratio                    | 1.19      | 0.96       |       | 0.92  | 1.14     | 0.86      | 0.82   | 1.08     |             | 1.21     | 0.72     |      |
| Uniform Delay, d1            | 51.9      | 44.1       |       | 60.0  | 53.4     | 51.8      | 62.1   | 45.5     |             | 53.4     | 29.6     |      |
| Progression Factor           | 1.00      | 1.00       |       | 1.00  | 1.00     | 1.00      | 1.00   | 1.00     |             | 1.00     | 1.00     |      |
| Incremental Delay, d2        | 108.2     | 18.6       |       | 52.8  | 81.9     | 22.5      | 46.7   | 63.8     |             | 118.2    | 3.2      |      |
| Delay (s)                    | 160.1     | 62.7       |       | 112.8 | 135.3    | 74.3      | 108.8  | 109.3    |             | 171.6    | 32.8     |      |
| Level of Service             | F         | E          |       | F     | F        | E         | F      | F        |             | F        | С        |      |
| Approach Delay (s)           |           | 90.9       |       |       | 109.5    |           |        | 109.2    |             |          | 88.9     |      |
| Approach LOS                 |           | F          |       |       | F        |           |        | F        |             |          | F        |      |
| Intersection Summary         |           |            |       |       |          |           |        |          |             |          |          |      |
| HCM Average Control D        |           |            | 99.0  | F     | ICM Le   | vel of Se | ervice |          | F           |          |          |      |
| <b>HCM Volume to Capacit</b> |           |            | 1.15  |       |          |           |        |          |             |          |          |      |
| Actuated Cycle Length (      |           |            | 130.8 |       |          | ost time  |        |          | 16.0        |          |          |      |
| Intersection Capacity Ut     | ilization | 1          | 09.7% | 10    | CU Leve  | el of Sei | vice   |          | Н           |          |          |      |
| Analysis Period (min)        |           |            | 15    |       |          |           |        |          |             |          |          |      |
| c Critical Lane Group        |           |            |       |       |          |           |        |          |             |          |          |      |

|                           | ۶        | <b>→</b> | •     | •    | <b>←</b> | •          | 4    | <b>†</b> | /    | <b>\</b> | <b>↓</b> | 4    |
|---------------------------|----------|----------|-------|------|----------|------------|------|----------|------|----------|----------|------|
| Movement                  | EBL      | EBT      | EBR   | WBL  | WBT      | WBR        | NBL  | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations       |          | 4        |       |      | 4        |            |      | 4        |      |          | ર્ન      | 7    |
| Sign Control              |          | Stop     |       |      | Stop     |            |      | Stop     |      |          | Stop     |      |
| Volume (vph)              | 320      | 10       | 10    | 10   | 10       | 10         | 40   | 350      | 30   | 10       | 160      | 300  |
| Peak Hour Factor          | 0.97     | 0.97     | 0.97  | 0.97 | 0.97     | 0.97       | 0.97 | 0.97     | 0.97 | 0.97     | 0.97     | 0.97 |
| Hourly flow rate (vph)    | 330      | 10       | 10    | 10   | 10       | 10         | 41   | 361      | 31   | 10       | 165      | 309  |
| Direction, Lane #         | EB 1     | WB 1     | NB 1  | SB 1 | SB 2     |            |      |          |      |          |          |      |
| Volume Total (vph)        | 351      | 31       | 433   | 175  | 309      |            |      |          |      |          |          |      |
| Volume Left (vph)         | 330      | 10       | 41    | 10   | 0        |            |      |          |      |          |          |      |
| Volume Right (vph)        | 10       | 10       | 31    | 0    | 309      |            |      |          |      |          |          |      |
| Hadj (s)                  | 0.20     | -0.10    | 0.01  | 0.06 | -0.67    |            |      |          |      |          |          |      |
| Departure Headway (s)     | 6.6      | 7.4      | 6.1   | 6.7  | 5.9      |            |      |          |      |          |          |      |
| Degree Utilization, x     | 0.64     | 0.06     | 0.74  | 0.33 | 0.51     |            |      |          |      |          |          |      |
| Capacity (veh/h)          | 513      | 404      | 569   | 516  | 581      |            |      |          |      |          |          |      |
| Control Delay (s)         | 20.6     | 10.9     | 24.4  | 11.7 | 13.8     |            |      |          |      |          |          |      |
| Approach Delay (s)        | 20.6     | 10.9     | 24.4  | 13.0 |          |            |      |          |      |          |          |      |
| Approach LOS              | С        | В        | С     | В    |          |            |      |          |      |          |          |      |
| Intersection Summary      |          |          |       |      |          |            |      |          |      |          |          |      |
| Delay                     |          |          | 18.8  |      |          |            |      |          |      |          |          |      |
| HCM Level of Service      |          |          | С     |      |          |            |      |          |      |          |          |      |
| Intersection Capacity Uti | lization |          | 67.0% | [0   | CU Leve  | el of Serv | rice |          | С    |          |          |      |
| Analysis Period (min)     |          |          | 15    |      |          |            |      |          |      |          |          |      |
|                           |          |          |       |      |          |            |      |          |      |          |          |      |

HCM 2000 Basic Freeway Segments Capacity Analysis Jurisdiction Sacramento County
Analysis Year C+ Pref Alt with Mitigation
Analyst F&P

Agency or Company Caltrans
Date 10/4/2010
Project Description Elverta Specific Plan

| Genera | l Information |                              |             | Flow Rate C | alculation | n     |           |          |         |        |      |                |     |          |                |                         | Speed Calcul | lation | Results    |          |
|--------|---------------|------------------------------|-------------|-------------|------------|-------|-----------|----------|---------|--------|------|----------------|-----|----------|----------------|-------------------------|--------------|--------|------------|----------|
|        | Freeway/      |                              | Analysis    | Volume      |            |       | -         | HOV Lane |         | Truck/ |      |                |     |          |                | Flow Rate               | Measured     | S      | Density, D | Level of |
|        | Direction     | From/To                      | Time Period | (vph)       | PHF        | Lanes | HOV Lane? | Volume   | Terrain | Bus %  | RV % | E <sub>T</sub> | ER  | $f_{HV}$ | f <sub>P</sub> | v <sub>p</sub> (pcphpl) | FFS (mph)    | (mph)  | (pcplpm)   | Service  |
| 1      | SR-99 SB      | Sankey Road to Riego Road    | AM          | 4,630       | 0.97       | 3     | No        |          | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 1,647                   | 65.0         | 61.9   | 26.6       | D        |
| 2      | SR 99 SB      | Riego Road to Elverta Road   | AM          | 5,010       | 0.97       | 3     | No        |          | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 1,782                   | 65.0         | 61.5   | 29.0       | D        |
| 3      | SR 99 SB      | Elverta Road to Elkhorn Blvd | AM          | 4,550       | 0.97       | 3     | No        |          | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 1,618                   | 65.0         | 62.0   | 26.1       | D        |
| 4      | SR 99 SB      | Elkhorn Blvd to I-5          | AM          | 5,460       | 0.97       | 4     | Yes       | 874      | Level   | 7%     | 0%   | 1.5            | 1.2 | 0.966    | 1.00           | 1,631                   | 65.0         | 62.0   | 26.3       | D        |
| 5      | SR 99 NB      | I-5 to Elkhorn Blvd          | AM          | 2,930       | 0.97       | 4     | Yes       | 791      | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 820                     | 65.0         | 62.0   | 13.2       | В        |
| 6      | SR 99 NB      | Elkhorn Blvd to Elverta Road | AM          | 2,530       | 0.97       | 3     | No        |          | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 969                     | 65.0         | 62.0   | 15.6       | В        |
| 7      | SR 99 NB      | Elverta Road to Riego Road   | AM          | 2,320       | 0.97       | 3     | No        |          | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 889                     | 65.0         | 62.0   | 14.3       | В        |
| 8      | SR 99 NB      | Riego Road to Sankey Road    | AM          | 1,720       | 0.97       | 3     | No        |          | Level   | 23%    | 0%   | 1.5            | 1.2 | 0.897    | 1.00           | 659                     | 65.0         | 62.0   | 10.6       | Α        |
| 1      | SR-99 SB      | Sankey Road to Riego Road    | PM          | 2,410       | 0.97       | 3     | No        |          | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 849                     | 65.0         | 62.0   | 13.7       | В        |
| 2      | SR 99 SB      | Riego Road to Elverta Road   | PM          | 3,170       | 0.97       | 3     | No        |          | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 1,117                   | 65.0         | 62.0   | 18.0       | С        |
| 3      | SR 99 SB      | Elverta Road to Elkhorn Blvd | PM          | 3,360       | 0.97       | 3     | No        |          | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 1,184                   | 65.0         | 62.0   | 19.1       | С        |
| 4      | SR 99 SB      | Elkhorn Blvd to I-5          | PM          | 3,970       | 0.97       | 4     | Yes       | 635      | Level   | 5%     | 0%   | 1.5            | 1.2 | 0.976    | 1.00           | 1,175                   | 65.0         | 62.0   | 18.9       | С        |
| 5      | SR 99 NB      | I-5 to Elkhorn Blvd          | PM          | 6,100       | 0.97       | 4     | Yes       | 1647     | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 1,630                   | 65.0         | 62.0   | 26.3       | D        |
| 6      | SR 99 NB      | Elkhorn Blvd to Elverta Road | PM          | 4,980       | 0.97       | 3     | No        |          | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 1,823                   | 65.0         | 61.3   | 29.8       | D        |
| 7      | SR 99 NB      | Elverta Road to Riego Road   | PM          | 5,160       | 0.97       | 3     | No        |          | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 1,888                   | 65.0         | 60.7   | 31.1       | D        |
| 8      | SR 99 NB      | Riego Road to Sankey Road    | PM          | 4,320       | 0.97       | 3     | No        |          | Level   | 13%    | 0%   | 1.5            | 1.2 | 0.939    | 1.00           | 1,581                   | 65.0         | 62.0   | 25.5       | С        |
|        |               | •                            |             |             |            |       |           |          |         |        |      |                |     |          |                |                         |              |        |            |          |

Page 1 of 13 11/23/2010 Fehr & Peers

HCM 2000 Merge Ramp Junctions Capacity Analysis

SR 99 NB Elverta Road Slip On

Jurisdiction Sacramento County

Analysis Year C+ Pref Alt with Mitigation

Analyst F&P

65.0

PM

Agency or Company Caltrans
Date 40455.00
Project Description Elverta Specific Plan

13.0%

0.0%

1.5 1.20

0.94

1.00

5,610

5,610

General Information Freeway Data Freeway Volume Adjustment Effective Freeway/ Analysis  $S_{FF}$ ٧ Truck/ Flow Rate Flow Rate  $E_T$   $E_R$  $f_P$ v<sub>p</sub> (pcph) v<sub>p</sub> (pcph) Direction On-ramp Time Period Lanes (mph) (vph) PHF Terrain Bus % RV%  $f_{HV}$ SR-99 SB Elverta Road Loop On AM 65.0 4,150 0.97 Level 7% 0% 1.5 1.20 0.966 1.00 4,428 4,428 3 M-2 SR 99 SB Elverta Road Slip On AM 3 65.0 4,520 0.97 7% 0% 1.5 1.20 0.966 1.00 4,823 4,823 Level SR 99 NB Elverta Road Loop On 23.0% 1,930 2,219 2,219 AM 3 65.0 0.97 Level 0.0% 1.5 1.20 0.90 1.00 SR 99 NB Elverta Road Slip On AM 3 65.0 2.080 0.97 Level 23.0% 0.0% 1.5 1.20 0.90 1.00 2,391 2,391 SR-99 SB Elverta Road Loop On PM 3 65.0 2,890 0.97 Level 5.0% 0.0% 1.5 1.20 0.98 1.00 3,054 3,054 SR 99 SB Elverta Road Slip On РМ 3 65.0 3,230 0.97 5.0% 1.5 1.20 0.98 3,413 3,413 Level 0.0% 1.00 SR 99 NB Elverta Road Loop On M-3 PM3 65.0 4,440 0.97 13.0% 0.0% 1.5 1.20 0.94 1.00 4,875 4,875 Level

0.97

Level

5,110

HCM 2000 Merge Ramp Junctions Capacity Analysis

General Information On-Ramp Data On-Ramp Volume Adjustment Freeway/  $S_{\text{FR}}$  $V_R$ Accel Lane (ft) Truck/ Flow Rate  $\mathsf{L}_{\mathsf{Aeff}}$ v<sub>p</sub> (pcph)  $E_R$ Direction On-ramp Type Lanes (mph) (vph)  $L_{A1}$  $L_{A2}$ PHF Terrain Bus % RV % Eτ  $f_{HV}$ 250 SR-99 SB Elverta Road Loop On Right 25.0 370 250 0.97 Level 7% 0% 1.5 1.2 0.966 1.00 395 M-2 SR 99 SB Elverta Road Slip On Right 1 45.0 30 250 250 0.97 Level 7% 0% 1.5 1.2 0.966 1.00 32 SR 99 NB Elverta Road Loop On Right 25.0 150 250 250 23.0% 1.5 1.2 172 1 0.97 Level 0.0% 0.90 1.00 SR 99 NB Elverta Road Slip On Right 1 45.0 240 250 250 0.97 Level 23.0% 0.0% 1.5 1.2 0.90 1.00 276 SR-99 SB Elverta Road Loop On 250 1.5 1.2 Right 1 25.0 340 250 0.97 Level 5.0% 0.0% 0.98 1.00 359 SR 99 SB Elverta Road Slip On Right 45.0 130 250 250 0.97 5.0% 0.0% 1.5 1.2 0.98 1.00 137 Level SR 99 NB Elverta Road Loop On Right 1 25.0 670 250 250 0.97 Level 13.0% 0.0% 1.5 1.2 0.94 1.00 736 SR 99 NB Elverta Road Slip On 13.0% Right 45.0 50 250 250 0.97 Level 0.0% 1.5 1.2 0.94 1.00 55

HCM 2000 Merge Ramp Junctions Capacity Analysis

General Information

v 12 Estimation

|     | Freeway/  |                      | L    | EQ   | P <sub>FM</sub> | Equation | ns |          | V <sub>12</sub> |
|-----|-----------|----------------------|------|------|-----------------|----------|----|----------|-----------------|
|     | Direction | On-ramp              | 25-2 | 25-3 | 1               | 2        | 3  | $P_{FM}$ | (pcph)          |
| M-1 | SR-99 SB  | Elverta Road Loop On |      |      | 0.585           |          |    | 0.585    | 2,588           |
| M-2 | SR 99 SB  | Elverta Road Slip On |      |      | 0.585           |          |    | 0.585    | 2,819           |
| M-3 | SR 99 NB  | Elverta Road Loop On |      |      | 0.585           |          |    | 0.585    | 1,297           |
| M-4 | SR 99 NB  | Elverta Road Slip On |      |      | 0.585           |          |    | 0.585    | 1,397           |
| M-1 | SR-99 SB  | Elverta Road Loop On |      |      | 0.585           |          |    | 0.585    | 1,785           |
| M-2 | SR 99 SB  | Elverta Road Slip On |      |      | 0.585           |          |    | 0.585    | 1,995           |
| M-3 | SR 99 NB  | Elverta Road Loop On |      |      | 0.585           |          |    | 0.585    | 2,849           |
| M-4 | SR 99 NB  | Elverta Road Slip On |      |      | 0.585           |          |    | 0.585    | 3,279           |

**HCM 2000 Merge Ramp Junctions Capacity Analysis** 

SR 99 NB Elverta Road Loop On

SR 99 NB Elverta Road Slip On

General Information Capacity Checks Freeway/  $V_{\text{Fi}}$  $Max v_{Fi}$  $\nu_{\text{FO}}$ Max v<sub>FO</sub>  $v_3, v_{av34}$  $V_3$ ,  $V_{av34}$  $V_3$ ,  $V_{av34}$  $V_{12a}$  $v_{R12a}$  $Max \ v_{R12a}$  $>1.5*v_{12}/2?$ Direction On-ramp (pcph) (pcph) LOS F? (pcph) (pcph) LOS F? (pcphpl) > 2,700? (pcph) (pcph) (pcph) LOS F? SR-99 SB Elverta Road Loop On 4,428 7,050 No 4,823 7,050 No 1,840 No No 2,588 2,983 4,600 No M-2 SR 99 SB Elverta Road Slip On 4,823 7,050 No 4,855 7,050 No 2,004 No No 2,819 2,851 4,600 No M-3 SR 99 NB Elverta Road Loop On 2,219 7,200 No 7,200 922 No 1,297 4,600 2,391 No No 1,469 No SR 99 NB Elverta Road Slip On 2,391 7,200 No 2,667 7,200 No 993 No No 1,397 1,673 4,600 No SR-99 SB Elverta Road Loop On 3,054 7,200 No 3,413 7,200 No 1,269 No No 1,785 2,144 4,600 No SR 99 SB Elverta Road Slip On

7,200

7,200

7,200

No

No

No

1,418

2,025

2,331

No

No

No

No

No

No

1,995

2,849

3,279

2,132

3,585

3,334

4,600

4,600

4,600

No

No

No

3,551

5,610

5,665

3,413

4,875

5,610

7,200

7,200

7,200

No

No

No

HCM 2000 Merge Ramp Junctions Capacity Analysis

| Gener | al Informatio | n                    |                |                    |        | Results    |          | Speed Est | timation             |                      |           |
|-------|---------------|----------------------|----------------|--------------------|--------|------------|----------|-----------|----------------------|----------------------|-----------|
|       | Freeway/      |                      | v <sub>R</sub> | Max v <sub>R</sub> |        | Density, D | Level of | Int. Var. | Inf. Area            | Out Lns.             | All vehs. |
|       | Direction     | On-ramp              | (pcph)         | (pcph)             | LOS F? | (pcplpm)   | Service  | $M_S$     | S <sub>R</sub> (mph) | S <sub>O</sub> (mph) | S (mph)   |
| M-1   | SR-99 SB      | Elverta Road Loop On | 395            | 1,900              | No     | 27.0       | С        | 0.386     | 56.1                 | 60.2                 | 57.6      |
| M-2   | SR 99 SB      | Elverta Road Slip On | 32             | 2,100              | No     | 26.1       | С        | 0.366     | 56.6                 | 59.6                 | 57.8      |
| M-3   | SR 99 NB      | Elverta Road Loop On | 172            | 1,900              | No     | 15.3       | В        | 0.325     | 57.5                 | 63.5                 | 59.7      |
| M-4   | SR 99 NB      | Elverta Road Slip On | 276            | 2,100              | No     | 16.8       | В        | 0.319     | 57.7                 | 63.2                 | 59.6      |
| M-1   | SR-99 SB      | Elverta Road Loop On | 359            | 1,900              | No     | 20.5       | С        | 0.342     | 57.1                 | 62.2                 | 58.9      |
| M-2   | SR 99 SB      | Elverta Road Slip On | 137            | 2,100              | No     | 20.5       | С        | 0.331     | 57.4                 | 61.7                 | 59.0      |
| M-3   | SR 99 NB      | Elverta Road Loop On | 736            | 1,900              | No     | 31.5       | D        | 0.449     | 54.7                 | 59.5                 | 56.3      |
| M-4   | SR 99 NB      | Elverta Road Slip On | 55             | 2,100              | No     | 29.9       | D        | 0.408     | 55.6                 | 58.3                 | 56.7      |

HCM 2000 Diverge Ramp Junctions Capacity Analysis Jurisdiction Sacramento County Agency or Company Caltrans

Analysis Year C+ Pref Alt with Mitigation Analyst F&P Project Description Elverta Specific Plan

| Genei | ral Informatio | n                     |             | Freeway | Data Data       |       | Freeway | Volume Adjı | ıstment |      |                |       |          |       |                       | Effective             |
|-------|----------------|-----------------------|-------------|---------|-----------------|-------|---------|-------------|---------|------|----------------|-------|----------|-------|-----------------------|-----------------------|
|       | Freeway/       |                       | Analysis    |         | S <sub>FF</sub> | V     |         |             | Truck/  |      |                |       |          |       | Flow Rate             | Flow Rate             |
|       | Direction      | Off-ramp              | Time Period | Lanes   | (mph)           | (vph) | PHF     | Terrain     | Bus %   | RV % | E <sub>T</sub> | $E_R$ | $f_{HV}$ | $f_P$ | v <sub>p</sub> (pcph) | v <sub>p</sub> (pcph) |
| D-1   | SR 99 SB       | Elverta Road Off Ramp | AM          | 3       | 65.0            | 5,010 | 0.97    | Level       | 7%      | 0%   | 1.5            | 1.20  | 0.966    | 1.00  | 5,346                 | 5,346                 |
| D-2   | SR 99 NB       | Elverta Road Off Ramp | AM          | 3       | 65.0            | 2,530 | 0.97    | Level       | 23.0%   | 0.0% | 1.5            | 1.200 | 0.897    | 1.00  | 2,908                 | 2,908                 |
| D-3   | SR 99 SB       | Elverta Road Off Ramp | PM          | 3       | 65.0            | 3,170 | 0.97    | Level       | 5.0%    | 0.0% | 1.5            | 1.200 | 0.976    | 1.00  | 3,350                 | 3,350                 |
| D-4   | SR 99 NB       | Elverta Road Off Ramp | PM          | 3       | 65.0            | 4,980 | 0.97    | Level       | 13.0%   | 0.0% | 1.5            | 1.200 | 0.939    | 1.00  | 5,468                 | 5,468                 |

HCM 2000 Diverge Ramp Junctions Capacity Analysis

General Information Off-Ramp Volume Adjustment Off-Ramp Data

|     | Freeway/  |                       |       |       | $S_{FR}$ | $V_R$ | De       | cel Lane | (ft)     |      |         | Truck/ |      |                |       |          |       | Flow Rate             |
|-----|-----------|-----------------------|-------|-------|----------|-------|----------|----------|----------|------|---------|--------|------|----------------|-------|----------|-------|-----------------------|
|     | Direction | Off-ramp              | Туре  | Lanes | (mph)    | (vph) | $L_{D1}$ | $L_{D2}$ | $L_Deff$ | PHF  | Terrain | Bus %  | RV % | E <sub>T</sub> | $E_R$ | $f_{HV}$ | $f_P$ | v <sub>p</sub> (pcph) |
| D-1 | SR 99 SB  | Elverta Road Off Ramp | Right | 1     | 45.0     | 860   | 150      |          | 150      | 0.97 | Level   | 7%     | 0%   | 1.5            | 1.2   | 0.966    | 1.00  | 918                   |
| D-2 | SR 99 NB  | Elverta Road Off Ramp | Right | 1     | 45.0     | 600   | 150      |          | 150      | 0.97 | Level   | 23.0%  | 0.0% | 1.5            | 1.2   | 0.897    | 1.00  | 690                   |
| D-3 | SR 99 SB  | Elverta Road Off Ramp | Right | 1     | 45.0     | 280   | 150      |          | 150      | 0.97 | Level   | 5.0%   | 0.0% | 1.5            | 1.2   | 0.976    | 1.00  | 296                   |
| D-4 | SR 99 NB  | Elverta Road Off Ramp | Right | 1     | 45.0     | 540   | 150      |          | 150      | 0.97 | Level   | 13.0%  | 0.0% | 1.5            | 1.2   | 0.939    | 1.00  | 593                   |

## HCM 2000 Diverge Ramp Junctions Capacity Analysis

General Information

v 12 Estimation

|     | Freeway/  |                       | L     | EQ    | $P_{FD}$ | Equatio | ns |          | V <sub>12</sub> |
|-----|-----------|-----------------------|-------|-------|----------|---------|----|----------|-----------------|
|     | Direction | Off-ramp              | 25-13 | 25-14 | 5        | 6       | 7  | $P_{FD}$ | (pcph)          |
| D-1 | SR 99 SB  | Elverta Road Off Ramp |       |       | 0.584    |         |    | 0.584    | 3,504           |
| D-2 | SR 99 NB  | Elverta Road Off Ramp |       |       | 0.656    |         |    | 0.656    | 2,144           |
| D-3 | SR 99 SB  | Elverta Road Off Ramp |       |       | 0.663    |         |    | 0.663    | 2,320           |
| D-4 | SR 99 NB  | Elverta Road Off Ramp |       |       | 0.596    |         |    | 0.596    | 3,498           |

HCM 2000 Diverge Ramp Junctions Capacity Analysis

General Information

Capacity Checks

|     | Freeway/  |                       | v <sub>Fi</sub> | Max v <sub>Fi</sub> |        | V <sub>3</sub> , V <sub>av34</sub> | V <sub>3</sub> , V <sub>av34</sub> | V <sub>3</sub> , V <sub>av34</sub> | V <sub>12a</sub> | Max v <sub>12</sub> |        | v <sub>FO</sub> | Max v <sub>FO</sub> |        |
|-----|-----------|-----------------------|-----------------|---------------------|--------|------------------------------------|------------------------------------|------------------------------------|------------------|---------------------|--------|-----------------|---------------------|--------|
|     | Direction | Off-ramp              | (pcph)          | (pcph)              | LOS F? | (pcphpl)                           | > 2,700?                           | >1.5*v <sub>12</sub> /2?           | (pcph)           | (pcph)              | LOS F? | (pcph)          | (pcph)              | LOS F? |
| D-1 | SR 99 SB  | Elverta Road Off Ramp | 5,346           | 7,050               | No     | 1,841                              | No                                 | No                                 | 3,504            | 4,400               | No     | 4,428           | 7,050               | No     |
| D-2 | SR 99 NB  | Elverta Road Off Ramp | 2,908           | 7,200               | No     | 764                                | No                                 | No                                 | 2,144            | 4,400               | No     | 2,219           | 7,200               | No     |
| D-3 | SR 99 SB  | Elverta Road Off Ramp | 3,350           | 7,200               | No     | 1,030                              | No                                 | No                                 | 2,320            | 4,400               | No     | 3,054           | 7,200               | No     |
| D-4 | SR 99 NB  | Elverta Road Off Ramp | 5,468           | 7,200               | No     | 1,969                              | No                                 | No                                 | 3,498            | 4,400               | No     | 4,875           | 7,200               | No     |

HCM 2000 Diverge Ramp Junctions Capacity Analysis

|     | General Information |           |                       |        |                    | Results |            |          | Speed Estimation |                      |             |           |
|-----|---------------------|-----------|-----------------------|--------|--------------------|---------|------------|----------|------------------|----------------------|-------------|-----------|
|     |                     | Freeway/  |                       | $v_R$  | Max v <sub>R</sub> |         | Density, D | Level of | Int. Var.        | Inf. Area            | Out Lns.    | All vehs. |
|     |                     | Direction | Off-ramp              | (pcph) | (pcph)             | LOS F?  | (pcplpm)   | Service  | D <sub>S</sub>   | S <sub>R</sub> (mph) | $S_O$ (mph) | S (mph)   |
| ſ   | D-1                 | SR 99 SB  | Elverta Road Off Ramp | 918    | 2,100              | No      | 33.0       | D        | 0.381            | 56.2                 | 68.0        | 59.8      |
| - 1 | D-2                 | SR 99 NB  | Elverta Road Off Ramp | 690    | 2,100              | No      | 21.3       | С        | 0.360            | 56.7                 | 71.3        | 59.9      |
| - 1 | D-3                 | SR 99 SB  | Elverta Road Off Ramp | 296    | 2,100              | No      | 22.8       | С        | 0.325            | 57.5                 | 71.2        | 61.1      |
|     | D-4                 | SR 99 NB  | Elverta Road Off Ramp | 593    | 2,100              | No      | 33.0       | D        | 0.351            | 56.9                 | 67.5        | 60.3      |